Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (794)

Search Parameters:
Keywords = high-pressure crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2612 KiB  
Article
Pressure Response of Crystalline Fluoranthene Probed by Raman Spectroscopy
by Olga Karabinaki, Stylianos Papastylianos, Nayra Machín Padrón, Antonios Hatzidimitriou, Dimitrios Christofilos and John Arvanitidis
Crystals 2025, 15(8), 697; https://doi.org/10.3390/cryst15080697 - 30 Jul 2025
Viewed by 172
Abstract
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. [...] Read more.
The pressure response and structural stability of fluoranthene crystals up to 8 GPa are investigated using Raman spectroscopy. The vast majority of the Raman peaks upshift with pressure, either sublinearly (intermolecular modes) or quasilinearly (intramolecular modes), reflecting the bond hardening upon volume contraction. The frequency shifts, accompanied by intensity redistribution among the Raman peaks, are by far larger for the former than those for the latter vibrations, compatible with their nature: weak intermolecular van der Waals interactions and strong intramolecular covalent bonds. For pressures higher than 2 GPa, changes in the linear pressure coefficients of the Raman peak frequencies, mainly towards lower values, are observed. These are more pronounced for intermolecular and C–H stretching vibrations. For P > 4.7 GPa, the pressure coefficients are further reduced, while all the observed pressure-induced changes are fully reversible upon pressure release. These changes may be interpreted either as two structural transitions at ~2 and ~4.7 GPa or as a single, but sluggish, structural phase transition in the pressure range 2–4.7 GPa, featuring the reorientation and different stacking of the molecules. From the high-pressure Raman data in the low-pressure phase, a bulk modulus of ~7 GPa at ambient pressure is estimated for solid fluoranthene. Full article
Show Figures

Graphical abstract

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 212
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

20 pages, 5319 KiB  
Article
Multiscale 2PP and LCD 3D Printing for High-Resolution Membrane-Integrated Microfluidic Chips
by Julia K. Hoskins, Patrick M. Pysz, Julie A. Stenken and Min Zou
Nanomanufacturing 2025, 5(3), 11; https://doi.org/10.3390/nanomanufacturing5030011 - 12 Jul 2025
Viewed by 303
Abstract
This study presents a microfluidic chip platform designed using a multiscale 3D printing strategy for fabricating microfluidic chips with integrated, high-resolution, and customizable membrane structures. By combining two-photon polymerization (2PP) for submicron membrane fabrication with liquid crystal display printing for rapid production of [...] Read more.
This study presents a microfluidic chip platform designed using a multiscale 3D printing strategy for fabricating microfluidic chips with integrated, high-resolution, and customizable membrane structures. By combining two-photon polymerization (2PP) for submicron membrane fabrication with liquid crystal display printing for rapid production of larger components, this approach addresses key challenges in membrane integration, including sealing reliability and the use of transparent materials. Compared to fully 2PP-based fabrication, the multiscale method achieved a 56-fold reduction in production time, reducing total fabrication time to approximately 7.2 h per chip and offering a highly efficient solution for integrating complex structures into fluidic chips. The fabricated chips demonstrated excellent mechanical integrity. Burst pressure testing showed that all samples withstood internal pressures averaging 1.27 ± 0.099 MPa, with some reaching up to 1.4 MPa. Flow testing from ~35 μL/min to ~345 μL/min confirmed stable operation in 75 μm square channels, with no leakage and minimal flow resistance up to ~175 μL/min without deviation from the predicted behavior in the 75 μm. Membrane-integrated chips exhibited outlet flow asymmetries greater than 10%, indicating active fluid transfer across the membrane and highlighting flow-dependent permeability. Overall, this multiscale 3D printing approach offers a scalable and versatile solution for microfluidic device manufacturing. The method’s ability to integrate precise membrane structures enable advanced functionalities such as diffusion-driven particle sorting and molecular filtration, supporting a wide range of biomedical, environmental, and industrial lab-on-a-chip applications. Full article
Show Figures

Figure 1

34 pages, 4392 KiB  
Article
Post-Collisional Mantle Processes and Magma Evolution of the El Bola Mafic–Ultramafic Intrusion, Arabian-Nubian Shield, Egypt
by Khaled M. Abdelfadil, Hatem E. Semary, Asran M. Asran, Hafiz U. Rehman, Mabrouk Sami, A. Aldukeel and Moustafa M. Mogahed
Minerals 2025, 15(7), 705; https://doi.org/10.3390/min15070705 - 2 Jul 2025
Viewed by 572
Abstract
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate [...] Read more.
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate textures. Mineralogical and geochemical analyses reveal a coherent trend of fractional crystallization. Compositions of whole rock and minerals indicate a parental magma of ferropicritic affinity, derived from partial melting of a hydrous, metasomatized spinel-bearing mantle source, likely modified by subduction-related fluids. Geothermobarometric calculations yield crystallization temperatures from ~1120 °C to ~800 °C and pressures from ~5.2 to ~3.1 kbar, while oxygen fugacity estimates suggest progressive oxidation (log fO2 from −17.3 to −15.7) during differentiation. The EBMU displays Light Rare Earth element (LREE) enrichment, trace element patterns marked by Large Ion Lithophile Element (LILE) enrichment, Nb-Ta depletion and high LILE/HFSE (High Field Strength Elements) ratios, suggesting a mantle-derived source that remained largely unaffected by crustal contribution and was metasomatized by slab-derived fluids. Tectonic discrimination modeling suggests that EBMU magmatism was triggered by asthenospheric upwelling and slab break-off. Considering these findings alongside regional geologic features, we propose that the mafic–ultramafic intrusion from the ANS originated in a tectonic transition between subduction and collision (slab break-off) following the assembly of Gondwana. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

12 pages, 4829 KiB  
Article
Pressure-Induced Structural Stabilities and Superconductivity in Rhodium Borides
by Junyi Du, Weiguo Sun, Xiaofeng Li and Xinfang Su
Materials 2025, 18(13), 3125; https://doi.org/10.3390/ma18133125 - 1 Jul 2025
Viewed by 229
Abstract
Transition metal borides have garnered significant research interest due to their versatile properties, including superconductivity and exceptional hardness. This study examines the stable crystal structures of Rhodium-Boron (Rh-B) compounds under high pressure using first-principles structural searching. Beyond the previously known Rh2B, [...] Read more.
Transition metal borides have garnered significant research interest due to their versatile properties, including superconductivity and exceptional hardness. This study examines the stable crystal structures of Rhodium-Boron (Rh-B) compounds under high pressure using first-principles structural searching. Beyond the previously known Rh2B, RhB2, and RhB4 phases, three new boron-rich phases—C2/m-RhB6, Amm2-RhB6, and Cmca-RhB8—are identified, each characterized by three-dimensional covalent bonding networks. Their mechanical and thermodynamic stability is validated through elastic property assessments and phonon dispersion calculations. Surprisingly, these phases exhibit low bulk and shear moduli, ruling them out as candidates for hard materials. The metallic character of these borides is evident from their electronic density of states, which exhibits a sharp peak at the EF-a signature often associated with superconducting systems. Indeed, our calculations predict Tc values of 8.93 K and 9.36 K for Amm2-RhB6 and Cmca-RhB8, respectively, at 100 GPa. Full article
Show Figures

Graphical abstract

16 pages, 4381 KiB  
Article
The Influence of Different Foaming Agents on the Properties and Foaming Mechanisms of Foam Ceramics from Quartz Tailings
by Huiyang Gao and Jie Zhang
Crystals 2025, 15(7), 606; https://doi.org/10.3390/cryst15070606 - 28 Jun 2025
Viewed by 285
Abstract
The type of foaming agent significantly influences the pore structure and properties of foam ceramics, particularly their compressive strength. This study used quartz sand tailings and waste glass powder as raw materials to fabricate foam ceramic materials. The effects of different foaming agents [...] Read more.
The type of foaming agent significantly influences the pore structure and properties of foam ceramics, particularly their compressive strength. This study used quartz sand tailings and waste glass powder as raw materials to fabricate foam ceramic materials. The effects of different foaming agents (SiC, CaCO3, and MnO2) on the phase evolution, microstructure, pore size distribution, and physical properties of the foam ceramics were investigated, and the foaming mechanisms were elucidated. The results indicated that when SiC was employed as the foaming agent, the viscosity was high at elevated temperatures and pores with irregular shapes tended to form because of the anisotropy of the quartz crystals. CaO generated from CaCO3 decomposition reduced the melt viscosity by disrupting the [SiO4] tetrahedra, whereas the formation of anorthite and diopside stabilized the pore morphology, resulting in regular circular pores. When MnO2 was used as the foaming agent, the pressure from the gas produced during oxidation exceeded the surface tension of the molten phase owing to its viscosity, leading to the formation of larger, irregular, and interconnected pores. The foam ceramic material exhibited optimal properties when 2% CaCO3 was used as the foaming agent, with a water absorption rate of 30%, bulk density of 0.62 g/cm3, porosity of 68.4%, compressive strength of 9.67 MPa, and thermal conductivity of 0.26 W/(m·K). Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 314
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 3268 KiB  
Article
Pressure Dependence of Structural Behavior in the Polymorphs of Fe(PM–BiA)2(NCS)2
by Pulkit Prakash, Hend Shahed, Ji Qi, Andrzej Grzechnik, Manuel Angst, Jörg Voigt, Jörg Perßon, Yao Cheng, Biliana Gasharova, Yves-Laurent Mathis, Francesco Capitani, Carsten Paulmann, Charlie McMonagle, Dmitry Chernyshov and Karen Friese
Molecules 2025, 30(12), 2651; https://doi.org/10.3390/molecules30122651 - 19 Jun 2025
Viewed by 420
Abstract
The pressure dependence of structural behavior in the orthorhombic (Pccn, PI) and monoclinic (P21/c, PII) polymorphs of the compound [Fe(PM-BiA)2(NCS)2], where PM–BiA = (N–(2′–pyridylmethylene)–4-amino–bi–pheynyl), is studied with synchrotron single-crystal X-ray diffraction and [...] Read more.
The pressure dependence of structural behavior in the orthorhombic (Pccn, PI) and monoclinic (P21/c, PII) polymorphs of the compound [Fe(PM-BiA)2(NCS)2], where PM–BiA = (N–(2′–pyridylmethylene)–4-amino–bi–pheynyl), is studied with synchrotron single-crystal X-ray diffraction and vibrational spectroscopy. Both polymorphs are stable up to ∼1.5 GPa, with a spin state transition occurring only in polymorph PII under hydrostatic conditions as documented by single-crystal synchrotron diffraction. The diffraction data also provide evidence of the formation of superstructures for both PI, with a doubled c axis, and PII, with a doubled b axis, on applying pressures above 2 GPa. The LS and HS states seem to coexist at high-pressures for both polymorphs studied with synchrotron infrared spectroscopy at quasi-hydrostatic conditions. Such results indicate that the occurrence of spin-crossover transformations in [Fe(PM-BiA)2(NCS)2] might strongly depend on the stress in the sample. Full article
Show Figures

Figure 1

21 pages, 2990 KiB  
Review
Geothermal Lithium Extraction Technology: Research Status and Prospects
by Bo Zhang, Feng Wang, Ronggang Wang, Yuhan Shang, Feng Li, Mengjiao Li and Tao Wang
Energies 2025, 18(12), 3146; https://doi.org/10.3390/en18123146 - 16 Jun 2025
Viewed by 571
Abstract
With the explosive growth in global lithium demand driven by the new energy industry, traditional lithium extraction methods face critical challenges such as resource scarcity, environmental pressure, and high energy consumption, necessitating sustainable alternatives. Under such circumstances, geothermal brine has emerged as a [...] Read more.
With the explosive growth in global lithium demand driven by the new energy industry, traditional lithium extraction methods face critical challenges such as resource scarcity, environmental pressure, and high energy consumption, necessitating sustainable alternatives. Under such circumstances, geothermal brine has emerged as a critical lithium resource, attracting significant attention due to advancements in efficient extraction technologies. This review establishes a comprehensive framework for analyzing geothermal lithium extraction technologies, with the following key contributions: an in-depth analysis of resource characteristics and development advantages, an innovative technical evaluation and performance comparison, and strategic pathways for technological synergy and industrial integration. This article reviews the global distribution and characteristics of lithium resources, analyzes the advantages and primary methods of geothermal lithium extraction, and examines key challenges such as high energy consumption and environmental impacts. Furthermore, future development directions are outlined. Currently, applicable technologies for geothermal lithium extraction include evaporation–crystallization, chemical precipitation, adsorption, solvent extraction, electrochemical methods, and membrane separation. Among these, membrane separation, particularly forward osmosis (FO), is identified as a pivotal research focus. The industrialization of geothermal lithium extraction and its integration with other industries are expected to shape future trends. This review not only provides critical insights and optimization strategies for geothermal lithium resource development, but also establishes a theoretical foundation for the green transition and sustainable utilization of resources in the global new energy industry. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

29 pages, 15607 KiB  
Article
Visible-Light-Driven Co3O4/Nb2O5 Heterojunction Nanocomposites for Efficient Photocatalytic and Antimicrobial Performance in Wastewater Treatment
by Anil Pandey, Santu Shrestha, Rupesh Kandel, Narayan Gyawali, Subas Acharya, Pujan Nepal, Binod Gaire, Vince Fualo and Jae Ryang Hahn
Molecules 2025, 30(12), 2561; https://doi.org/10.3390/molecules30122561 - 12 Jun 2025
Viewed by 1086
Abstract
The development of high-performance photocatalysts is vital for combating water pollution and microbial contamination. In this study, visible-light-active Z-scheme heterojunction nanocomposites composed of Co3O4 and Nb2O5 (CNNC) were synthesized via co-crystallization and subsequent high-pressure annealing to enhance [...] Read more.
The development of high-performance photocatalysts is vital for combating water pollution and microbial contamination. In this study, visible-light-active Z-scheme heterojunction nanocomposites composed of Co3O4 and Nb2O5 (CNNC) were synthesized via co-crystallization and subsequent high-pressure annealing to enhance photocatalytic and antimicrobial performance. Structural and optical analyses via XRD, FESEM, TEM, XPS, and PL confirmed the heterojunction formation between porous Co3O4 nanoparticles (CONP) and columnar orthorhombic Nb2O5 nanoparticles (NONP). The CNNC exhibited significantly improved photocatalytic activity, achieving degradation efficiencies of 95.1% for methylene blue, 72.6% for tetracycline, and 90.0% for Congo red within 150 min. Kinetic studies showed that CNNC’s rate constants were 367% and 466% of those of CONP and NONP, respectively. Moreover, CNNC demonstrated a strong antibacterial effect on Staphylococcus aureus and Escherichia coli with ZOI values of 9.3 mm and 6.8 mm, respectively. Mechanistic analysis revealed that the Z-scheme charge-transfer pathway improved charge separation and reduced electron–hole recombination, contributing to the promoted photocatalytic efficiency. The nanocomposite also showed robust stability and recyclability over five times. These results highlight the promise of CNNC as a bifunctional, visible-light-driven photocatalyst for pollutant decomposition and microbial control. Full article
Show Figures

Graphical abstract

13 pages, 3353 KiB  
Article
Electronic Correlations in Altermagnet MnTe in Hexagonal Crystal Structure
by Evgenii D. Chernov and Alexey V. Lukoyanov
Materials 2025, 18(11), 2637; https://doi.org/10.3390/ma18112637 - 4 Jun 2025
Viewed by 786
Abstract
In this article, we present the results of the first-principles study of altermagnet MnTe crystallized in the hexagonal-type crystal structure. Our theoretical calculations have been performed within density functional theory (DFT) and demonstrated that the altermagnetic phase of MnTe has the lowest total [...] Read more.
In this article, we present the results of the first-principles study of altermagnet MnTe crystallized in the hexagonal-type crystal structure. Our theoretical calculations have been performed within density functional theory (DFT) and demonstrated that the altermagnetic phase of MnTe has the lowest total energy corresponding to the stable ground state. The calculations carried out accounting for electronic correlations in DFT+U resulted in significant changes in the electronic structure, as well as magnetic properties of altermagnet MnTe and the increased bandgap. In additional calculations with spin-orbit coupling and electronic correlations (DFT+U+SO), we showed that the bandgap is less than in the DFT+U calculations, but the electronic structure did not change noticeably. In addition, the investigated pressure effects for the compound under study revealed an insulator to metal transition under pressure for the hexagonal-type crystal structure. An experimental finding of a metallic state can be complicated by structural transitions into other phases, not considered in our study, which can occur at high pressures. Experimental measurements for MnTe above 40 GPa are required. Full article
Show Figures

Figure 1

21 pages, 6026 KiB  
Article
Tectonic Setting of the Neoproterozoic Gabbroic Intrusions in the Luanchuan Area, Southern Margin of the North China Craton: Constraints from Ilmenite and Biotite Mineralogy
by Jianhan Huang, Zhenzhen Huang, Danli Chen, Kekun Li, Xiaoxiao Huang, Minghao Ren and Yazhou Fan
Minerals 2025, 15(6), 602; https://doi.org/10.3390/min15060602 - 3 Jun 2025
Viewed by 343
Abstract
The Luanchuan Neoproterozoic gabbroic intrusions are located at the southern margin of the North China Craton (NCC), intruding into the marble and schist from the Nannihu and Meiyaogou Formations of the Neoproterozoic Luanchuan Group. The gabbroic rocks consist of plagioclase (30%–50%) and amphibole [...] Read more.
The Luanchuan Neoproterozoic gabbroic intrusions are located at the southern margin of the North China Craton (NCC), intruding into the marble and schist from the Nannihu and Meiyaogou Formations of the Neoproterozoic Luanchuan Group. The gabbroic rocks consist of plagioclase (30%–50%) and amphibole (40%–60%), with minor ilmenite (2%–5%), biotite (1%–3%), and titanite (~1%). Based on the occurrence and mineral chemistry, two types of biotites were identified. The first type of biotite (Bt I) is brown, with a fine- to micro-grained anhedral texture, occurring around the magmatic ilmenite and coexisting with titanite. Bt I is characterized by high TiO2 and FeO contents, with TiO2 > 2 wt% (2.03 wt%–3.15 wt%) and FeO ranging from 19.94 wt% to 22.08 wt%. The other type of biotite (Bt II) is light grayish-brown to dark reddish-brown, with a medium- to coarse-grained euhedral texture, coexisting with grayish-green amphibole. Bt II exhibits lower TiO2 (1.40 wt%–1.90 wt%) and FeO contents (18.03 wt%–21.42 wt%). The K2O (7.56 wt%–9.32 wt%) and SiO2 (34.49 wt%–37.04 wt%) contents of Bt I are slightly lower than those of Bt II (8.28 wt%–9.73 wt% and 35.18 wt%–37.52 wt%, respectively). Despite the low Ti content in biotites, the mineral occurrence indicates that both types of biotite yield a magmatic origin, resulting from the reactions between early crystallized minerals and residual magma. Bt I originated from the reaction between ilmenite and residual magma, while Bt II resulted from the production of the reaction between clinopyroxne and residual magma. Ilmenite exhibits low MgO and Fe2O3 contents but high FeO and MnO contents, suggesting genetic similarities to the Skaergaard and Panzhihua intrusions. Both types of biotites record consistent temperatures (T = 766 to 818 °C), pressures (P = 5.30–8.80 kbar), and oxygen fugacities (log fO2 = −12.35 to −14.06), aligning with those of the Fanshan complex and the Falcon Island intrusion. The mineralogy of ilmenite and biotite indicates that the Luanchuan gabbroic intrusions formed in a continental rift setting, which is considered to be associated with the breakup of the Rodinia supercontinent. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

15 pages, 3262 KiB  
Article
Optimization of Diamond Polishing Process for Sub-Nanometer Roughness Using Ar/O2/SF6 Plasma
by Lei Zhao, Xiangbing Wang, Minxing Jiang, Chao Zhao, Nan Jiang, Kazhihito Nishimura, Jian Yi and Shuangquan Fang
Materials 2025, 18(11), 2615; https://doi.org/10.3390/ma18112615 - 3 Jun 2025
Viewed by 591
Abstract
Diamond, known for its exceptional physical and chemical properties, shows great potential in advanced fields such as medicine, semiconductors, and optics. However, reducing surface roughness is critical for enhancing its performance. This study employs inductively coupled plasma (ICP) polishing to etch single-crystal diamond [...] Read more.
Diamond, known for its exceptional physical and chemical properties, shows great potential in advanced fields such as medicine, semiconductors, and optics. However, reducing surface roughness is critical for enhancing its performance. This study employs inductively coupled plasma (ICP) polishing to etch single-crystal diamond and analyzes the impact of different etching parameters on surface roughness using atomic force microscopy (AFM). Using the change in surface roughness before and after etching as the main evaluation metric, the optimal etching parameters were determined: Ar/O2/SF6 gas flow ratio of 40/50/10 sccm, ICP power of 200 W, RF bias power of 40 W, chamber pressure of 20 mTorr, and etching time of 10 min. Results show that increased etching time and SF6 flow rate raise surface roughness; although higher ICP and RF power reduce roughness, they also cause nanostructure formation, affecting surface quality. Lower chamber pressure results in smaller roughness increases, while higher pressure significantly worsens it. Based on the optimized process parameters, the pristine single-crystal diamond was further etched in this study, resulting in a significant reduction of the surface roughness from 2.22 nm to 0.562 nm, representing a 74.7% decrease. These improvements in surface roughness demonstrate the effectiveness of the optimized process, enhancing the diamond’s suitability for high-precision optical applications. Full article
Show Figures

Figure 1

13 pages, 4465 KiB  
Article
Effective Treatment of High Arsenic Smelting Wastewater Synergetic Synthesis of Well-Crystallized Scorodite
by Yuanhang Liao, Jianhui Wu, Chengyun Zhou, Yanjie Liang and Guomeng Yan
Water 2025, 17(11), 1599; https://doi.org/10.3390/w17111599 - 25 May 2025
Viewed by 469
Abstract
Arsenic-containing acidic wastewater from nonferrous heavy smelting industry is a dangerous source of arsenic pollution due to its complex composition, high acidity, and strong toxicity. In this study, an environment-friendly strategy was proposed, in which highly stable scorodite was synthesized in acidic wastewater. [...] Read more.
Arsenic-containing acidic wastewater from nonferrous heavy smelting industry is a dangerous source of arsenic pollution due to its complex composition, high acidity, and strong toxicity. In this study, an environment-friendly strategy was proposed, in which highly stable scorodite was synthesized in acidic wastewater. The effects of initial pH, Fe/As molar ratio, and oxidation-reduction potential (ORP) on the morphology, particle size, phase composition, and leaching stability of scorodite were systematically investigated. The results demonstrate a distinct morphological evolution with increasing pH. The products were transitioned from bone-shaped to rice grain-shaped, and then turned to bipyramidal polyhedral-shaped and amorphous aggregates. When the Fe/As molar ratio was increased, the scorodite crystallization quickly formed well-defined particles (the size was 15–20 μm). Higher ORP values led to progressively irregular morphologies, reduced particle sizes, and ultimately formed amorphous ferric arsenate. The large-grained scorodite with regular morphology and high leaching stability from high-arsenic solutions (25 g/L) was produced under optimal conditions (initial pH 1.5, Fe/As 1.5, ORP 385 mV). These findings provide critical technical support for arsenic solidification from waste liquids under atmospheric pressure conditions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 4079 KiB  
Article
Synthesis and Applications of Encapsulated Glycol-Stabilized Lyotropic Cholesteric Liquid Crystal Hydrogels
by Yan-Ting Lin, Chung-Yu Kuo, Yi Shen, Alexander V. Emelyanenko and Chun-Yen Liu
Gels 2025, 11(6), 388; https://doi.org/10.3390/gels11060388 - 25 May 2025
Viewed by 484
Abstract
The micro-phase segregation of two incompatible components on a nanometer scale results in a unique solvent-induced extended anisotropic arrangement. With the addition of a chiral dopant, lyotropic liquid crystals can be induced to adopt a helical structure, forming lyotropic cholesteric liquid crystals capable [...] Read more.
The micro-phase segregation of two incompatible components on a nanometer scale results in a unique solvent-induced extended anisotropic arrangement. With the addition of a chiral dopant, lyotropic liquid crystals can be induced to adopt a helical structure, forming lyotropic cholesteric liquid crystals capable of reflecting incident light. In this study, to prevent fluid leakage in lyotropic materials, we encapsulated a series of hydrogel-stabilized lyotropic liquid crystals, presenting tunable structural colors visible in all directions, mimicking the color-changing characteristics of living organisms. Hydrogel scaffolds with controllable swelling behaviors were engineered by incorporating crosslinking monomers. To ensure stable integration of lyotropic liquid crystals, high-boiling-point ethylene glycol was employed as a fluid during the fabrication process. This study extensively explores the relationship between tensile force, temperature, and pressure and the color changes in lyotropic liquid crystals (LC). The results indicate that lyotropic LC membranes, stabilized by ethylene glycol and PDMS encapsulation, exhibit long-term stability, rendering them suitable for applications in temperature and pressure sensing. This approach ensures the continuous presence and stability of lyotropic liquid crystals within the hydrogel matrix. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

Back to TopTop