Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,104)

Search Parameters:
Keywords = high-pressure composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1765 KB  
Article
Towards a Comprehensive Understanding of Microplastics and Antifouling Paint Particles from Ship-Hull Derusting Wastewater and Their Emissions into the Marine Environment
by Can Zhang, Yufan Chen, Wenbin Zhao, Jianhua Zhou and Deli Wu
J. Mar. Sci. Eng. 2026, 14(2), 195; https://doi.org/10.3390/jmse14020195 (registering DOI) - 17 Jan 2026
Abstract
Microplastics (MPs) and Antifouling Paint Particles (APPs) are pervasive anthropogenic pollutants that threaten global ecosystems, with distinct yet overlapping environmental behaviors and toxic impacts. MPs disperse widely in aquatic systems via runoff and wastewater; their toxicity stems from physical, chemical, and synergistic effects. [...] Read more.
Microplastics (MPs) and Antifouling Paint Particles (APPs) are pervasive anthropogenic pollutants that threaten global ecosystems, with distinct yet overlapping environmental behaviors and toxic impacts. MPs disperse widely in aquatic systems via runoff and wastewater; their toxicity stems from physical, chemical, and synergistic effects. APPs are concentrated in coastal zones, estuaries, and shipyard areas, and are acutely toxic due to their high metal and biocide content. This study systematically characterized the composition, concentration, and size distribution of common MPs and APPs in ship-hull derusting wastewater produced by ultra-high-pressure water jetting, using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) coupled with particle size analysis. The wastewater exhibited a total suspended solids (TSS) concentration of 20.04 g·L−1, within which six types of MPs were identified at 3.29 mg·L−1 in total and APPs were quantified at 330.25 mg·L−1, representing 1.65% of TSS. The residual fraction primarily consisted of algae, biological debris, and inorganic particles. Particle size distribution ranged from 3.55 to 111.47 μm, with a median size (D50) of 31 μm, while APPs were mainly 5–100 μm, with 81.4% < 50 μm. Extrapolation to the annual treated ship-hull surface area in 2024 indicated the generation of ~57,440 m3 wastewater containing ~0.2 tons of MPs and ~19 tons of APPs. These findings highlight the magnitude of pollutant release from ship maintenance activities and underscore the urgent need for targeted treatment technologies and regulatory policies to mitigate microplastic pollution in marine environments. Full article
(This article belongs to the Section Marine Hazards)
18 pages, 3377 KB  
Article
Enhancing Osmotic Power Generation and Water Conservation with High-Performance Thin-Film Nanocomposite Membranes for the Mining Industry
by Sara Pakdaman and Catherine N. Mulligan
Water 2026, 18(2), 248; https://doi.org/10.3390/w18020248 (registering DOI) - 17 Jan 2026
Abstract
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) [...] Read more.
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) membrane containing functionalized multi-walled carbon nanotubes (fMWCNTs) within a polyacrylonitrile (PAN) support layer, followed by polydopamine (PDA) surface modification, was investigated under a PRO operation using pretreated gold mining wastewater as the feed solution. Unlike most previous studies that rely on synthetic feeds, this work evaluates the membrane performance under a PRO operation using a real mining wastewater stream. The membrane with fMWCNTs and PDA exhibited a maximum power density of 25.22 W/m2 at 12 bar, representing performance improvements of 23% and 68% compared with the pristine thin-film composite (TFC) and commercial cellulose triacetate (CTA) membranes, respectively. A high water flux of 75.6 L·m−2·h−1 was also obtained, attributed to enhanced membrane hydrophilicity and reduced internal concentration polarization. The optimized membrane, containing 0.3 wt% fMWCNTs in the support layer and a PDA coating on the active layer, produced a synergistic enhancement in the PRO performance, resulting in a lower reverse salt flux and an improved flux–selectivity trade-off. Furthermore, the ultrafiltration (UF) and nanofiltration (NF) pretreatment effectively reduced the hardness and ionic content, enabling a stable PRO operation with real mining wastewater over a longer period of time. Overall, this study demonstrates the feasibility of achieving both reusable water and enhanced osmotic power generation using modified TFN membranes under realistic mining wastewater conditions. Full article
Show Figures

Figure 1

20 pages, 4847 KB  
Article
Numerical and Experimental Analysis of Composite Hydraulic Cylinder Components
by Michał Stosiak, Marek Lubecki and Mykola Karpenko
Actuators 2026, 15(1), 61; https://doi.org/10.3390/act15010061 - 16 Jan 2026
Abstract
Due to a number of advantages, such as the high power-to-weight ratio of the system, the possibility of easy control and the freedom of arrangement of the system components on the machine, hydrostatic drive is one of the most popular methods of machine [...] Read more.
Due to a number of advantages, such as the high power-to-weight ratio of the system, the possibility of easy control and the freedom of arrangement of the system components on the machine, hydrostatic drive is one of the most popular methods of machine drive. The actuators in such a system are hydraulic cylinders that convert fluid pressure energy into mechanical energy for reciprocating motion. One disadvantage of conventional actuators is their weight, so research is being conducted to make them as light as possible. Directions for this research include the use of modern engineering materials such as composites and plastics. This paper presents the possibility of using new lightweight yet strong materials for the design of a hydraulic cylinder. The base of the hydraulic cylinder were designed and subjected to FEM numerical analyses. The base was made of PET. In addition, a composite cylinder made of wound carbon fibre was subjected to numerical analyses and experimental validation. The numerical calculations were verified in experimental studies. To improve the reliability of the numerical calculations, the material parameters of the composite materials were determined experimentally instead of being taken from the manufacturer’s data sheets. The composite cylinder achieved a weight reduction of approximately 94.4% compared to a steel cylinder (95.5 g vs. 1704 g). Under an internal pressure of 20 MPa, the composite cylinder exhibited markedly higher circumferential strain (4329 μm/m) than the steel cylinder (339.6 μm/m), and axial strain was also greater (−1237 μm/m vs. −96.4 μm/m). Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

28 pages, 21767 KB  
Article
Reservoir Characteristics and Productivity Controlling Factors of the Wufeng–Longmaxi Formations in the Lu203–Yang101 Well Block, Southern Sichuan Basin, China
by Zhi Gao, Tian Tang, Cheng Yang, Jing Li, Yijia Wu, Ying Wang, Jingru Ruan, Yi Xiao, Hu Li and Kun Zhang
Energies 2026, 19(2), 444; https://doi.org/10.3390/en19020444 - 16 Jan 2026
Abstract
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction [...] Read more.
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction (XRD), scanning electron microscopy (SEM), low-pressure N2 adsorption, and nuclear magnetic resonance (NMR)—to characterize the macro- and micro-scale characteristics of these deep shales. By comparing with shallower shales in adjacent areas, we investigated differences in pore structure between deep and shallow shales and the main controlling factors for high gas-well productivity. The results show that the Long 11 sub-member shales are rich in organic matter, with total organic carbon (TOC) content decreasing upward. The mineral composition is dominated by quartz (averaging ~51%), which slightly decreases upward, while clay content increases upward. Porosity ranges from 1% to 7%; the Long11-1-3 sublayers average 4–6%, locally >6%. Gas content correlates closely with TOC and porosity, highest in the Long11-1 sublayer (6–10 m3/t) and decreasing upward, and the central part of the study area has higher gas content than adjacent areas. The micro-pore structure exhibits pronounced stratigraphic differences: the WF Formation top and Long11-1 and Long11-3 sublayers are dominated by connected round or bubble-like organic pores (50–100 nm), whereas the Long11-2 and Long11-4 sublayers contain mainly smaller isolated organic pores (5–50 nm). Compared to shallow shales nearby, the deep shales have a slightly lower proportion of organic pores, smaller pore sizes with more isolated pores, inorganic pores of mainly intraparticle types, and more developed microfractures, confirming that greater burial depth leads to a more complex pore structure. Type I high-quality reservoirs are primarily distributed from the top of the WF Formation to the Long11-3 sublayer, with a thickness of 15.6–38.5 m and a continuous thickness of 13–23 m. The Lu206–Yang101 area has the thickest high-quality reservoir, with a cumulative thickness of Type I + II exceeding 60 m. Shale gas-well high productivity is jointly controlled by multiple factors: an oxygen-depleted, stagnant deep-shelf environment, with deposited organic-rich, biogenic siliceous shales providing the material basis for high yields; abnormally high pore-fluid pressure with preserved abundant large organic pores and increased free gas content; and effective multi-stage massive fracturing connecting a greater reservoir volume, which is the key to achieving high gas-well production. This study provides a scientific basis for evaluating deep marine shale gas reservoirs in southern Sichuan and understanding the enrichment patterns for high productivity. Full article
Show Figures

Figure 1

19 pages, 6581 KB  
Article
Data-Driven Design of HPDC Aluminum Alloys Using Machine Learning and Inverse Design
by Seunghyeok Choi, Sungjin Kim, Junho Lee, Jeonghoo Choi, MiYoung Lee, JaeHwang Kim, Jae-Gil Jung and Seok-Jae Lee
Metals 2026, 16(1), 99; https://doi.org/10.3390/met16010099 - 16 Jan 2026
Abstract
This work proposes a data-driven design framework for high-pressure die-cast (HPDC) aluminum alloys that integrates robust data refinement, machine learning (ML) modeling, explainability, and inverse design. A total of 1237 tensile-test records from T5-aged HPDC alloys were aggregated into a curated dataset of [...] Read more.
This work proposes a data-driven design framework for high-pressure die-cast (HPDC) aluminum alloys that integrates robust data refinement, machine learning (ML) modeling, explainability, and inverse design. A total of 1237 tensile-test records from T5-aged HPDC alloys were aggregated into a curated dataset of 382 unique composition–heat-treatment combinations. Four regression models—Ridge regression, Random Forest (RF), XGBoost (XGB), and a multilayer perceptron (MLP)—were trained to predict yield strength (YS), ultimate tensile strength (UTS), and elongation (EL). Tree-based ensemble models (XGB and RF) achieved the highest accuracy and stability, capturing nonlinear interactions inherent to industrial HPDC data. In particular, the XGB model exhibited the best predictive performance, achieving test R2 values of 0.819 for UTS and 0.936 for EL, with corresponding RMSE values of 15.23 MPa and 1.112%, respectively. Feature-importance and SHapley Additive exPlanations (SHAP) analyses identified Mn, Si, Mg, Zn, and T5 aging temperature as the most influential variables, consistent with metallurgical considerations such as microstructural stabilization and precipitation strengthening. Finally, RF-based inverse design suggested new composition–process candidates satisfying UTS > 300 MPa and EL > 8%, a region scarcely represented in the experimental dataset. These results illustrate how interpretable ML can expand the feasible design space of HPDC aluminum alloys and support composition–process optimization in industrial applications. Full article
(This article belongs to the Special Issue Solidification and Casting of Light Alloys)
Show Figures

Figure 1

18 pages, 13458 KB  
Article
Damage Mechanism and Sensitivity Analysis of Cement Sheath Integrity in Shale Oil Wells During Multi-Stage Fracturing Based on the Discrete Element Method
by Xuegang Wang, Shiyuan Xie, Hao Zhang, Zhigang Guan, Shengdong Zhou, Jiaxing Mu, Weiguo Sun and Wei Lian
Eng 2026, 7(1), 48; https://doi.org/10.3390/eng7010048 - 15 Jan 2026
Viewed by 32
Abstract
As the retrieval of unconventional oil and gas resources extends to the deep and ultra-deep domains, the issue of cement sheath failure in shale oil wellbores seriously endangers wellbore safety, making it imperative to uncover the relevant damage mechanism and develop effective assessment [...] Read more.
As the retrieval of unconventional oil and gas resources extends to the deep and ultra-deep domains, the issue of cement sheath failure in shale oil wellbores seriously endangers wellbore safety, making it imperative to uncover the relevant damage mechanism and develop effective assessment approaches. In response to the limitations of conventional finite element methods in representing mesoscopic damage, in this study, we determined the mesoscopic parameters of cement paste via laboratory calibrations; constructed a 3D casing–cement sheath–formation composite model using the discrete element method; addressed the restriction of the continuum assumption; and numerically simulated the microcrack initiation, propagation, and interface debonding behaviors of cement paste from a mesomechanical viewpoint. The model’s reliability was validated using a full-scale cement sheath sealing integrity assessment apparatus, while the influences of fracturing location, stage count, and internal casing pressure on cement sheath damage were analyzed systematically. Our findings indicate that the DEM model can precisely capture the dynamic evolution features of microcracks under cyclic loading, and the results agree well with the results of the cement sheath sealing integrity evaluation. During the first internal casing pressure loading phase, the microcracks generated account for 84% of the total microcracks formed during the entire loading process. The primary interface (casing–cement sheath interface) is fully debonded after the second internal pressure loading, demonstrating that the initial stage of cyclic internal casing pressure exerts a decisive impact on cement sheath integrity. The cement sheath in the horizontal well section is subjected to high internal casing pressure and high formation stress, resulting in more frequent microcrack coalescence and a rapid rise in the interface debonding rate, whereas the damage progression in the vertical well section is relatively slow. Full article
Show Figures

Figure 1

19 pages, 4153 KB  
Article
Pore Structure and Heterogeneity in Deep Coal Reservoirs: Macrolithotype Controls and Implications for CBM Development
by Bo Hu, Xiongxiong Yang, Kui Chen, Shuheng Tang, Xiaohui Li, Songhang Zhang, Jingchen Ding and Ming Zhao
Fractal Fract. 2026, 10(1), 60; https://doi.org/10.3390/fractalfract10010060 - 15 Jan 2026
Viewed by 109
Abstract
The heterogeneity of pore structure in deep coal reservoirs is a critical factor controlling the storage and transport capacity of coalbed methane (CBM). However, the fundamental control exerted by macrolithotypes remains inadequately quantified. This study systematically investigates the No. 8 coal seam of [...] Read more.
The heterogeneity of pore structure in deep coal reservoirs is a critical factor controlling the storage and transport capacity of coalbed methane (CBM). However, the fundamental control exerted by macrolithotypes remains inadequately quantified. This study systematically investigates the No. 8 coal seam of the Taiyuan Formation in the Daniudi gas field, Ordos Basin, using an integrated multi-technique approach including high-pressure mercury intrusion (HPMI), low-temperature N2 adsorption (LTGA-N2), and low-pressure CO2 adsorption (LPGA-CO2). Results reveal a consistent bimodal pore structure across all samples, dominated by well-developed micropores and macropores, whereas mesopores are relatively underdeveloped. More importantly, a clear macrolithotype control is established: as coal brightness decreases from bright to dull coal, the proportions of micropores and macropores decline significantly, leading to a substantial reduction in total pore volume and specific surface area. Fractal analysis further indicates that dull and semi-dull coals exhibit larger fractal dimensions, reflecting more complex pore structures and stronger heterogeneity compared to bright and semi-bright coals. This heterogeneity shows a positive correlation with ash and mineral contents, but a negative correlation with vitrinite and fixed carbon contents, suggesting that coal composition plays a primary governing role. These findings underscore that bright and semi-bright coals, with their superior micropore storage capacity and well-connected macropore networks, represent the most favorable targets for deep CBM exploration. This work establishes macrolithotype as a practical key indicator for reservoir quality assessment and production strategy optimization in deep CBM plays. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

8 pages, 4250 KB  
Communication
A Dual-Mode Flexible Sensor with Capacitive–Resistive Hybrid Response for Bolt Loosening Monitoring
by Yan Ping, Kechen Li, Chao Yuan, Ding Guo and Yuanyuan Yang
Sensors 2026, 26(2), 578; https://doi.org/10.3390/s26020578 - 15 Jan 2026
Viewed by 47
Abstract
The structural health monitoring of bolted connections is important for ensuring the safety and reliability of engineering systems, yet conventional sensing technologies struggle to balance detection range and sensitivity. This study presents a flexible sensor with a hybrid capacitive–resistive sensing mechanism, designed to [...] Read more.
The structural health monitoring of bolted connections is important for ensuring the safety and reliability of engineering systems, yet conventional sensing technologies struggle to balance detection range and sensitivity. This study presents a flexible sensor with a hybrid capacitive–resistive sensing mechanism, designed to overcome the limitations of single-mode sensors. By integrating a hierarchically structured composite layer with tailored material properties, the sensor achieves a seamless transition between sensing modes across different pressure ranges. It exhibits high sensitivity in both low-pressure and high-pressure regions, enabling the reliable detection of preload variations in bolted connections. Experimental validation confirms its cyclic durability and rapid response to mechanical changes, demonstrating good potential for real-time monitoring in aerospace and industrial systems. Full article
(This article belongs to the Special Issue Flexible Sensing in Robotics, Healthcare, and Beyond)
Show Figures

Figure 1

22 pages, 1933 KB  
Systematic Review
Bioactive Compounds, Technological Processing, and Functional Applications of Solanum betaceum: A Systematic Review (2020–2025)
by Hexon Omar Anticona Coello, Jheyson Revilla Alva, Bruno Diaz Delgado, Armstrong Barnard Fernández Jeri, Lucas Dalvil Muñoz Astecker, Robert Javier Cruzalegui Fernández, Flavio Lozano-Isla and Erick Aldo Auquiñivin Silva
Appl. Sci. 2026, 16(2), 880; https://doi.org/10.3390/app16020880 - 15 Jan 2026
Viewed by 48
Abstract
Solanum betaceum (tamarillo) is Andean fruit rich in secondary metabolites with increasing relevance in food, nutraceutical, and biotechnological research. Despite growing scientific interest, the available evidence remains fragmented and methodologically heterogeneous. This systematic review consolidates and critically analyzes recent studies on the bioactive [...] Read more.
Solanum betaceum (tamarillo) is Andean fruit rich in secondary metabolites with increasing relevance in food, nutraceutical, and biotechnological research. Despite growing scientific interest, the available evidence remains fragmented and methodologically heterogeneous. This systematic review consolidates and critically analyzes recent studies on the bioactive composition of S. betaceum, the effects of conventional and emerging processing technologies, and the functional activities reported for fresh fruits, by-products, and processed matrices. A comprehensive search of Lens.org, Scopus, and PubMed was conducted following PRISMA 2020 guidelines. From 1049 records identified, 65 studies published between 2020 and 2025 met the inclusion criteria and were included in the qualitative synthesis. The literature reveals substantial variability in polyphenols, anthocyanins, carotenoids, vitamin C, and other metabolites, driven by cultivar, maturity stage, edaphoclimatic conditions, and analytical approaches. Emerging technologies such as ultrasound-assisted extraction, high-pressure homogenization, and spray drying generally improved the recovery and stability of bioactive compounds, whereas intensive thermal treatments were associated with degradation of thermolabile constituents. Functional evidence supports antioxidant, antimicrobial, metabolic modulatory, and cytotoxic activities; however, interpretation is limited by inconsistent reporting practices, limited bioaccessibility assessment, and the predominance of in vitro models. Overall, S. betaceum shows considerable functional and technological potential, but further standardized methodologies, mechanistic studies, and human-relevant models are required to support translational and industrial validation. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

34 pages, 3235 KB  
Article
Towards Cleaner Diesel Engines: Performance and Emission Characteristics of Diesel–Ammonia–Methanol Fuel Blends
by Onur Kocatepe and Güven Gonca
Processes 2026, 14(2), 298; https://doi.org/10.3390/pr14020298 - 14 Jan 2026
Viewed by 76
Abstract
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia (NH3) offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 cm/s) and high auto-ignition temperature (657 ° [...] Read more.
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia (NH3) offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 cm/s) and high auto-ignition temperature (657 °C). Methanol provides improved reactivity and bound oxygen content that can enhance ignition characteristics. This computational study investigates diesel–ammonia–methanol ternary fuel blends using validated three-dimensional CFD simulations (ANSYS Forte 2023 R2; ANSYS, Inc., Canonsburg, PA, USA) with merged chemical kinetic mechanisms (247 species, 2431 reactions). The model was validated against experimental in-cylinder pressure data with deviations below 5% on a single-cylinder diesel engine (510 cm3, 17.5:1 compression ratio, 1500 rpm). Ammonia energy ratios were systematically varied (10–50%) with methanol substitution levels (0–90%). Fuel preheating at 530 K was employed for high-alcohol compositions exhibiting ignition failure at standard temperature. Results demonstrate that peak cylinder pressures of 130–145 bar are achievable at 10–30% ammonia with M30K–M60K configurations, comparable to baseline diesel (140 bar). Indicated thermal efficiency reaches 38–42% at 30% ammonia-representing 5–8 percentage point improvements over diesel baseline (31%)-but declines to 30–32% at 50% ammonia due to fundamental combustion limitations. CO2 reductions scale approximately linearly with ammonia content: 35–55% at 30% ammonia and 75–78% at 50% ammonia. NOX emissions demonstrate 30–60% reductions at efficiency-optimal configurations. Multi-objective optimization analysis identifies the A30M60K configuration (30% ammonia, 60% methanol, 530 K preheating) as optimal, achieving 42% thermal efficiency, 58% CO2 reduction, 51% NOX reduction, and 11% power enhancement versus diesel. This configuration occupies the Pareto frontier “knee point” with cross-scenario robustness. Full article
Show Figures

Figure 1

17 pages, 426 KB  
Article
Comparing Extraction Techniques and Varieties in Grape Stems: A Chemical Assessment of Antioxidant Phenolics
by Gloria Domínguez-Rodríguez, Juan Antonio Nieto, Susana Santoyo and Laura Jaime
Appl. Sci. 2026, 16(2), 877; https://doi.org/10.3390/app16020877 - 14 Jan 2026
Viewed by 74
Abstract
Grape stems are undervalued winemaking by-products that constitute a promising source of bioactive phenolics with notable antioxidant potential and diverse industrial applications, including food preservation, cosmetics, and pharmaceuticals. Effective valorisation of this resource requires not only efficient extraction strategies, but also the strategic [...] Read more.
Grape stems are undervalued winemaking by-products that constitute a promising source of bioactive phenolics with notable antioxidant potential and diverse industrial applications, including food preservation, cosmetics, and pharmaceuticals. Effective valorisation of this resource requires not only efficient extraction strategies, but also the strategic selection of grape stem varieties to tailor phenolic profiles for specific high-value uses. In this study, a comparative assessment of three extraction techniques, pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and conventional solid–liquid extraction (SLE), across six grape stem varieties was conducted. By integrating spectrophotometric analyses of total phenolics and antioxidant capacity with HPLC-DAD profiling of individual phenolic compounds, the combined influence of extraction method and varietal composition on phenolic recovery was demonstrated. PLE and UAE significantly enhanced both yield and antioxidant capacity relative to SLE, with PLE providing the broadest spectrum of phenolic compounds. Varietal differences were also pronounced; e.g., Cabernet Sauvignon stems yielded higher antioxidant phenolic compound content, particularly under UAE, reinforcing the importance of aligning extraction technique and stem variety with the intended functional application. Full article
Show Figures

Figure 1

28 pages, 11430 KB  
Article
Lint Cleaning Performance of a Pneumatic Fractionator: Impacts on Fiber Quality and Economic Value of Saw- and Roller-Ginned Upland Cotton
by Jaya Shankar Tumuluru, Carlos B. Armijo, Derek P. Whitelock, Christopher Delhom and Vikki Martin
Processes 2026, 14(2), 290; https://doi.org/10.3390/pr14020290 - 14 Jan 2026
Viewed by 83
Abstract
Current saw- and pin-type lint-cleaning systems used by the ginning industry have challenges retaining lint quality. The objective of the research was to test a novel pneumatic fractionator for the lint cleaning of an Upland cotton variety that was both saw- and roller-ginned. [...] Read more.
Current saw- and pin-type lint-cleaning systems used by the ginning industry have challenges retaining lint quality. The objective of the research was to test a novel pneumatic fractionator for the lint cleaning of an Upland cotton variety that was both saw- and roller-ginned. The process variables tested were initial lint moisture content in the range of 5.5–15% w.b., line pressure in the range of 276–552 kPa, and residence time in the range of 15–45 s. Experiments were conducted based on a central composite design. Models based on response surface methodology (RSM) were developed for final lint moisture, total trash extracted during lint cleaning, and High-Volume Instrument (HVI) fiber quality. The RSM models adequately described the pneumatic fractionation process, as indicated by the coefficient of determination, predicted vs. observed plots, and residual values. The results indicated that the interactions among initial lint moisture content, residence time, and line pressure significantly affected lint quality. At the optimized pneumatic fractionator process conditions, the predicted lint quality attributes were better for both roller- and saw-ginned lint compared to lint cleaned with saw- and pin-type lint cleaners. The upper half mean length increased by 1 mm, the uniformity index was higher by 0.5–1 percentage points, the strength was 1–2 g/tex higher, and the short fiber content was reduced by more than one percentage point. Color grades were better for pneumatic fractionated lint compared to saw- and pin-type lint cleaning methods. Lint value was approximately 4 cents/kg higher for both saw- and roller-ginned pneumatic fractionated lint, compared to lint cleaned using saw- and pin-type lint cleaners. The novel pneumatic fractionator, when compared to industry-standard saw- and pin-type lint cleaners, effectively cleaned lint while retaining fiber quality and removing most of the motes and trash. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

17 pages, 3923 KB  
Article
Silver-Functionalized Ionic Liquid@MCM-41 Adsorbents for C2H4/C2H6 Separation
by Yelin Yang, Zongxu Wang, Dan Li, Mengyu Ren, Defu Chen and Haifeng Dong
Separations 2026, 13(1), 28; https://doi.org/10.3390/separations13010028 - 13 Jan 2026
Viewed by 135
Abstract
Ionic liquids (ILs) have attracted considerable attention for light olefin separation owing to their negligible vapor pressure, excellent thermal stability, and tunable molecular structures. However, their intrinsically high viscosity severely restricts gas diffusion, leading to poor mass-transfer efficiency and limited separation performance in [...] Read more.
Ionic liquids (ILs) have attracted considerable attention for light olefin separation owing to their negligible vapor pressure, excellent thermal stability, and tunable molecular structures. However, their intrinsically high viscosity severely restricts gas diffusion, leading to poor mass-transfer efficiency and limited separation performance in bulk form. Herein, we report the develop a high-performance adsorbent by immobilizing a silver-functionalized ionic liquid within ordered mesoporous MCM-41 to overcome the diffusion limitations of bulk ILs. The IL@MCM-41 composites were prepared via an impregnation–evaporation strategy, and their mesostructural integrity and textural evolution were confirmed by XRD and N2 sorption analyses. Their C2H4/C2H6 separation performance was subsequently evaluated. The composite with a 70 wt% IL loading achieves a high C2H4 uptake of 25.68 mg/g and a C2H4/C2H6 selectivity of 15.59 in breakthrough experiments (298 K, 100 kPa). X-ray photoelectron spectroscopy results are consistent with the presence of reversible Ag+–π interactions, which governs the selective adsorption of C2H4. Additionally, the composite exhibits excellent thermal stability (up to 570 K) and maintains stable separation performance over 10 adsorption–desorption cycles. These IL@MCM-41 composites have significant potential for designing sorbent materials for efficient olefin/paraffin separation applications. Full article
Show Figures

Figure 1

28 pages, 8096 KB  
Article
Numerical Investigation of Perforation in Microcrack Propagation and Damage Analysis at the Cement Sheath
by Yu Yao, Yan Xi, Jian He, Jianhua Zhao, Xianming Sun and Ming Liu
Appl. Sci. 2026, 16(2), 805; https://doi.org/10.3390/app16020805 - 13 Jan 2026
Viewed by 81
Abstract
Wellbore integrity maintenance constitutes a fundamental safety and technological challenge throughout the entire lifecycle of oil and gas wells (including production, injection, and CO2 sequestration operations). As a critical completion phase, perforation generates a high-temperature, high-pressure shaped charge jet that impacts and [...] Read more.
Wellbore integrity maintenance constitutes a fundamental safety and technological challenge throughout the entire lifecycle of oil and gas wells (including production, injection, and CO2 sequestration operations). As a critical completion phase, perforation generates a high-temperature, high-pressure shaped charge jet that impacts and compromises wellbore structural integrity. This process may induce failure in both the cement sheath body and its interfacial zones, potentially creating fluid migration pathways along the cement-casing interface through perforation tunnels. Current research remains insufficient in quantitatively evaluating cement sheath damage resulting from perforation operations. Addressing this gap, this study incorporates dynamic jet effects during perforation and establishes a numerical model simulating high-velocity jet penetration through casing–cement target–formation composites using a rock dynamics-based constitutive model. The investigation analyzes failure mechanisms within the cement sheath matrix and its boundaries during perforation penetration, while examining the influence of mechanical parameters (compressive strength and shear modulus) of both cement sheath and formation on damage characteristics. Results demonstrate that post-perforation cement sheath aperture exhibits convergent–divergent profiles along the tunnel axis, containing exclusively radial fractures. Primary fractures predominantly initiate at the inner cement wall, whereas microcracks mainly develop at the outer boundary. Enhanced cement compressive strength significantly suppresses fracture initiation at both boundaries: when increasing from 55 MPa to 75 MPa, the undamaged area ratio rises by 16.6% at the inner wall versus 11.2% at the outer interface. Meanwhile, increasing the formation shear modulus from 10 GPa to 15 GPa reduces cement target failure radius by 0.4 cm. Cement systems featuring high compressive strength and low shear modulus demonstrate superior performance in mitigating perforation-induced debonding. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 772 KB  
Article
High Ratio of Dietary Palmitic Acid to DHA + EPA Induces Glucose Metabolic Disorder Through Endocrine and Transcriptional Regulation in Large Yellow Croaker (Larimichthys crocea)
by Qi Wang, Huaicheng Ge, Zhixiang Gu, Hao Chen, Hua Mu, Kangsen Mai and Wenbing Zhang
Metabolites 2026, 16(1), 72; https://doi.org/10.3390/metabo16010072 - 13 Jan 2026
Viewed by 135
Abstract
Background/Objectives: Replacing fish oil with vegetable oil is an important measure for aquaculture to relieve the pressure of fish oil, but it is also easy to cause the growth decline and metabolic disorder of farmed animals, mainly due to the change in [...] Read more.
Background/Objectives: Replacing fish oil with vegetable oil is an important measure for aquaculture to relieve the pressure of fish oil, but it is also easy to cause the growth decline and metabolic disorder of farmed animals, mainly due to the change in dietary fatty acids. This study investigated the regulatory effects of dietary fatty acid composition on glucose metabolism in large yellow croaker (Larimichthys crocea) with an initial weight of 30.51 ± 0.16 g. Methods: Three isonitrogenous (~43% crude protein) and isolipid (~11% crude lipid) diets were formulated as follows: control (CON, DHA/EPA-rich oil as primary lipid), moderate palmitic acid (MPA, 50% of DHA+EPA-rich oil was replaced by glyceryl palmitate), and high palmitic acid (HPA, 100% of DHA+EPA-rich oil was replaced by glyceryl palmitate). Results: After 10 weeks of feeding, the HPA significantly reduced the liver/muscle glycogen contents, increased the liver lipid content, decreased the serum leptin/insulin level, and increased the adiponectin level. The levels of DHA and EPA in liver were decreased significantly. Transcriptionally, HPA upregulated hepatic glucokinase (gk, glycolysis) but down-regulated glycogen synthase (gys) and insulin/irs2 (insulin pathway) while inhibiting muscle ampk and leptin receptor (lepr). Conclusions: This study showed that high dietary PA/(DHA + EPA) impacted glycolipid homeostasis through endocrine and transcriptional regulation, leading to increased crude lipid and decreased glycogen levels, which provides a theoretical basis for scientific aquatic feed fatty acid formulation. Full article
(This article belongs to the Special Issue Nutrition, Metabolism and Physiology in Aquatic Animals)
Show Figures

Graphical abstract

Back to TopTop