Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = high-frequency financial time series

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3938 KB  
Article
Multifractal Carbon Market Price Forecasting with Memory-Guided Adversarial Network
by Na Li, Mingzhu Tang, Jingwen Deng, Liran Wei and Xinpeng Zhou
Fractal Fract. 2025, 9(7), 403; https://doi.org/10.3390/fractalfract9070403 - 23 Jun 2025
Viewed by 518
Abstract
Carbon market price prediction is critical for stabilizing markets and advancing low-carbon transitions, where capturing multifractal dynamics is essential. Traditional models often neglect the inherent long-term memory and nonlinear dependencies of carbon price series. To tackle the issues of nonlinear dynamics, non-stationary characteristics, [...] Read more.
Carbon market price prediction is critical for stabilizing markets and advancing low-carbon transitions, where capturing multifractal dynamics is essential. Traditional models often neglect the inherent long-term memory and nonlinear dependencies of carbon price series. To tackle the issues of nonlinear dynamics, non-stationary characteristics, and inadequate suppression of modal aliasing in existing models, this study proposes an integrated prediction framework based on the coupling of gradient-sensitive time-series adversarial training and dynamic residual correction. A novel gradient significance-driven local adversarial training strategy enhances immunity to volatility through time step-specific perturbations while preserving structural integrity. The GSLAN-BiLSTM architecture dynamically recalibrates historical–current information fusion via memory-guided attention gating, mitigating prediction lag during abrupt price shifts. A “decomposition–prediction–correction” residual compensation system further decomposes base model errors via wavelet packet decomposition (WPD), with ARIMA-driven dynamic weighting enabling bias correction. Empirical validation using China’s carbon market high-frequency data demonstrates superior performance across key metrics. This framework extends beyond advancing carbon price forecasting by successfully generalizing its “multiscale decomposition, adversarial robustness enhancement, and residual dynamic compensation” paradigm to complex financial time-series prediction. Full article
Show Figures

Figure 1

23 pages, 3993 KB  
Article
MSGformer: A Hybrid Multi-Scale Graph–Transformer Architecture for Unified Short- and Long-Term Financial Time Series Forecasting
by Mingfu Zhu, Haoran Qi, Shuiping Ni and Yaxing Liu
Electronics 2025, 14(12), 2457; https://doi.org/10.3390/electronics14122457 - 17 Jun 2025
Viewed by 799
Abstract
Forecasting financial time series is challenging due to their intrinsic nonlinearity, high volatility, and complex dependencies across temporal scales. This study introduces MSGformer, a novel hybrid architecture that integrates multi-scale graph neural networks (MSGNet) with Transformer encoders to capture both local temporal fluctuations [...] Read more.
Forecasting financial time series is challenging due to their intrinsic nonlinearity, high volatility, and complex dependencies across temporal scales. This study introduces MSGformer, a novel hybrid architecture that integrates multi-scale graph neural networks (MSGNet) with Transformer encoders to capture both local temporal fluctuations and long-term global trends in high-frequency financial data. The MSGNet module constructs multi-scale representations using adaptive graph convolutions and intra-sequence attention, while the Transformer component enhances long-range dependency modeling via multi-head self-attention. We evaluate MSGformer on minute-level stock index data from the Chinese A-share market, including CSI 300, SSE 50, CSI 500, and SSE Composite indices. Extensive experiments demonstrate that MSGformer significantly outperforms state-of-the-art baselines (e.g., Transformer, PatchTST, Autoformer) in terms of MAE, RMSE, MAPE, and R2. The results confirm that the proposed hybrid model achieves superior prediction accuracy, robustness, and generalization across various forecasting horizons, providing an effective solution for real-world financial decision-making and risk assessment. Full article
Show Figures

Figure 1

22 pages, 1792 KB  
Article
Ensemble Multi-Expert Forecasting: Robust Decision-Making in Chaotic Financial Markets
by Alexander Musaev and Dmitry Grigoriev
J. Risk Financial Manag. 2025, 18(6), 296; https://doi.org/10.3390/jrfm18060296 - 29 May 2025
Viewed by 649
Abstract
Financial time series in volatile markets often exhibit non-stationary behavior and signatures of stochastic chaos, challenging traditional forecasting methods based on stationarity assumptions. In this paper, we introduce a novel multi-expert forecasting system (MES) that leverages ensemble machine learning techniques—including bagging, boosting, and [...] Read more.
Financial time series in volatile markets often exhibit non-stationary behavior and signatures of stochastic chaos, challenging traditional forecasting methods based on stationarity assumptions. In this paper, we introduce a novel multi-expert forecasting system (MES) that leverages ensemble machine learning techniques—including bagging, boosting, and stacking—to enhance prediction accuracy and support robust risk management decisions. The proposed framework integrates diverse “weak learner” models, ranging from linear extrapolation and multidimensional regression to sentiment-based text analytics, into a unified decision-making architecture. Each expert is designed to capture distinct aspects of the underlying market dynamics, while the supervisory module aggregates their outputs using adaptive weighting schemes that account for evolving error characteristics. Empirical evaluations using high-frequency currency data, notably for the EUR/USD pair, demonstrate that the ensemble approach significantly improves forecast reliability, as evidenced by higher winning probabilities and better net trading results compared to individual forecasting models. These findings contribute both to the theoretical understanding of ensemble forecasting under chaotic market conditions and to its practical application in financial risk management, offering a reproducible methodology for managing uncertainty in highly dynamic environments. Full article
Show Figures

Figure 1

20 pages, 6256 KB  
Article
Spiking Neural Networks Optimized by Improved Cuckoo Search Algorithm: A Model for Financial Time Series Forecasting
by Panke Qin, Yongjie Ding, Ya Li, Bo Ye, Zhenlun Gao, Yaxing Liu, Zhongqi Cai and Haoran Qi
Algorithms 2025, 18(5), 262; https://doi.org/10.3390/a18050262 - 2 May 2025
Viewed by 722
Abstract
Financial Time Series Forecasting (TSF) remains a critical challenge in Artificial Intelligence (AI) due to the inherent complexity of financial data, characterized by strong non-linearity, dynamic non-stationarity, and multi-factor coupling. To address the performance limitations of Spiking Neural Networks (SNNs) caused by hyperparameter [...] Read more.
Financial Time Series Forecasting (TSF) remains a critical challenge in Artificial Intelligence (AI) due to the inherent complexity of financial data, characterized by strong non-linearity, dynamic non-stationarity, and multi-factor coupling. To address the performance limitations of Spiking Neural Networks (SNNs) caused by hyperparameter sensitivity, this study proposes an SNN model optimized by an Improved Cuckoo Search (ICS) algorithm (termed ICS-SNN). The ICS algorithm enhances global search capability through piecewise-mapping-based population initialization and introduces a dynamic discovery probability mechanism that adaptively increases with iteration rounds, thereby balancing exploration and exploitation. Applied to futures market price difference prediction, experimental results demonstrate that ICS-SNN achieves reductions of 13.82% in MAE, 21.27% in MSE, and 15.21% in MAPE, while improving the coefficient of determination (R2) from 0.9790 to 0.9822, compared to the baseline SNN. Furthermore, ICS-SNN significantly outperforms mainstream models such as Long Short-Term Memory (LSTM) and Backpropagation (BP) networks, reducing prediction errors by 10.8% (MAE) and 34.9% (MSE), respectively, without compromising computational efficiency. This work highlights that ICS-SNN provides a biologically plausible and computationally efficient framework for complex financial TSF, bridging the gap between neuromorphic principles and real-world financial analytics. The proposed method not only reduces manual intervention in hyperparameter tuning but also offers a scalable solution for high-frequency trading and multi-modal data fusion in future research. Full article
(This article belongs to the Special Issue Algorithms in Nonsmooth Optimization)
Show Figures

Figure 1

17 pages, 790 KB  
Article
The Influence of Bank Loans and Deposits on Ecuador’s Economic Growth: A Cointegration Analysis
by Freddy Naula, Cristian Zamora and Kevin Gomez
Int. J. Financial Stud. 2025, 13(2), 76; https://doi.org/10.3390/ijfs13020076 - 2 May 2025
Viewed by 650
Abstract
This study examines the relationship between banking sector development (credit and deposits) and economic growth in Ecuador, using quarterly data for the period 2000–2022. An ARDL approach with Bound Test cointegration is employed, incorporating structural breaks using the Bai–Perron test and controlling for [...] Read more.
This study examines the relationship between banking sector development (credit and deposits) and economic growth in Ecuador, using quarterly data for the period 2000–2022. An ARDL approach with Bound Test cointegration is employed, incorporating structural breaks using the Bai–Perron test and controlling for macroeconomic shocks. In addition, time transformation methodologies are applied to harmonize the frequency of the series: the monthlyization of GDP is performed using the Chow-Lin method, and the imputation of missing unemployment data using the Kalman filter. The results reveal a significant long-run elasticity between bank deposits and GDP (0.45%), while credits do not present a statistically significant effect, possibly due to high delinquency and institutional weakness. Granger causality tests confirm a unidirectional relationship between banking variables to economic growth. These findings highlight the importance of strengthening financial supervision and improving institutional quality to enhance the effect of bank intermediation. The study provides robust and contextualized empirical evidence relevant to resource-dependent economies with concentrated financial systems, contributing to the debate on the relationship between finance and growth in developing countries. Full article
Show Figures

Graphical abstract

23 pages, 2964 KB  
Article
FuturesNet: Capturing Patterns of Price Fluctuations in Domestic Futures Trading
by Qingyi Pan, Suyu Sun, Pei Yang and Jingyi Zhang
Electronics 2024, 13(22), 4482; https://doi.org/10.3390/electronics13224482 - 15 Nov 2024
Cited by 1 | Viewed by 1413
Abstract
Futures trading analysis plays a pivotal role in the development of macroeconomic policies and corporate strategy planning. High-frequency futures data, typically presented as time series, contain valuable historical patterns. To address challenges such as non-stationary in modeling futures prices, we propose a novel [...] Read more.
Futures trading analysis plays a pivotal role in the development of macroeconomic policies and corporate strategy planning. High-frequency futures data, typically presented as time series, contain valuable historical patterns. To address challenges such as non-stationary in modeling futures prices, we propose a novel architecture called FuturesNet, which uses an InceptionTime module to capture the short-term fluctuations between ask and bid orders, as well as a long-short-term-memory (LSTM) module with skip connections to capture long-term temporal dependencies. We evaluated the performance of FuturesNet using datasets numbered 50, 300, and 500 from the domestic financial market. The comprehensive experimental results show that FuturesNet outperforms other competitive baselines in most settings. Additionally, we conducted ablation studies to interpret the behaviors of FuturesNet. Our code and collected futures datasets are released. Full article
Show Figures

Figure 1

29 pages, 8143 KB  
Article
Inner Multifractal Dynamics in the Jumps of Cryptocurrency and Forex Markets
by Haider Ali, Muhammad Aftab, Faheem Aslam and Paulo Ferreira
Fractal Fract. 2024, 8(10), 571; https://doi.org/10.3390/fractalfract8100571 - 29 Sep 2024
Cited by 6 | Viewed by 3455
Abstract
Jump dynamics in financial markets exhibit significant complexity, often resulting in increased probabilities of subsequent jumps, akin to earthquake aftershocks. This study aims to understand these complexities within a multifractal framework. To do this, we employed the high-frequency intraday data from six major [...] Read more.
Jump dynamics in financial markets exhibit significant complexity, often resulting in increased probabilities of subsequent jumps, akin to earthquake aftershocks. This study aims to understand these complexities within a multifractal framework. To do this, we employed the high-frequency intraday data from six major cryptocurrencies (Bitcoin, Ethereum, Litecoin, Dashcoin, EOS, and Ripple) and six major forex markets (Euro, British pound, Canadian dollar, Australian dollar, Swiss franc, and Japanese yen) between 4 August 2019 and 4 October 2023, at 5 min intervals. We began by extracting daily jumps from realized volatility using a MinRV-based approach and then applying Multifractal Detrended Fluctuation Analysis (MFDFA) to those jumps to explore their multifractal characteristics. The results of the MFDFA—especially the fluctuation function, the varying Hurst exponent, and the Renyi exponent—confirm that all of these jump series exhibit significant multifractal properties. However, the range of the Hurst exponent values indicates that Dashcoin has the highest and Litecoin has the lowest multifractal strength. Moreover, all of the jump series show significant persistent behavior and a positive autocorrelation, indicating a higher probability of a positive/negative jump being followed by another positive/negative jump. Additionally, the findings of rolling-window MFDFA with a window length of 250 days reveal persistent behavior most of the time. These findings are useful for market participants, investors, and policymakers in developing portfolio diversification strategies and making important investment decisions, and they could enhance market efficiency and stability. Full article
(This article belongs to the Special Issue Complex Dynamics and Multifractal Analysis of Financial Markets)
Show Figures

Figure 1

16 pages, 4617 KB  
Article
A Novel Hybrid Model for Financial Forecasting Based on CEEMDAN-SE and ARIMA-CNN-LSTM
by Zefan Dong and Yonghui Zhou
Mathematics 2024, 12(16), 2434; https://doi.org/10.3390/math12162434 - 6 Aug 2024
Cited by 6 | Viewed by 3150
Abstract
Financial time series data are characterized by non-linearity, non-stationarity, and stochastic complexity, so predicting such data presents a significant challenge. This paper proposes a novel hybrid model for financial forecasting based on CEEMDAN-SE and ARIMA- CNN-LSTM. With the help of the CEEMDAN-SE method, [...] Read more.
Financial time series data are characterized by non-linearity, non-stationarity, and stochastic complexity, so predicting such data presents a significant challenge. This paper proposes a novel hybrid model for financial forecasting based on CEEMDAN-SE and ARIMA- CNN-LSTM. With the help of the CEEMDAN-SE method, the original data are decomposed into several IMFs and reconstructed via sample entropy into a lower-complexity stationary high-frequency component and a low-frequency component. The high-frequency component is predicted by the ARIMA statistical forecasting model, while the low-frequency component is predicted by a neural network model combining CNN and LSTM. Compared to some classical prediction models, our algorithm exhibits superior performance in terms of three evaluation indexes, namely, RMSE, MAE, and MAPE, effectively enhancing model accuracy while reducing computational overhead. Full article
Show Figures

Figure 1

18 pages, 5484 KB  
Article
Transmission Line Fault Classification Using Conformer Convolution-Augmented Transformer Model
by Meng-Yun Lee, Yu-Shan Huang, Chia-Jui Chang, Jia-Yu Yang, Chih-Wen Liu, Tzu-Chiao Lin and Yen-Bor Lin
Appl. Sci. 2024, 14(10), 4031; https://doi.org/10.3390/app14104031 - 9 May 2024
Cited by 2 | Viewed by 2040
Abstract
Ensuring a consistently reliable power supply is paramount in power systems. Researchers are engaged in the pursuit of categorizing transmission line failures to design countermeasures for mitigating the associated financial losses. Our study employs a machine learning-based methodology, specifically the Conformer Convolution-Augmented Transformer [...] Read more.
Ensuring a consistently reliable power supply is paramount in power systems. Researchers are engaged in the pursuit of categorizing transmission line failures to design countermeasures for mitigating the associated financial losses. Our study employs a machine learning-based methodology, specifically the Conformer Convolution-Augmented Transformer model, to classify transmission line fault types. This model processes time series input data directly, eliminating the need for expert feature extraction. The training and validation datasets are generated through simulations conducted on a two-terminal transmission line, while testing is conducted on historical data consisting of 108 events that occurred in the Taiwan power system. Due to the limited availability of historical data, they are utilized solely for inference purposes. Our simulations are meticulously designed to encompass potential faults based on an analysis of historical data. A significant aspect of our investigation focuses on the impact of the sampling rate on input data, establishing that a rate of four samples per cycle is sufficient. This suggests that, for our specific classification tasks, relying on lower frequency data might be adequate, thereby challenging the conventional emphasis on high-frequency analysis. Eventually, our methodology achieves a validation accuracy of 100%, although the testing accuracy is lower at 88.88%. The discrepancy in testing accuracy can be attributed to the limited information and the small number of historical events, which pose challenges in bridging the gap between simulated data and real-world measurements. Furthermore, we benchmarked our method against the ELM model proposed in 2023, demonstrating significant improvements in testing accuracy. Full article
Show Figures

Figure 1

24 pages, 5581 KB  
Article
Spillover Effects between Crude Oil Returns and Uncertainty: New Evidence from Time-Frequency Domain Approaches
by Kais Tissaoui, Ilyes Abidi, Nadia Azibi and Mariem Nsaibi
Energies 2024, 17(2), 340; https://doi.org/10.3390/en17020340 - 9 Jan 2024
Cited by 10 | Viewed by 1751
Abstract
This paper examines the extent to which uncertainty in the energy market, the financial market, the commodity market, the economic policy, and the geopolitical events affect crude oil returns. To consider the complex properties of time series, such as nonlinearity, temporal variability, and [...] Read more.
This paper examines the extent to which uncertainty in the energy market, the financial market, the commodity market, the economic policy, and the geopolitical events affect crude oil returns. To consider the complex properties of time series, such as nonlinearity, temporal variability, and unit roots, we adopt a two-instrument technique in the time–frequency domain that employs the DCC-GARCH (1.1) model and the Granger causality test in the frequency domain. This allows us to estimate the dynamic transmission of uncertainty from various sources to the oil market in the time and frequency domains. Significant dynamic conditional correlations over time are found between oil returns—commodity uncertainty, oil returns—equity market uncertainty, and oil returns—energy uncertainty. Furthermore, at each frequency, the empirical results demonstrate a significant spillover effect from the commodity, energy, and financial markets to the oil market. Additionally, we discover that sources with high persistence volatility (such as commodities, energy, and financial markets) have more interactions with the oil market than sources with low persistence volatility (economic policy and geopolitical risk events). Our findings have significant ramifications for boosting investor trust in risky energy assets. Full article
(This article belongs to the Special Issue Energy Efficiency and Economic Uncertainty in Energy Market)
Show Figures

Figure 1

17 pages, 2342 KB  
Article
Collaborative Multiobjective Evolutionary Algorithms in the Search of Better Pareto Fronts: An Application to Trading Systems
by Francisco J. Soltero, Pablo Fernández-Blanco and J. Ignacio Hidalgo
Appl. Sci. 2023, 13(22), 12485; https://doi.org/10.3390/app132212485 - 19 Nov 2023
Cited by 2 | Viewed by 1850
Abstract
Technical indicators use graphic representations of datasets by applying various mathematical formulas to financial time series of prices. These formulas comprise a set of rules and parameters whose values are not necessarily known and depend on many factors, such as the market in [...] Read more.
Technical indicators use graphic representations of datasets by applying various mathematical formulas to financial time series of prices. These formulas comprise a set of rules and parameters whose values are not necessarily known and depend on many factors, such as the market in which they operate, the size of the time window, and so on. This paper focuses on the real-time optimization of the parameters applied for analyzing time series of data. In particular, we optimize the parameters of some technical financial indicators. We propose the combination of several Multiobjective Evolutionary Algorithms. Unlike other approaches, this paper applies a set of different Multiobjective Evolutionary Algorithms, collaborating to construct a global Pareto Set of solutions. Solutions for financial problems seek high returns with minimal risk. The optimization process is continuous and occurs at the same frequency as the investment time interval. This technique permits the application of the non-dominated solutions obtained with different MOEAs at the same time. Experimental results show that Collaborative Multiobjective Evolutionary Algorithms obtain up to 22% of profit and increase the returns of the commonly used Buy and Hold strategy and other multi-objective strategies, even for daily operations. Full article
(This article belongs to the Special Issue Evolutionary Algorithms and Their Real-World Applications)
Show Figures

Figure 1

17 pages, 14131 KB  
Article
Denoising Non-Stationary Signals via Dynamic Multivariate Complex Wavelet Thresholding
by Kim C. Raath, Katherine B. Ensor, Alena Crivello and David W. Scott
Entropy 2023, 25(11), 1546; https://doi.org/10.3390/e25111546 - 16 Nov 2023
Cited by 1 | Viewed by 1964
Abstract
Over the past few years, we have seen an increased need to analyze the dynamically changing behaviors of economic and financial time series. These needs have led to significant demand for methods that denoise non-stationary time series across time and for specific investment [...] Read more.
Over the past few years, we have seen an increased need to analyze the dynamically changing behaviors of economic and financial time series. These needs have led to significant demand for methods that denoise non-stationary time series across time and for specific investment horizons (scales) and localized windows (blocks) of time. Wavelets have long been known to decompose non-stationary time series into their different components or scale pieces. Recent methods satisfying this demand first decompose the non-stationary time series using wavelet techniques and then apply a thresholding method to separate and capture the signal and noise components of the series. Traditionally, wavelet thresholding methods rely on the discrete wavelet transform (DWT), which is a static thresholding technique that may not capture the time series of the estimated variance in the additive noise process. We introduce a novel continuous wavelet transform (CWT) dynamically optimized multivariate thresholding method (WaveL2E). Applying this method, we are simultaneously able to separate and capture the signal and noise components while estimating the dynamic noise variance. Our method shows improved results when compared to well-known methods, especially for high-frequency signal-rich time series, typically observed in finance. Full article
(This article belongs to the Special Issue Robust Methods in Complex Scenarios and Data Visualization)
Show Figures

Figure 1

18 pages, 3533 KB  
Article
Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction
by Yoonjae Noh, Jong-Min Kim, Soongoo Hong and Sangjin Kim
Mathematics 2023, 11(16), 3603; https://doi.org/10.3390/math11163603 - 20 Aug 2023
Cited by 7 | Viewed by 5330
Abstract
The stock index is actively used for the realization of profits using derivatives and via the hedging of assets; hence, the prediction of the index is important for market participants. As market uncertainty has increased during the COVID-19 pandemic and with the rapid [...] Read more.
The stock index is actively used for the realization of profits using derivatives and via the hedging of assets; hence, the prediction of the index is important for market participants. As market uncertainty has increased during the COVID-19 pandemic and with the rapid development of data engineering, a situation has arisen wherein extensive amounts of information must be processed at finer time intervals. Addressing the prevalent issues of difficulty in handling multivariate high-frequency time-series data owing to multicollinearity, resource problems in computing hardware, and the gradient vanishing problem due to the layer stacking in recurrent neural network (RNN) series, a novel algorithm is developed in this study. For financial market index prediction with these highly complex data, the algorithm combines ResNet and a variable-wise attention mechanism. To verify the superior performance of the proposed model, RNN, long short-term memory, and ResNet18 models were designed and compared with and without the attention mechanism. As per the results, the proposed model demonstrated a suitable synergistic effect with the time-series data and excellent classification performance, in addition to overcoming the data structure constraints that the other models exhibit. Having successfully presented multivariate high-frequency time-series data analysis, this study enables effective investment decision making based on the market signals. Full article
(This article belongs to the Special Issue Economic Model Analysis and Application)
Show Figures

Figure 1

9 pages, 472 KB  
Article
Quantum Bohmian-Inspired Potential to Model Non–Gaussian Time Series and Its Application in Financial Markets
by Reza Hosseini, Samin Tajik, Zahra Koohi Lai, Tayeb Jamali, Emmanuel Haven and Reza Jafari
Entropy 2023, 25(7), 1061; https://doi.org/10.3390/e25071061 - 14 Jul 2023
Cited by 1 | Viewed by 1629
Abstract
We have implemented quantum modeling mainly based on Bohmian mechanics to study time series that contain strong coupling between their events. Compared to time series with normal densities, such time series are associated with rare events. Hence, employing Gaussian statistics drastically underestimates the [...] Read more.
We have implemented quantum modeling mainly based on Bohmian mechanics to study time series that contain strong coupling between their events. Compared to time series with normal densities, such time series are associated with rare events. Hence, employing Gaussian statistics drastically underestimates the occurrence of their rare events. The central objective of this study was to investigate the effects of rare events in the probability densities of time series from the point of view of quantum measurements. For this purpose, we first model the non-Gaussian behavior of time series using the multifractal random walk (MRW) approach. Then, we examine the role of the key parameter of MRW, λ, which controls the degree of non-Gaussianity, in quantum potentials derived for time series. Our Bohmian quantum analysis shows that the derived potential takes some negative values in high frequencies (its mean values), then substantially increases, and the value drops again for rare events. Thus, rare events can generate a potential barrier in the high-frequency region of the quantum potential, and the effect of such a barrier becomes prominent when the system transverses it. Finally, as an example of applying the quantum potential beyond the microscopic world, we compute quantum potentials for the S&P financial market time series to verify the presence of rare events in the non-Gaussian densities and demonstrate deviation from the Gaussian case. Full article
(This article belongs to the Special Issue Quantum Models of Cognition and Decision-Making II)
Show Figures

Figure 1

18 pages, 10697 KB  
Article
A Hybrid Forecast Model of EEMD-CNN-ILSTM for Crude Oil Futures Price
by Jingyang Wang, Tianhu Zhang, Tong Lu and Zhihong Xue
Electronics 2023, 12(11), 2521; https://doi.org/10.3390/electronics12112521 - 2 Jun 2023
Cited by 4 | Viewed by 2167
Abstract
Crude oil has dual attributes of finance and energy. Its price fluctuation significantly impacts global economic development and financial market stability. Therefore, it is necessary to predict crude oil futures prices. In this paper, a hybrid forecast model of EEMD-CNN-ILSTM for crude oil [...] Read more.
Crude oil has dual attributes of finance and energy. Its price fluctuation significantly impacts global economic development and financial market stability. Therefore, it is necessary to predict crude oil futures prices. In this paper, a hybrid forecast model of EEMD-CNN-ILSTM for crude oil futures price is proposed, which is based on Ensemble Empirical Mode Decomposition (EEMD), Convolutional Neural Network (CNN), and Improved Long Short-Term Memory (ILSTM). ILSTM improves the output gate of Long Short-Term Memory (LSTM) and adds important hidden state information based on the original output. In addition, ILSTM adds the learning of cell state at the previous time in the forget gate and input gate, which makes the model learn more fully from historical data. EEMD decomposes time series data into a residual sequence and multiple Intrinsic Mode Functions (IMF). Then, the IMF components are reconstructed into three sub-sequences of high-frequency, middle-frequency, and low-frequency, which are convenient for CNN to extract the input data’s features effectively. The forecast accuracy of ILSTM is improved efficiently by learning historical data. This paper uses the daily crude oil futures data of the Shanghai Energy Exchange in China as the experimental data set. The EEMD-CNN-ILSTM is compared with seven prediction models: Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), LSTM, ILSTM, CNN-LSTM, CNN-ILSTM, and EEMD-CNN-LSTM. The results of the experiment show the model is more effective and accurate. Full article
(This article belongs to the Special Issue Recent Advances in Data Science and Information Technology)
Show Figures

Figure 1

Back to TopTop