
Academic Editor: Sorin-Mihai Grad

Received: 10 March 2025

Revised: 27 April 2025

Accepted: 30 April 2025

Published: 2 May 2025

Citation: Qin, P.; Ding, Y.; Li, Y.; Ye, B.;

Gao, Z.; Liu, Y.; Cai, Z.; Qi, H. Spiking

Neural Networks Optimized by

Improved Cuckoo Search Algorithm:

A Model for Financial Time Series

Forecasting. Algorithms 2025, 18, 262.

https://doi.org/10.3390/a18050262

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Spiking Neural Networks Optimized by Improved Cuckoo
Search Algorithm: A Model for Financial Time Series Forecasting
Panke Qin 1,* , Yongjie Ding 1, Ya Li 2, Bo Ye 1, Zhenlun Gao 1, Yaxing Liu 1, Zhongqi Cai 1 and Haoran Qi 1

1 School of Software, Henan Polytechnic University, Jiaozuo 454000, China;
212309010004@home.hpu.edu.cn (Y.D.); 212309020094@home.hpu.edu.cn (B.Y.);
212309010001@home.hpu.edu.cn (Z.G.); 212309020052@home.hpu.edu.cn (Y.L.);
212309020090@home.hpu.edu.cn (Z.C.); 212309020083@home.hpu.edu.cn (H.Q.)

2 Ningbo Artificial Intelligence Institute, Shanghai Jiaotong University, Ningbo 315000, China
* Correspondence: qinpanke@hpu.edu.cn

Abstract: Financial Time Series Forecasting (TSF) remains a critical challenge in Artifi-
cial Intelligence (AI) due to the inherent complexity of financial data, characterized by
strong non-linearity, dynamic non-stationarity, and multi-factor coupling. To address the
performance limitations of Spiking Neural Networks (SNNs) caused by hyperparameter
sensitivity, this study proposes an SNN model optimized by an Improved Cuckoo Search
(ICS) algorithm (termed ICS-SNN). The ICS algorithm enhances global search capability
through piecewise-mapping-based population initialization and introduces a dynamic
discovery probability mechanism that adaptively increases with iteration rounds, thereby
balancing exploration and exploitation. Applied to futures market price difference predic-
tion, experimental results demonstrate that ICS-SNN achieves reductions of 13.82% in MAE,
21.27% in MSE, and 15.21% in MAPE, while improving the coefficient of determination (R2)
from 0.9790 to 0.9822, compared to the baseline SNN. Furthermore, ICS-SNN significantly
outperforms mainstream models such as Long Short-Term Memory (LSTM) and Back-
propagation (BP) networks, reducing prediction errors by 10.8% (MAE) and 34.9% (MSE),
respectively, without compromising computational efficiency. This work highlights that
ICS-SNN provides a biologically plausible and computationally efficient framework for
complex financial TSF, bridging the gap between neuromorphic principles and real-world
financial analytics. The proposed method not only reduces manual intervention in hy-
perparameter tuning but also offers a scalable solution for high-frequency trading and
multi-modal data fusion in future research.

Keywords: cuckoo search algorithm; spiking neural networks; financial time series forecasting;
hyperparameter setting

1. Introduction
AI has advanced rapidly in recent decades, driven by breakthroughs in computational

power and algorithmic innovation. Initially, Artificial Neural Networks (ANNs) were
limited to performing simple tasks. With advancements in computational power, ANNs
have evolved to tackle increasingly complex tasks. TSF in the financial field is precisely
such a challenging problem. Its data are not only vast in quantity but also diverse in
variety. Data of this problem usually have strong periodic characteristics, which are well
structured, unstable, and influenced by many factors. The futures market is one of the key
parts in the financial field. In today’s largest futures trading market, the cumulative trading
volume in the futures market reached 8.501 billion lots, with a cumulative turnover of

Algorithms 2025, 18, 262 https://doi.org/10.3390/a18050262

https://doi.org/10.3390/a18050262
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-6457-5853
https://orcid.org/0009-0003-0481-7317
https://doi.org/10.3390/a18050262
https://www.mdpi.com/article/10.3390/a18050262?type=check_update&version=1

Algorithms 2025, 18, 262 2 of 20

USD 56.851 trillion, representing year-on-year growth of 25.60% and 6.28%, respectively [1].
Arbitrage is common for futures operation, which has smoother profits and lower risks.
How to predict price differences is a critical issue in arbitrage.

Formally, forecasting has been divided into nowcasting, very short term, short term,
long, very long term, and so on. Nowcasting is a time series analysis task aiming to
forecast the current state of an observed phenomenon. A very short-term forecast is a
prediction of a few minutes to a day. And short term refers to forecasting activities where
the target is relatively close to the present time and has a relatively short duration, ranging
from daily to several months. They rely on recent data and are greatly affected by short-
term fluctuations. Long-term and very long-term forecasting, typically encompassing a
timeframe exceeding two years, are often undertaken at the strategic level. They have a
high degree of uncertainty, and the model relies on assumptions and scenario analysis.

The techniques and methods for TSF can be divided into statistical methods, physical
methods, time series analysis methods, hybrid methods, and so on. Statistical methods
are based on mathematical formulas and probability assumptions, utilizing historical data
modeling of time series to capture trends, seasonality, and residual components. They are
suitable for short-term data volumes that require fast modeling and high interpretability
requirements. Yule (1927) constructed an Autoregressive (AR) model to predict the number
of sunspots, which was an earlier TSF model in econometric analysis [2]. After that, scholars
further proposed the Moving Average (MA) model to analyze time series data. Slightly
different from the AR model, the MA model uses the lag term of the white noise sequence
to predict the explained variables. AR and MA models are suitable for stationary time
series data. However, it has been found that most financial time series data usually have
non-stationary characteristics [3]. For this reason, Box and Jenkins further proposed an
Autoregressive Integrated Moving Average (ARIMA) model to deal with non-stationary
time series data. The ARIMA model is relatively simple and can effectively deal with
non-stationary financial time series data, so it has become a commonly used econometric
model in the field of financial time series data prediction.

Physical methods are based on domain knowledge (physical laws, chemical equations,
etc.) to construct mechanistic models, emphasizing causal relationships rather than pure
data-driven approaches. They are suitable for scenarios where prediction results must
strictly comply with physical laws. For example, weather forecasting uses models based on
atmospheric dynamics.

The time series analysis methods focus on the decomposition of the intrinsic structure
of time series and pattern recognition, emphasizing data-driven feature extraction. It is nec-
essary to have a deep understanding of the internal structure of the sequence, such as trends
and cycles. Non-linear Autoregressive (NAR) and Non-linear Autoregressive with Exoge-
nous inputs (NARX) models are prominent examples of time series forecasting techniques
that leverage recurrent structures to capture temporal dependencies effectively. NARX
models extend traditional autoregressive models by incorporating external input variables,
making them especially powerful for complex financial time series forecasting tasks.

Hybrid methods in time series forecasting combine multiple forecasting techniques,
often blending statistical, machine learning, and/or physical models, to improve predictive
accuracy and robustness. The idea behind hybrid methods is to take advantage of the
strengths of each individual technique, while compensating for their weaknesses. For exam-
ple, Luo proposed a hybrid model that combines Ensemble Empirical Mode Decomposition
(EEMD), ARIMA, and Taylor expansion using a tracking differentiator to forecast financial
time series [4].

Machine learning explores how to improve the performance of the model itself by
means of computing and, using learning experience, it tries to find the relationships be-

Algorithms 2025, 18, 262 3 of 20

tween the input data. Yu Z et al.’s Local Linear Embedding Dimensionality Reduction
(LLE) algorithm is chosen to reduce the dimensionality of the factors affecting the stock
price and the dimensionality-reduced data are used as a new input variable to the BP
neural network for stock price prediction [5]. Another commonly used machine learning
algorithm is Support Vector Machine (SVM). SVM avoids the problem of overfitting and
improves the prediction ability of out-of-sample data. Stock market data have the charac-
teristics of high noise and complex dimensions, while artificial neural networks often show
inconsistency in the prediction of noise data. SVM is more suitable for financial time series
data prediction [6]. Kuran introduced the use of SVM and ANN as prediction algorithms
and raised challenges such as time constraints, current scenarios, data limitations, and cold
start issues [7]. Random Forest (RF) is an ensemble learning method primarily used for
classification and regression tasks. Although it was not originally designed for time series
prediction, with appropriate adjustments and feature engineering, random forests can also
be effectively applied to time series prediction problems. Fan proposed a hybrid model
that combines the Random Forest (RF) model with the mean generation function model,
which outperforms the original model based on selected prediction accuracy indicators in
terms of peak–valley performance in highly volatile data [8].

Transformer-based models have shown excellent performance in the TSF field, and
the latest Mamba has been proven to outperform Transformer in many aspects, not only
with strong performance but also by reducing memory and computational overhead.
Large Language Models (LLMs) have been applied in many fields and have developed
rapidly in recent years. Wang’s experiment showed that Mamba exhibits remarkable
potential to outperform Transformer in TSF tasks [9]. As a classic machine learning task,
TSF has recently been boosted by LLMs. Tang‘s study shows that LLMs perform well in
predicting time series with clear patterns and trends but face challenges in the absence of
periodic datasets. He also proves Mamba shows great potential to surpass Transformer
in TSF tasks [10]. Multi-variate time series prediction is a persistent challenge in various
disciplines. On this issue, Cai proposed MSGNet, an advanced deep learning model
aimed at using frequency domain analysis and adaptive graph convolution to capture
intersequence correlations that vary across multiple time scales [11].

An ANN is a representative method that is applicable to all short-term, recent, and
long-term data. The very first generation of ANNs had single-layer computational neurons,
which made them capable of handling some linearly separable problems. The second
generation of ANNs used multiple hidden layers to replace the original single feature
layer in the perception and used the Backpropagation (BP) algorithm to calculate net-
work parameters. But an increasing number of hidden layers and neurons require more
computing resources. Meanwhile, the explainability becomes more difficult to ensure.
Known as third-generation ANNs, SNNs can be more energy efficient than traditional arti-
ficial neural networks because they use spike-based signaling, which requires less energy
to transmit than continuous signals. SNNs can also use the timing of spikes to process
temporal information, such as sequences of events, so they have a greater advantage in
TSF problems theoretically.

Shallow-level machine learning algorithms such as SVM and BP neural networks have
great limitations in dealing with complex and high-dimensional data, and there are many
problems, such as the disaster of dimensionality and inefficient feature representation [12].
Deep learning is a representation learning method with multi-level representation, which
is obtained by superimposing multi-layer simple but non-linear modules. Each module
converts the representation of each layer (starting from the input layer) into a more abstract
representation of the next layer. As long as there are enough of these transformations, it
can learn very complex functions [13]. Tsantekidis et al. applied a Convolutional Neural

Algorithms 2025, 18, 262 4 of 20

Network (CNN) to stock price prediction [14]. The results show that the prediction effect
of this method is better than that of BP and SVM. Hsieh et al. pointed out that the structure
of a Recurrent Neural Network (RNN) is simpler than that of a traditional artificial neural
network [15], and it is more suitable for financial TSF prediction. An LSTM neural network
is a form of RNN which can effectively deal with the problem of long-term dependence
of sequences. Fischer and Krauss’s experiment showed that LSTM neural networks can
extract important information from financial TSF data with a lot of noise [16].

Compared with previous generations of ANNs, SNNs have been the subject of much
less research on TSF problems. The training and debugging process of SNNs is relatively
complex. Training SNNs is inherently more complex than for traditional neural networks
due to their reliance on temporal dynamics and signal accumulation mechanisms. In
addition, due to the high biological rationality of SNNs and their relatively complex mathe-
matical models, the debugging process may also be more difficult. Despite the difficulty,
there has been progress. Matenczuk compared the performance of traditional neural net-
works and SNNs for financial TSF [17]. He found that there is a lack of information about
encoding methods, learning methods, network structures, and neural models for SNNs,
which hinders comparison, reproducibility, and replication. Reid D used SNNs in financial
time series prediction, and he applied a Polychronous Spiking Network (PSN) to exploit
the temporal characteristics of the spiking neural model in an appropriate way [18]. Abou
Hassan proposed predictive and explainable modeling of stock price time series, integrated
with online news, as a method, based on SNNs, for an integrated predictive modeling of
multi-modal time series [19].

However, the SNN is still a relatively new and developing field, with some limitations
in its use. From the traditional neural networks, through deep neural networks, to the
recently emerging LSTM, they all do a good job in stock price forecasting. The SNN is
rarely used in predictions compared to the previous generation. One reason is that there are
so many hyperparameters in SNNs, so it is too hard to optimize them for making the best
network to fit the specific problems. In most cases, these hyperparameters are manually
adjusted by researchers, but this method has obvious drawbacks:

1. Time is often wasted in the intervals between each experiment run. If a trial run ends,
researchers cannot guarantee a timely start of the next one.

2. Each experiment requires a considerable amount of effort, and researchers need to
analyze the results and determine the direction of the next parameter adjustment.

3. Researchers usually tend to choose aesthetically pleasing numbers as parameters, such
as 200, 1150, or 0.55. This approach increases the likelihood of missing the optimal
numbers, even though they may not look as appealing.

Therefore, biomimetic algorithms are good choices to find better hyperparameters,
which can be inspired by the corresponding characteristics of biological systems, providing
new design ideas and principles for engineering technology. The CS algorithm is a typical
representation of them. But the combination of the original CS and SNNs is not satisfactory
enough. Therefore, we proposed the ICS algorithm.

The work described in this article about ICS-SNN is summarized as follows:

1. Change the initialization method of the cuckoo search algorithm and replace the
discovery probability with a fixed value with a variable that increases with the number
of iterations;

2. Choose the proper hyperparameters for the SNN model and use the ICS to optimize them;
3. Compare the performance of ICS-SNN, CS-SNN, and other models by using futures

market data.

Algorithms 2025, 18, 262 5 of 20

To illustrate the above work, the structure of the article has been arranged as follows:
Section 2 is divided into three parts, elaborating on SNN, ICS, and how to combine the
two in detail, respectively; Section 3 contains the data processing, test function, the metrics
we used, and the results of our experiments; Section 4 is the discussion; and Section 5
is the conclusions.

2. Materials and Methods
2.1. SNN

Unlike most neural networks we know, SNNs use spikes to encode data [20,21]. As
the third generation of ANNs, the SNN draws more help from the human brain, so it
can act more like brain nerve cells: its neurons spike only when they receive important
information or the environment around them undergoes tremendous changes. Under this
understanding, SNNs are inherently suited to managing highly non-linear and temporally
based input data that traditional neural networks struggle with [18].

The neurons of SNNs are created by imitating biological neural cells, which are mainly
composed of dendrites, cell bodies, and axons. The function of dendrites is to collect signals
inputted by other elements and transmit them to the cell body. When the accumulation of
current received by the cell body causes a change in the membrane potential of the neuron
to exceed a certain threshold, a nerve pulse will be generated. Pulses can travel along the
axon and then through the synapses at the end of the axon. This completes the process by
which presynaptic neurons transmit signals to postsynaptic neurons. With regard to the
dynamic characteristics of neuron membrane potential and the process of pulse emission,
researchers have established a variety of theoretical models of pulse neurons. Because the
pulse neuron is the basic unit of the SNN, it is necessary to understand the neuron model
we use in this paper before describing the research of pulse neural networks.

Most current neural networks are based on the McCulloch–Pitts (M-P) model. Its basic
theory is to formalize neurons into an activation function composite with the form of a
weighted sum, as shown in the left half of Figure 1. Although the M-P model is widely
used in the field of deep learning, it is still far from the cell structure of real neurons. In
comparison, SNNs use biologically closer spiking neurons as basic computing units to
process information non-linearly. Different types of spiking neuron models describe the
changes in cell membrane potential and the mechanism of pulse generation at different
levels of detail [22].

Algorithms 2025, 18, x FOR PEER REVIEW 6 of 21

∑

LIF model

spike train

dendrite...
...

𝜔1

𝜔𝑖

𝜔𝑛

𝜇𝑡ℎ

𝜇

M-P model

f(∑+b)
activation

...

𝑥1

...

𝑥𝑖

𝑥𝑛

𝜔1

𝜔𝑖

𝜔𝑛

synapse synapse

∑

Figure 1. M-P neuron model and LIF neuron model.

The M-P model can be explained as follows:

𝑦 = 𝑓(෍𝑤௜𝑥௜௡
௜ୀଵ + 𝑏) (1)

where 𝑤௜ represents the weight corresponding to the 𝑖 -th input signal 𝑥௜ . 𝑏 is a bias
term used to adjust the activation threshold of neurons. And 𝑓(∗) is the activation func-
tion.

In this study, we used Leaky Integrate and Fire (LIF) as the computing unit. The sche-
matic diagram of its structure is shown in the right half of Figure 1. The biggest difference
between M-P and LIF models is the information processing mechanism. The M-P model
is based on real value calculation, while LIF processes information based on spiking se-
quences with time information.

The LIF model is simple but effective when SNNs are used in financial prediction.
The integrated firing model (Integrate and Fire, I&F) was proposed by Lapicque et al. in
1907 [23]. Due to the limitations of the conditions at that time, the mechanism of action
potential is not clear, so the process of action potential is simplified as follows: when the
membrane potential reaches the threshold, the neuron will excite the pulse, and the mem-
brane potential falls back to the resting value, so the I&F neurons do not conform to the
biological principle. Theoretically, the dynamic performance of biological neuron mem-
brane potential should have three key characteristics: leakage, accumulation, and thresh-
old excitation. The LIF neuron model is developed on the basis of the I&F model, which
not only retains the above three characteristics but also simplifies the generation process
of the action potential, which reduces the computational complexity and has better bio-
logical interpretability. The LIF model can be explained as follows: 𝜏 𝑑𝑈𝑑𝑡 = −(𝑈 − 𝑈௥௘௦௧) + 𝑅 × 𝐼௜௡(𝑡) (2)

𝑖𝑓 𝑈 > 𝑈௧௛ ,𝑈 ← 𝑈௥௘௦௘௧ (3)

where 𝜏 expresses the membrane time constant of the cell. As the firing time of a neuronal
pulse is 1 ms generally, 𝜏 takes a value of 10 ms in most cases, which is larger than the
duration of pulse emission. 𝑈௥௘௦௧ is a constant parameter, which means the resting poten-
tial of the fine cell membrane. 𝐼௜௡(𝑡) is the value of input current, and 𝑅 is the cell mem-
brane impedance. Equation (3) means, once the membrane potential 𝑈 exceeds the

Figure 1. M-P neuron model and LIF neuron model.

Algorithms 2025, 18, 262 6 of 20

The M-P model can be explained as follows:

y = f (
n

∑
i=1

wixi + b) (1)

where wi represents the weight corresponding to the i-th input signal xi. b is a bias term
used to adjust the activation threshold of neurons. And f (∗) is the activation function.

In this study, we used Leaky Integrate and Fire (LIF) as the computing unit. The
schematic diagram of its structure is shown in the right half of Figure 1. The biggest
difference between M-P and LIF models is the information processing mechanism. The
M-P model is based on real value calculation, while LIF processes information based on
spiking sequences with time information.

The LIF model is simple but effective when SNNs are used in financial prediction.
The integrated firing model (Integrate and Fire, I&F) was proposed by Lapicque et al. in
1907 [23]. Due to the limitations of the conditions at that time, the mechanism of action
potential is not clear, so the process of action potential is simplified as follows: when
the membrane potential reaches the threshold, the neuron will excite the pulse, and the
membrane potential falls back to the resting value, so the I&F neurons do not conform
to the biological principle. Theoretically, the dynamic performance of biological neuron
membrane potential should have three key characteristics: leakage, accumulation, and
threshold excitation. The LIF neuron model is developed on the basis of the I&F model,
which not only retains the above three characteristics but also simplifies the generation
process of the action potential, which reduces the computational complexity and has better
biological interpretability. The LIF model can be explained as follows:

τ
dU
dt

= −(U −Urest) + R× Iin(t) (2)

i f U > Uth, U ← Ureset (3)

where τ expresses the membrane time constant of the cell. As the firing time of a neuronal
pulse is 1 ms generally, τ takes a value of 10 ms in most cases, which is larger than the
duration of pulse emission. Urest is a constant parameter, which means the resting potential
of the fine cell membrane. Iin(t) is the value of input current, and R is the cell membrane
impedance. Equation (3) means, once the membrane potential U exceeds the threshold Uth,
it is considered that the neuron has issued a pulse; Ureset represents the reset membrane
potential value after the neuron generates a pulse.

The equivalent circuit diagram of the LIF model is shown in Figure 2.

Algorithms 2025, 18, x FOR PEER REVIEW 7 of 21

threshold 𝑈௧௛, it is considered that the neuron has issued a pulse; 𝑈௥௘௦௘௧ represents the
reset membrane potential value after the neuron generates a pulse.

The equivalent circuit diagram of the LIF model is shown in Figure 2.

C
R

U(t)

I(t)

Figure 2. Equivalent circuit diagram of the LIF model.

While TSF’s data consist of a large number of time steps, LIF cannot maintain infor-
mation from history data for a long time. To solve this problem, Recurrent LIF (RLIF) adds
a feedback loop based on LIF. RLIF builds on the standard RNN, which enables the net-
work to use relationships along several time steps for the prediction of the current time
step [24]. Compared to non-recursive loops, the RNN can retain information for a rela-
tively long time step [25]. The activation function of the LIF model in Figure 1 can be
formulated as

𝜙௦௣௞,௧(௟) = ൝1, 𝑈ఎ,௧(௟) ≥ 𝑈௧௛௥,ఎ(௟) 0, 𝑈ఎ,௧(௟) < 𝑈௧௛௥,ఎ(௟) (4)

RLIF formulation can be described as follows: 𝑈ఎ,௧(௟) = 𝛽ఎ(௟)𝑈ఎ,௧ିଵ(௟) + 𝑊ఎ(௟)ℎ௧(௟ିଵ) + 𝑉ఎ(௟)ℎ௧ିଵ(௟ିଵ) − 𝜙௦௣௞,௧ିଵ(௟) 𝑈௧௛௥,ఎ(௟) (5)

where 𝑈ఎ,௧(௟) is the membrane potential of the η-th neural unit at time t, 𝑈௧௛௥,ఎ(௟) denotes the
membrane threshold, 𝛽ఎ(௟) is the membrane potential decay rate, and 𝑊ఎ(௟)ℎ௧(௟ିଵ) is the
standard ANN weight multiplied with the preceding layer at the current time step. And 𝑉ఎ(௟) is the additional recurrent weights.

Finally, it can be used to train the following parameters: 𝜃ோ௅ூி = ቄ𝑊ఎ(௟),𝑉ఎ(௟),𝛽ఎ(௟),𝑈௧௛௥,ఎ(௟) ቅ (6)

2.2. ICS

The Cuckoo Search (CS) algorithm is inspired by the brood parasitism of cuckoo
birds, a strategy that enhances offspring survival through nest parasitism [26]. The algo-
rithm is inspired by the specific parasitic feeding behavior of cuckoo bird species, where
certain species lay eggs in other birds’ nests and may remove other birds’ eggs to increase
the hatching probability of their own eggs. There are three basic types of brood parasitism:

1. Some host birds directly conflict with invading cuckoo birds. The host bird has a
probability of discovering that the egg is not its own, then the host bird will discard
eggs that are not its own or abandon its original nest to build a new one;

Figure 2. Equivalent circuit diagram of the LIF model.

Algorithms 2025, 18, 262 7 of 20

While TSF’s data consist of a large number of time steps, LIF cannot maintain informa-
tion from history data for a long time. To solve this problem, Recurrent LIF (RLIF) adds a
feedback loop based on LIF. RLIF builds on the standard RNN, which enables the network
to use relationships along several time steps for the prediction of the current time step [24].
Compared to non-recursive loops, the RNN can retain information for a relatively long
time step [25]. The activation function of the LIF model in Figure 1 can be formulated as

ϕ
(l)
spk,t =

1, U(l)
η,t ≥ U(l)

thr,η

0, U(l)
η,t < U(l)

thr,η

(4)

RLIF formulation can be described as follows:

U(l)
η,t = β

(l)
η U(l)

η,t−1 + W(l)
η h(l−1)

t + V(l)
η h(l−1)

t−1 − ϕ
(l)
spk,t−1U(l)

thr,η (5)

where U(l)
η,t is the membrane potential of the η-th neural unit at time t, U(l)

thr,η denotes

the membrane threshold, β
(l)
η is the membrane potential decay rate, and W(l)

η h(l−1)
t is the

standard ANN weight multiplied with the preceding layer at the current time step. And
V(l)

η is the additional recurrent weights.
Finally, it can be used to train the following parameters:

θRLIF =
{

W(l)
η , V(l)

η , β
(l)
η , U(l)

thr,η

}
(6)

2.2. ICS

The Cuckoo Search (CS) algorithm is inspired by the brood parasitism of cuckoo birds,
a strategy that enhances offspring survival through nest parasitism [26]. The algorithm is
inspired by the specific parasitic feeding behavior of cuckoo bird species, where certain
species lay eggs in other birds’ nests and may remove other birds’ eggs to increase the
hatching probability of their own eggs. There are three basic types of brood parasitism:

1. Some host birds directly conflict with invading cuckoo birds. The host bird has a
probability of discovering that the egg is not its own, then the host bird will discard
eggs that are not its own or abandon its original nest to build a new one;

2. Some species mimic the color of host eggs to reduce the likelihood of eggs being
abandoned and improve reproductive ability;

3. Some species usually choose a nest where the host bird has just laid eggs. The cuckoo
bird’s eggs hatch earlier than the host’s eggs. Once the first cuckoo bird chick hatches,
it instinctively and blindly pushes out the host bird’s eggs, increasing the share of
food provided by the host.

The conversion relationship between the egg’s position and time is as follows:

Xt+1 = Xt + α
⊗

Levy(β) (7)

where Xt is the position at time t, Xt+1 is the next position after time t. And α is the step
size scaling factor, and in most questions we can set α as 1, ⊗ is the dot product operator,
and Lévy(β) represents the Lévy flight.

Lévy flight is a random walking process, in which the length and direction of the
step are determined by the Lévy distribution. The Lévy distribution is a probability
distribution with long-tailed distribution characteristics. In the cuckoo algorithm, the Lévy
flight strategy is used to update the position of cuckoo individuals in order to search for
better solutions.

Algorithms 2025, 18, 262 8 of 20

The step size of Lévy flight is a random walk that follows a heavy-tailed distribution.
After multiple walks, the flight step size starting from the original point usually tends
to stabilize. The Lévy distribution, named by mathematician Paul Lévy, is a continuous
probability distribution. The specific formula is shown in Equation (8).

Levy(β) =
u

|v|1/β
(8)

In Equation (8), β usually takes a value between [0, 2], with a value of 1.8 here, then
u and v should follow a normal distribution with zero mean and variances defined in
Equations (9) and (10).

σu =

{
Γ(1 + β)sin(βπ/2)

Γ((1 + β)/2)2(β−1)/2β

}1/β

(9)

σv = 1 (10)

Before the very first search, we need to obtain a position to start. The original cuckoo
algorithm initializes the position with a random solution, which is too stochastic to obtain
uniformly distributed positions. Therefore, we choose piecewise mapping to obtain a more
uniform distribution. The piecewise mapping is as follows:

f (x) =



x(t)
p , 0 ≤ x(t) < p

x(t)−p
0.5−p , p ≤ x(t) < 0.5

1−p−x(t)
0.5−p , 0.5 ≤ x(t) < 1− p
1−x(t)

p , 1− p ≤ x(t) < 1

(11)

In Equation (11), p is 0~0.5 and x(1) is a random value. We used 500 random values
and cycled the piecewise method the same number of times. The scatter and distribution
histograms are shown in Figure 3.

Algorithms 2025, 18, x FOR PEER REVIEW 9 of 21

Figure 3. Comparison of Population Initialization Methods: Random and Piecewise Mapping.

The probability that the host bird discovers the egg is usually a fixed value. It is con-
venient for calculation but surely does not conform to natural conventions. The probabil-
ity is modified to calculate through a formula as follows: 𝑝 = 𝑝௠௜௡ + (𝑝௠௔௫ − 𝑝௠௜௡) × 𝑒௜೙ି௜೟ (12)

where 𝑝 is the final probability, 𝑝௠௜௡ is the minimum probability, 𝑝௠௔௫ is the maximum
probability, 𝑖௡is the current iteration round, and 𝑖௧ is the total iteration rounds. The prob-
ability increases with the number of iteration rounds, which is more in line with reality.

2.3. ICS-SNN

As shown in Figure 4, ICS-SNN is the new model that combines the previous two
methods together. ICS is responsible for continuously selecting new hyperparameters,
and the SNN needs to incorporate these parameters into the model, then train and validate
their effectiveness. There are several hyperparameters which used to be changed manu-
ally when SNNs are used as shown in Table 1.

Table 1. Selected hyperparameters and their Ranges.

Hyperparameter Name Search Range
Time step [5, 20]

Neuron number [500, 2000]
Batch size [10,000, 20,000]

Scaler scope [4, 6]
Decay rate [0.5, 0.8]

Figure 3. Comparison of Population Initialization Methods: Random and Piecewise Mapping.

The probability that the host bird discovers the egg is usually a fixed value. It is con-
venient for calculation but surely does not conform to natural conventions. The probability
is modified to calculate through a formula as follows:

p = pmin + (p max − pmin)× ein−it (12)

where p is the final probability, pmin is the minimum probability, pmax is the maximum
probability, in is the current iteration round, and it is the total iteration rounds. The
probability increases with the number of iteration rounds, which is more in line with reality.

Algorithms 2025, 18, 262 9 of 20

2.3. ICS-SNN

As shown in Figure 4, ICS-SNN is the new model that combines the previous
two methods together. ICS is responsible for continuously selecting new hyperparam-
eters, and the SNN needs to incorporate these parameters into the model, then train and
validate their effectiveness. There are several hyperparameters which used to be changed
manually when SNNs are used as shown in Table 1.

Algorithms 2025, 18, x FOR PEER REVIEW 10 of 21

Figure 4. ICS-SNN model structure.

Time step. Time step means how many data are used to predict the price for the next
time. If the number is set to be small, it is very likely that the model does not have enough
prior knowledge to output the accurate value we expect. In contrast, if it is set to be too
big, not only does it require more computing resources but it also takes more time to per-
form matrix operations. Time spent on different time steps is shown in Figure 5.

Figure 5. Time spent on different time steps.

Count of Neurons. How to find the correct count of neurons for hidden layers is
always a headache problem. A small quantity may result in underfitting, as the network
may not learn correctly. However, excessive quantity may lead to overfitting, as learning
too much from the network makes it impossible to generalize. Therefore, there must be
an appropriate number of neurons to ensure good training.

Scaler Scope. After data normalization, the process of seeking the optimal solution
becomes smoother and can converge to the optimal solution more quickly.
“MinMaxScaler” is a method of data normalization used to scale data to a specified range.
It maps the data to a specified minimum and maximum value by performing a linear
transformation on the data. 𝑋௦௖௔௟௘ௗ = (𝑋 − 𝑋௠௜௡) × (𝐵 − 𝐴)𝑋௠௔௫ − 𝑋௠௜௡ + 𝐴 (13)

Figure 4. ICS-SNN model structure.

Table 1. Selected hyperparameters and their Ranges.

Hyperparameter Name Search Range

Time step [5, 20]

Neuron number [500, 2000]

Batch size [10,000, 20,000]

Scaler scope [4, 6]

Decay rate [0.5, 0.8]

Time step. Time step means how many data are used to predict the price for the next
time. If the number is set to be small, it is very likely that the model does not have enough
prior knowledge to output the accurate value we expect. In contrast, if it is set to be too big,
not only does it require more computing resources but it also takes more time to perform
matrix operations. Time spent on different time steps is shown in Figure 5.

Algorithms 2025, 18, x FOR PEER REVIEW 10 of 21

Figure 4. ICS-SNN model structure.

Time step. Time step means how many data are used to predict the price for the next
time. If the number is set to be small, it is very likely that the model does not have enough
prior knowledge to output the accurate value we expect. In contrast, if it is set to be too
big, not only does it require more computing resources but it also takes more time to per-
form matrix operations. Time spent on different time steps is shown in Figure 5.

Figure 5. Time spent on different time steps.

Count of Neurons. How to find the correct count of neurons for hidden layers is
always a headache problem. A small quantity may result in underfitting, as the network
may not learn correctly. However, excessive quantity may lead to overfitting, as learning
too much from the network makes it impossible to generalize. Therefore, there must be
an appropriate number of neurons to ensure good training.

Scaler Scope. After data normalization, the process of seeking the optimal solution
becomes smoother and can converge to the optimal solution more quickly.
“MinMaxScaler” is a method of data normalization used to scale data to a specified range.
It maps the data to a specified minimum and maximum value by performing a linear
transformation on the data. 𝑋௦௖௔௟௘ௗ = (𝑋 − 𝑋௠௜௡) × (𝐵 − 𝐴)𝑋௠௔௫ − 𝑋௠௜௡ + 𝐴 (13)

Figure 5. Time spent on different time steps.

Algorithms 2025, 18, 262 10 of 20

Count of Neurons. How to find the correct count of neurons for hidden layers is
always a headache problem. A small quantity may result in underfitting, as the network
may not learn correctly. However, excessive quantity may lead to overfitting, as learning
too much from the network makes it impossible to generalize. Therefore, there must be an
appropriate number of neurons to ensure good training.

Scaler Scope. After data normalization, the process of seeking the optimal solution
becomes smoother and can converge to the optimal solution more quickly. “MinMaxScaler”
is a method of data normalization used to scale data to a specified range. It maps the
data to a specified minimum and maximum value by performing a linear transformation
on the data.

Xscaled =
(X− Xmin)× (B− A)

Xmax − Xmin
+ A (13)

where X is one of the values which needs to be normalized, Xmin and Xmax are the minimum
and maximum values of X. A and B are the specified minimum and maximum value we
want X to be limited to. Finally, Xscaled is the value input in the model.

Batch Size. A small batch size increases computational time and causes severe gradient
oscillations, hindering convergence. Conversely, an excessively large batch size reduces
gradient diversity across batches, leading to local minima entrapment. The longer it takes to
complete each epoch and the smoother the gradient between each iteration, the greater the
batch size, which directly affects the mean and variance calculated by batch normalization,
making them closer to the true mean and variance of the training set data distribution,
thereby improving the regularization effect. Therefore, when computing resources allow,
increasing batch size can not only accelerate training speed but also improve accuracy.

Membrane Potential Decay Rate. In the absence of input pulses, the membrane
voltage decays over time due to the membrane decay rate.

Threshold. When the membrane potential exceeds the threshold of a neuron, the
neuron will generate a pulse. The setting of the threshold is the triggering condition for
pulse neurons to generate pulses and, usually, the threshold is a fixed parameter. Choosing
an appropriate threshold has a significant impact on the pulse firing of neurons. Too
high or too low a threshold may cause neurons to be unable to emit pulses correctly or
frequently. And we consider the threshold as a hyperparameter in an attempt to bring
great possibilities.

In the past, researchers always relied on experience to change parameters, which
resulted in low accuracy, low efficiency, and time-consuming results. The ICS algorithm
provides a way for automatically searching for solutions. So, it is natural to combine the
ICS and SNNs, and we call it ICS-SNN. The flowchart of ICS-SNN is shown in Figure 6.
The max iteration in the figure is not just a fixed value. During each iteration, if the quality
of the current solution does not significantly improve, the search process is terminated as a
convergence criterion.

2.4. Data Processing

The data used in this study are from Shanghai Futures Exchange. We obtained the
original tick file from the Comprehensive Transaction Platform (CTP), then fixed the data
as one-minute k-line files.

Due to the rare quotations on the market of unpopular products, the products we chose
were Rebar (RB) and Hot Rolled Coil Plate (HC). RB and HC are almost the most popular
products in the futures market, and this provides us with sufficient data. Furthermore, RB
and HC are both products of black steel, so their price trends are highly fitting, and there is
a strong correlation between them, which gives investors abundant arbitrage opportunities.
We collected the tick data of RB and HC from 15 July 2020 to 23 March 2023 crossed over

Algorithms 2025, 18, 262 11 of 20

654 days, and transformed the tick data to 1-min Kline data. Then, we subtracted RB’s
closing price from HC’s closing price and finally obtained the price difference data.

Algorithms 2025, 18, x FOR PEER REVIEW 12 of 21

START

Initialize the populations
with piecewise mapping

Calculate and rank the
loss function, find the

best individual

Update the positions of
each individual

Update the fitness value
and compare them with

the global best one

NO

Reach the max
iteration

YES

END

Input data

Assign
hyperparameters and

build the SNN
model

Train and validate
the model with train

data

Test current model
with test data

Calculate fitness

Improved Cuckoo Search Algorithm Spiking Neural Network

Figure 6. Flowchart of ICS-SNN.

3. Results
3.1. ADF Test

Before doing the experiment, we need to ensure that is there a cointegration relation-
ship between the two. Firstly, we used the Augmented Dickey–Fuller (ADF) test to see if
the two sequences are integrated of order one. The result is shown in Table 2.

Table 2. ADF test.

Variety ADF p-Value 1%
RB −73.51142 0.0 −3.43037912096488
HC −62.22528 0.0 −3.430379122521149

From the results in Table 3, it can be seen that both sequences are integrated of order
one. Then, we determine if there is a cointegration relationship between the two se-
quences.

Figure 6. Flowchart of ICS-SNN.

3. Results
3.1. ADF Test

Before doing the experiment, we need to ensure that is there a cointegration relation-
ship between the two. Firstly, we used the Augmented Dickey–Fuller (ADF) test to see if
the two sequences are integrated of order one. The result is shown in Table 2.

Table 2. ADF test.

Variety ADF p-Value 1%
RB −73.51142 0.0 −3.43037912096488
HC −62.22528 0.0 −3.430379122521149

From the results in Table 3, it can be seen that both sequences are integrated of order
one. Then, we determine if there is a cointegration relationship between the two sequences.

Algorithms 2025, 18, 262 12 of 20

Table 3. Cointegration relationship test.

t-Statistic p-Value 1% 5% 10%

−6.6336619 6.20974984 × 10−8 −3.89648876 −3.3361572 −3.04446888

From the results shown in Table 4, it can be seen that the t-statistic value is less than
1% confidence, so there is a 99% confidence in rejecting the original hypothesis, and the
p-value is also relatively small, so there is a cointegration relationship between RB and HC.

Table 4. Description of functions in CEC2019.

No Description Dimension Range F_min
F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [8192, 8192] 1
F2 Inverse Hilbert Matrix Problem 16 [16,384, 16,384] 1
F3 Lennard-Jones minimum Energy Cluster 18 [4, 4] 1
F4 Rastrigin’s Function 10 [−100, 100] 1
F5 Griewangk’s Function 10 [−100, 100] 1
F6 Weierstrass Function 10 [−100, 100] 1
F7 Modified Schwefel’s Function 10 [−100, 100] 1
F8 Expanded Schaffer’s Function 10 [−100, 100] 1
F9 Happy Function 10 [−100, 100] 1
F10 Ackley Function 10 [−100, 100] 1

3.2. Test Function

To test the universality of ICS, we conducted CEC2019 on ICS. The CEC2019 function
set is a highly effective benchmark function for testing the performance of metaheuristic
algorithms. In CEC2019, the F1–F3 function has different dimensional values and ranges,
while the F4–F10 function is a 10-dimension minimization problem. Due to the fact that
many of the CEC2019 test functions are multi-modal, they are very challenging. CEC2019
problems are shown in Table 5.

Table 5. Model parameters and package version and computer hardware.

Name Value
GPU RTX4060Ti
CPU Intel Core i5 13600KF

CUDA 12.5
CuDNN 11.2
SnnTorch 0.8.1
Datasize 10,000

Train ratio 0.8

As shown in Figure 7, ICS performed better than CS in almost every function in
CEC2019. The test results not only prove the generality, effectiveness, and performance
advantages of the newly proposed ICS algorithm but they also demonstrate its potential
and value in dealing with complex problems.

Algorithms 2025, 18, 262 13 of 20
Algorithms 2025, 18, x FOR PEER REVIEW 14 of 21

Figure 7. Comparison between ICS and CS in CEC2019 test function. Figure 7. Comparison between ICS and CS in CEC2019 test function.

Algorithms 2025, 18, 262 14 of 20

3.3. Metrics

To quantify the difference between predicted results and actual values, we need to
choose proper loss functions. An excellent loss function not only needs to help researchers
clearly understand the performance of the model but also needs to help to improve the
model parameters. In machine learning, we want the predicted values to be infinitely
close to the true values, so we need to minimize the difference. The choice of loss function
is crucial in this process. In specific projects, some loss functions calculate a difference
gradient that decreases quickly, while others decrease slowly.

In this study, we use the following metrics to evaluate the performance of the model:
Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), and Coefficient of Determination (R2). Their formulas are as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (14)

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (15)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (16)

R2 = 1− ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (17)

where ŷi means the predicted value, yi means the true value, and n is the number of samples.
The smaller the values of MSE, MSE, and MAPE, the better our model performance. As for
theR2, the closer the value is to 1, the better performance will be. MAE is used to measure
absolute error, MSE is more sensitive to large errors, MAPE facilitates understanding the
relative error size, and R2 reflects the model’s ability to explain variability.

3.4. Comparison Experiment

The specific Python version used in this study is 3.9.18, and the versions of other soft-
ware and hardware are shown in Table 6. Given the dataset size exceeding 180,000 samples,
processing all data would impose prohibitive computational time and memory demands.
Therefore, a subset of the data was selected for experimentation.

Table 6. Evaluation results of each model.

Model Name MAE MSE MAPE R2

ICS-SNN 2.3571 10.4675 0.0156 0.9822
CS-SNN 2.4709 11.2242 0.0163 0.9812

SNN 2.7351 13.2958 0.0184 0.9790
LSTM 2.6428 13.2309 0.0173 0.9779

BP 2.8884 16.0640 0.0192 0.9731
MLP 3.0191 16.9058 0.0202 0.9717

To demonstrate the improved model’s performance more intuitively, we conduct
several different usual methods at the same time: LSTM, BP, and Multi-layer Perceptron
(MLP). The results of metrics are shown in Figure 8.

Algorithms 2025, 18, 262 15 of 20
Algorithms 2025, 18, x FOR PEER REVIEW 16 of 21

Figure 8. The results of each model and metric.

4. Discussion
As the results show in Table 6 and Figure 8, MLP, as the first proposed model among

the above models, has MAE, MSE, MAPE, and 𝑅ଶ values of 3.0191, 16.9058, 0.0202, and
0.9717. Despite its simplicity—comprising only a few linear layers—MLP achieves rea-
sonable performance in long-sequence modeling due to its straightforward architecture.
And it is the most time-saving model among them.

BP is currently one of the most widely used neural network models. Its learning rule
is to use the steepest descent method, which continuously adjusts the weights and thresh-
olds of the network through BP to minimize the sum of squared errors of the network.
Compared to MLP, BP has a better result in our experiments, and the values of the four
metrics are 2.8884, 16.0640, 0.0192, and 0.9731.

Due to the unique design structure, LSTM is suitable for processing and predicting
important events with very long intervals and delays in time series. Compared to the pre-
vious two models, its metrics were significantly better, being 2.6428, 13.2309, 0.0173, and
0.9779.

The hyperparameters of the SNN are chosen according to the following rules: with
twice the number of iterations of ICS-SNN, adjust the hyperparameters based on experi-
ence, and then select the hyperparameter with the smallest metrics. The SNN model with
manually tuned hyperparameters achieves MAE, MSE, MAPE, and R2 values of 2.7351,
13.2958, 0.0184, and 0.9790, respectively. Although LSTM excels in capturing long-term
dependencies, the ICS-SNN model surpasses it by leveraging optimized hyperparameters
and temporal dynamics inherent to spiking neurons. The SNN has manually adjusted pa-
rameters, which means there is a long and tedious training process. Most numbers in peo-
ple’s lives do not exceed two decimal places, so when researchers need to change the hy-
perparameter, they prefer to choose integers and numbers with no more than two decimal
places. But the optimal solution is obviously randomly distributed, so there is a long way
to go if we adjust the hyperparameters manually. Without hyperparameter optimization,
SNNs demonstrate inferior performance compared to LSTM, highlighting the necessity of
automated parameter tuning.

Figure 8. The results of each model and metric.

4. Discussion
As the results show in Table 6 and Figure 8, MLP, as the first proposed model among the

above models, has MAE, MSE, MAPE, and R2 values of 3.0191, 16.9058, 0.0202, and 0.9717.
Despite its simplicity—comprising only a few linear layers—MLP achieves reasonable
performance in long-sequence modeling due to its straightforward architecture. And it is
the most time-saving model among them.

BP is currently one of the most widely used neural network models. Its learning
rule is to use the steepest descent method, which continuously adjusts the weights and
thresholds of the network through BP to minimize the sum of squared errors of the network.
Compared to MLP, BP has a better result in our experiments, and the values of the four
metrics are 2.8884, 16.0640, 0.0192, and 0.9731.

Due to the unique design structure, LSTM is suitable for processing and predicting im-
portant events with very long intervals and delays in time series. Compared to the previous
two models, its metrics were significantly better, being 2.6428, 13.2309, 0.0173, and 0.9779.

The hyperparameters of the SNN are chosen according to the following rules: with
twice the number of iterations of ICS-SNN, adjust the hyperparameters based on experi-
ence, and then select the hyperparameter with the smallest metrics. The SNN model with
manually tuned hyperparameters achieves MAE, MSE, MAPE, and R2 values of 2.7351,
13.2958, 0.0184, and 0.9790, respectively. Although LSTM excels in capturing long-term de-
pendencies, the ICS-SNN model surpasses it by leveraging optimized hyperparameters and
temporal dynamics inherent to spiking neurons. The SNN has manually adjusted parame-
ters, which means there is a long and tedious training process. Most numbers in people’s
lives do not exceed two decimal places, so when researchers need to change the hyperpa-
rameter, they prefer to choose integers and numbers with no more than two decimal places.
But the optimal solution is obviously randomly distributed, so there is a long way to
go if we adjust the hyperparameters manually. Without hyperparameter optimization,
SNNs demonstrate inferior performance compared to LSTM, highlighting the necessity of
automated parameter tuning.

In order to see the improvement effect of ICS clearly, we conducted the CS-SNN
experiments at the same time. The values of the four metrics are 2.4709, 11.2242, 0.0163, and

Algorithms 2025, 18, 262 16 of 20

0.9812. The traditional CS algorithm can help the SNN achieve a small improvement. By
automatically transforming hyperparameters, a greater chance of approaching the optimal
solution is obtained.

The piecewise mapping in ICS ensures a more uniform initial population distribution,
reducing the risk of local optima. Additionally, the adaptive discovery probability mimics
natural cuckoo behavior, balancing exploration and exploitation. ICS-SNN obtains values
of the four metrics of 2.3571, 10.4675, 0.0156, and 0.9822. Meanwhile, compared with
SNN, ICS-SNN reduced MAE by 13.82%, MSE by 21.27%, and MAPE by 15.21%, and Rˆ2
increased from 0.9790 to 0.9822. The final hyperparameter values of ICS-SNN, CS-SNN,
and SNN are shown in Table 7. These hyperparameters work together on the results. The
results obtained by individually modifying one parameter and simultaneously modifying
multiple parameters may have significant differences.

Table 7. The final hyperparameter values of ICS-SNN, CS-SNN, and SNN.

Model Name Time Step Neuron Number Batch Size Scaler Scope Decay Rate Threshold

ICS-SNN 11 952 1000 4.4328 0.5078 0.8413

CS-SNN 15 1809 1845 4.4615 0.6208 0.9459

SNN 25 1050 1500 5.0 0.55 1.0

Figure 9 is the pictorial result of 300 data to the reciprocal of actual and predicted
values. It can be clearly seen from the figure that the two lines of ICS-SNN are closer
together, which means its experimental results are the best among the six models.

Considering that the ICS-SNN model enhances its global search capability by intro-
ducing an ICS algorithm and uses RLIF to better process time series data, theoretically the
model should be able to capture short-term market dynamics more effectively. Based on the
1-min K-line data we used, it is expected that the optimal prediction range of ICS-SNN may
be concentrated within a few minutes to a few hours. In terms of long-term forecasting,
although ICS-SNN performs well, the accuracy of predictions may decrease due to the
complex factors affecting the financial market, especially unforeseeable macro events over
a long time span.

Although the ICS-SNN model proposed in this study performed well in experimental
environments, it still faces several challenges when applied in practical financial markets.
Firstly, transaction costs directly affect the profitability of the strategy, especially in high-
frequency trading scenarios where even small costs can accumulate into significant burdens.
Secondly, liquidity constraints in the market may result in some predictions being unable to
be executed, especially on low-liquidity assets. Finally, the issue of market delays cannot be
ignored, as any delay may result in missing the best trading opportunity. Therefore, future
research needs to focus more on how to overcome these practical obstacles to enhance the
practical application value of the model.

Algorithms 2025, 18, 262 17 of 20Algorithms 2025, 18, x FOR PEER REVIEW 18 of 21

Figure 9. Predicted and Actual Price Differences for ICS-SNN and Baseline Models. Figure 9. Predicted and Actual Price Differences for ICS-SNN and Baseline Models.

5. Conclusions
This study proposes an ICS algorithm to help choose proper hyperparameters for

SNNs in time series prediction.
Due to the simple structure, BP and MLP models’ results are the worst relatively. LSTM

performs better than the original SNN, which demonstrates its powerful generalization abil-
ity. But when the hyperparameters are set correctly, the SNN can achieve effects comparable
to LSTM. By changing the population initialization method, and improving the probability
of host birds discovering eggs, we improved the efficiency of the cuckoo search algorithm.

Algorithms 2025, 18, 262 18 of 20

Then, this study also shows that SNNs have great potential in time series forecasting. And
the ICS can help complete parameter selection automatically. The proposed algorithm
significantly reduces researchers’ manual effort while maintaining high prediction accuracy.
Extensive comparative experiments validate that the ICS-SNN model significantly reduces
prediction errors (e.g., MSE) while maintaining computational efficiency.

Author Contributions: Y.D.: Conceptualization; Methodology; Writing—original draft. P.Q.: Funding
acquisition; Methodology. Y.L. (Ya Li): Methodology; Software. Y.L. (Yaxing Liu): Investigation. Z.G.:
Visualization. Z.C.: Resources. H.Q.: Formal analysis. B.Y.: Formal analysis. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Henan Province Key R&D and Promotion Special Project (Soft
Science) (Grant No. 252400410396). Funded by National Natural Science Foundation of China (Grant
No. 62472144). Funded by “Science and Technology Innovation Yongiiang 2035” Maior Application
Demonstration Plan Proiect in Ningbo (Grant No. 2024Z005).

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TSF Financial Time Series Forecasting
ANN Artificial Neural Network
AI Artificial Intelligence
SNN Spiking Neural Network
ICS Improved Cuckoo Search
BP Backpropagation
LSTM Long Short-Term Memory
AR Autoregressive
MA Moving Average
ARIMA Autoregressive Integrated Moving Average
NAR Non-linear Autoregressive
NARX Non-linear Autoregressive with Exogenous Inputs
EEMD Ensemble Empirical Mode Decomposition
LLE Local Linear Embedding Dimensionality Reduction
SVM Support Vector Machine
RF Random Forest
CNN Convolutional Neural Network
RNN Recurrent Neural Network
PSN Polychronous Spiking Network
M-P McCulloch–Pitts
LIF Leaky Integrate and Fire
IF Integrate and Fire
RLIF Recurrent Integrate and Fire
CTP Comprehensive Transaction Platform
RB Rebar
HC Hot Rolled Coil Plate
ADF Augmented Dickey–Fuller
MAE Mean Absolute Error
MSE Mean Squared Error
MAPE Mean Absolute Percentage Error
R2 Coefficient of Determination
MLP Multi-layer Perceptron

Algorithms 2025, 18, 262 19 of 20

References
1. Liu, Q.; Feng, Y.; Xu, M. A new systemically important commodity future index in Chinese market. Appl. Econ. Lett. 2024, 1–9.

[CrossRef]
2. Yule, G.U., VII. On a method of investigating periodicities disturbed series, with special reference to Wolfer’s sunspot numbers.

Philos. Trans. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1927, 226, 267–298.
3. Yu, Z.; Qin, L.; Chen, Y.; Parmar, M.D. Stock price forecasting based on LLE-BP neural network model. Phys. A Stat. Mech. Its

Appl. 2020, 553, 124197. [CrossRef]
4. Luo, Z.; Guo, W.; Liu, Q.; Zhang, Z. A hybrid model for financial time-series forecasting based on mixed methodologies. Expert

Syst. 2021, 38, e12633. [CrossRef]
5. Mikosch, T.; Stărică, C. Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ.

Stat. 2004, 86, 378–390. [CrossRef]
6. Kim, K.-J. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307–319. [CrossRef]
7. Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A comprehensive comparative study of artificial neural network (ANN) and support

vector machines (SVM) on stock forecasting. Ann. Data Sci. 2023, 10, 183–208. [CrossRef]
8. Fan, G.-F.; Zhang, L.-Z.; Yu, M.; Hong, W.-C.; Dong, S.-Q. Applications of random forest in multivariable response surface for

short-term load forecasting. Int. J. Electr. Power Energy Syst. 2022, 139, 108073. [CrossRef]
9. Wang, Z.; Kong, F.; Feng, S.; Wang, M.; Yang, X.; Zhao, H.; Wang, D.; Zhang, Y. Is mamba effective for time series forecasting?

Neurocomputing 2025, 619, 129178. [CrossRef]
10. Tang, H.; Zhang, C.; Jin, M.; Yu, Q.; Wang, Z.; Jin, X.; Zhang, Y.; Du, M. Time series forecasting with llms: Understanding and

enhancing model capabilities. ACM SIGKDD Explor. Newsl. 2025, 26, 109–118. [CrossRef]
11. Cai, W.; Liang, Y.; Liu, X.; Feng, J.; Wu, Y. In Msgnet: Learning multi-scale inter-series correlations for multivariate time series

forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, SinVancouver, Canadagapore, 20–27 February 2024;
pp. 11141–11149.

12. Bengio, Y.; LeCun, Y. Scaling Learning Algorithms Towards AI. Large Scale Kernel Mach. 2007, 34, 1–41.
13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
14. Tsantekidis, A.; Passalis, N.; Tefas, A.; Kanniainen, J.; Gabbouj, M.; Iosifidis, A. In Forecasting stock prices from the limit order

book using convolutional neural networks. In Proceedings of the 2017 IEEE 19th conference on business informatics (CBI),
Thessaloniki, Greece, 24–27 July 2017; IEEE: New York, NY, USA, 2017; pp. 7–12.

15. Hsieh, T.-J.; Hsiao, H.-F.; Yeh, W.-C. Forecasting stock markets using wavelet transforms and recurrent neural networks: An
integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 2011, 11, 2510–2525. [CrossRef]

16. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.
2018, 270, 654–669. [CrossRef]

17. Mateńczuk, K.; Kozina, A.; Markowska, A.; Czerniachowska, K.; Kaczmarczyk, K.; Golec, P.; Hernes, M.; Lutosławski, K.;
Kozierkiewicz, A.; Pietranik, M. Financial time series forecasting: Comparison of traditional and spiking neural networks.
Procedia Comput. Sci. 2021, 192, 5023–5029. [CrossRef]

18. Reid, D.; Hussain, A.J.; Tawfik, H. Financial time series prediction using spiking neural networks. PLoS ONE 2014, 9, e103656.
[CrossRef]

19. AbouHassan, I.; Kasabov, N.K.; Jagtap, V.; Kulkarni, P. Spiking neural networks for predictive and explainable modelling of
multimodal streaming data with a case study on financial time series and online news. Sci. Rep. 2023, 13, 18367. [CrossRef]

20. Maass, W. Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Netw. 1997, 10, 1659–1671.
[CrossRef]

21. Wall, J.A.; McDaid, L.J.; Maguire, L.P.; McGinnity, T.M. Spiking neural network model of sound localization using the interaural
intensity difference. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 574–586. [CrossRef]

22. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press:
Cambridge, UK, 2002.

23. Lapique, L. Researches quantatives sur l’excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Genet.
1907, 9, 620–635.

24. Henkes, A.; Eshraghian, J.K.; Wessels, H. Spiking neural networks for nonlinear regression. R. Soc. Open Sci. 2024, 11, 231606.
[CrossRef] [PubMed]

https://doi.org/10.1080/13504851.2024.2303379
https://doi.org/10.1016/j.physa.2020.124197
https://doi.org/10.1111/exsy.12633
https://doi.org/10.1162/003465304323023886
https://doi.org/10.1016/S0925-2312(03)00372-2
https://doi.org/10.1007/s40745-021-00344-x
https://doi.org/10.1016/j.ijepes.2022.108073
https://doi.org/10.1016/j.neucom.2024.129178
https://doi.org/10.1145/3715073.3715083
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/j.asoc.2010.09.007
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/j.procs.2021.09.280
https://doi.org/10.1371/journal.pone.0103656
https://doi.org/10.1038/s41598-023-42605-0
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/TNNLS.2011.2178317
https://doi.org/10.1098/rsos.231606
https://www.ncbi.nlm.nih.gov/pubmed/38699557

Algorithms 2025, 18, 262 20 of 20

25. Pascanu, R.; Mikolov, T.; Bengio, Y. In on the difficulty of training recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Pmlr: Birmingham, UK, 2013; pp. 1310–1318.

26. Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00521-013-1367-1

	Introduction
	Materials and Methods
	SNN
	ICS
	ICS-SNN
	Data Processing

	Results
	ADF Test
	Test Function
	Metrics
	Comparison Experiment

	Discussion
	Conclusions
	References

