Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = high temperature superconducting (HTS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 178
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

16 pages, 2849 KiB  
Article
A Simulation Model for the Transient Characteristics of No-Insulation Superconducting Coils Based on T–A Formulation
by Zhihao He, Yingzhen Liu, Chenyi Yang, Jiannan Yang, Jing Ou, Chengming Zhang, Ming Yan and Liyi Li
Energies 2025, 18(14), 3669; https://doi.org/10.3390/en18143669 - 11 Jul 2025
Viewed by 343
Abstract
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. [...] Read more.
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. However, the presence of turn-to-turn contact resistance makes current distribution uneven, rendering traditional simulation methods unsuitable. To address this, a finite element method (FEM) based on the T–A formulation is proposed. This model solves coupled equations for the magnetic vector potential (A) and current vector potential (T), incorporating turn-to-turn contact resistance and anisotropic conductivity. The thin-strip approximation simplifies second-generation HTS materials as one-dimensional conductors, and a homogenization technique further reduces computational time by averaging the properties between turns, although it may limit the resolution of localized inter-turn effects. To verify the model’s accuracy, simulation results are compared against the H formulation, distributed circuit network (DCN) model, and experimental data. The proposed T–A model accurately reproduces key transient characteristics, including magnetic field evolution and radial current distribution, in both circular and racetrack NI coils. These results confirm the model’s potential as an efficient and reliable tool for transient electromagnetic analysis of NI–HTS coils. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 995 KiB  
Article
A Quasi-Spherical Fusion Reactor Burning Boron-11 Fuel
by Joel G. Rogers, Andrew A. Egly, Yoon S. Roh, Robert E. Terry and Frank J. Wessel
Plasma 2025, 8(3), 26; https://doi.org/10.3390/plasma8030026 - 30 Jun 2025
Viewed by 372
Abstract
In this study, particle-in-cell (PIC) simulation was used to validate a conceptual design for a quasi-spherical, net power, hydrogen-plus-boron-11-fueled fusion reactor incorporating high-temperature superconducting (HTS) magnets. By burning a fully thermalized plasma, our proposed MET6 reactor uses the principles of the 1980 magneto-electrostatic [...] Read more.
In this study, particle-in-cell (PIC) simulation was used to validate a conceptual design for a quasi-spherical, net power, hydrogen-plus-boron-11-fueled fusion reactor incorporating high-temperature superconducting (HTS) magnets. By burning a fully thermalized plasma, our proposed MET6 reactor uses the principles of the 1980 magneto-electrostatic trap design of Yushmanov to improve the classic Polywell design. Because the input power consumed by the reactor will barely balance the waste bremsstrahlung radiation, future research must focus on reducing the bremsstrahlung losses to reach practical net power levels. The first step to reducing bremsstrahlung, explored in this paper, is to tune the reactor parameters to reduce the energies of trapped electrons. We assume the quality factor Q can be approximated as the ratio of fusion power output divided by bremsstrahlung power loss. Thus, assuming the particles’ power loss is negligible compared to bremsstrahlung power loss, the resulting quality factor is estimated to be Q ≈ 1.3. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

16 pages, 3025 KiB  
Article
A Permanent Magnet Hybrid Levitation Based on High-Temperature Superconducting Magnetic Levitation
by Tianyu Xing, Lingfeng Gao, Peiyu Yin, Can Peng and Zigang Deng
Actuators 2025, 14(6), 285; https://doi.org/10.3390/act14060285 - 10 Jun 2025
Viewed by 505
Abstract
This paper proposes an A-shape hybrid levitation system combining high-temperature superconducting (HTS) maglev and permanent magnet levitation (PML) technologies to address the lateral instability of the PML system. By tilting the PM arrays and HTS bulks on both sides at a specific angle, [...] Read more.
This paper proposes an A-shape hybrid levitation system combining high-temperature superconducting (HTS) maglev and permanent magnet levitation (PML) technologies to address the lateral instability of the PML system. By tilting the PM arrays and HTS bulks on both sides at a specific angle, the system’s cross-section forms an “A” shape. This configuration offers dual advantages: the A-shape PML significantly mitigates unstable lateral deflection forces while preserving levitation capacity, whereas the A-shape HTS maglev enhances guidance force. Through systematic analysis, the effects of the tilt angle and the magnetization direction of the PM arrays on levitation performance are investigated and optimized. The simulation results demonstrate that, at the lateral movement of 5 mm, for the PML system, a tilt angle of 45° reduces lateral deflection force by 94.4%, and synergistic optimization of the tilt angle of 40° and magnetization direction of 38° achieves an 84.6% reduction. The HTS maglev system enhances guidance force, with a 45.3% improvement at a 60° tilt angle and a 30° magnetization direction. This study presents a promising solution for developing a stable, high-load-capacity hybrid levitation system. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

23 pages, 5143 KiB  
Review
Review of Offshore Superconducting Wind Power Generation for Hydrogen Production
by Cheng Zhang, Liufei Shen, Xingzheng Wu, Feiyue Shan, Long Chen, Shuai Liu, Zhiqiang Zheng, Litong Zhu, Jinduo Wang and Yujia Zhai
Energies 2025, 18(8), 1889; https://doi.org/10.3390/en18081889 - 8 Apr 2025
Cited by 1 | Viewed by 732
Abstract
Green hydrogen plays a vital role in facilitating the transition to sustainable energy systems, with stable and high-capacity offshore wind resources serving as an ideal candidate for large-scale green hydrogen production. However, as the capacity of offshore wind turbines continues to grow, the [...] Read more.
Green hydrogen plays a vital role in facilitating the transition to sustainable energy systems, with stable and high-capacity offshore wind resources serving as an ideal candidate for large-scale green hydrogen production. However, as the capacity of offshore wind turbines continues to grow, the increasing size and weight of these systems pose significant challenges for installation and deployment. This study investigates the application of high-temperature superconducting (HTS) materials in the generator and the power conducting cables as a promising solution to these challenges. Compared to conventional wind turbines, HTS wind turbines result in significant reductions in weight and size while simultaneously enhancing power generation and transmission efficiency. This paper conducts a comprehensive review of mainstream electrolysis-based hydrogen production technologies and advanced hydrogen storage methods. The main contribution of this research is the development of an innovative conceptual framework for a superconducting offshore wind-to-hydrogen energy system, where a small amount of liquid hydrogen is used to provide a deep-cooling environment for the HTS wind turbine and the remaining liquid hydrogen is used for the synthesis of ammonia as a final product. Through functional analysis, this study demonstrates its potential for enabling large-scale offshore hydrogen production and storage. Additionally, this paper discusses key challenges associated with real-world implementation, including optimizing the stability of superconducting equipment and ensuring component coordination. The findings offer crucial insights for advancing the offshore green hydrogen sector, showing that HTS technology can significantly enhance the energy efficiency of offshore wind-to-hydrogen systems. This research provides strong technical support for achieving carbon neutrality and fostering sustainable development in the offshore renewable energy sector. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 1810 KiB  
Article
The Application of Transformers with High-Temperature Superconducting Windings Considering the Skin Effect in Mobile Power Supply Systems
by Vadim Manusov, Inga Zicmane, Ratmir Galeev, Svetlana Beryozkina and Murodbek Safaraliev
Mathematics 2025, 13(5), 821; https://doi.org/10.3390/math13050821 - 28 Feb 2025
Viewed by 798
Abstract
The active and passive components of transformer electrical equipment have reached their limits regarding modernization and optimization, leading to the implementation of innovative approaches. This is particularly relevant for mobile and autonomous energy complexes due to the introduction of increased frequency, which can [...] Read more.
The active and passive components of transformer electrical equipment have reached their limits regarding modernization and optimization, leading to the implementation of innovative approaches. This is particularly relevant for mobile and autonomous energy complexes due to the introduction of increased frequency, which can be advantageous, especially in geoengineering, where the energy efficiency of electrical equipment is crucial. The new design of transformer equipment utilizing cryogenic technologies incorporates high-temperature superconducting (HTS) windings, a dielectric filler made of liquid nitrogen, and a three-dimensional magnetic system based on amorphous alloys. The finite element method showed that the skin effect does not impact HTS windings compared to conventional designs when the frequency increases. The analysis and synthesis of the parameters of the magnetic system made from amorphous iron and HTS windings in an HTS transformer with a dielectric medium of liquid nitrogen at a temperature of 77 K were performed, significantly reducing the mass and size characteristics of the HTS transformer compared to traditional counterparts while eliminating environmental and fire hazards. Based on these studies, an experimental prototype of an industrial HTS transformer with a capacity of 25 kVA was designed and manufactured. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

21 pages, 8617 KiB  
Article
Impact of Nanoparticles on Heat Transfer Enhancement and Thermal Performance Improvement in HTS Power Transformers
by Mahdi Mahamed and Seyyedmeysam Seyyedbarzegar
Cryo 2025, 1(1), 2; https://doi.org/10.3390/cryo1010002 - 12 Feb 2025
Cited by 1 | Viewed by 827
Abstract
Despite the numerous benefits of high-temperature superconducting (HTS) power transformers, they are highly sensitive and vulnerable from a thermal perspective, particularly under fault current conditions due to their fault current tolerance properties. Ensuring the proper operation of the cooling system can enhance the [...] Read more.
Despite the numerous benefits of high-temperature superconducting (HTS) power transformers, they are highly sensitive and vulnerable from a thermal perspective, particularly under fault current conditions due to their fault current tolerance properties. Ensuring the proper operation of the cooling system can enhance the transformer’s performance during fault and overload conditions. To improve the thermal management of this transformer in both convective heat transfer and nucleate boiling conditions, utilizing liquid nitrogen (LN2) nanofluid instead of conventional LN2 is a promising solution. In this study, a two-phase Eulerian model using ANSYS Fluent software is employed to analyze the impact of different volume fractions (VFs) of Al2O3 nanoparticles with a 40 nm diameter on the cooling performance of a power HTS transformer. The numerical simulations are conducted using the Ranz–Marshal method for heat transfer and the finite element method for solving the governing equations. Nanoparticle concentrations ranging from 0 to 1% are evaluated under various fault conditions. Additionally, the influence of nanoparticles on bubble behavior is examined, partially mitigating the blockage of cooler microchannels. The simulation reveals that adding nanoparticles to the fluid reduces the temperature of the hotspot by 29% in steady state and by 34–52% under different fault currents as a result of 0–46% enhancement of nucleate boiling heat transfer, thereby improving the cooling efficiency of the transformer. Full article
Show Figures

Figure 1

22 pages, 3244 KiB  
Review
Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters
by Laura Piperno and Giuseppe Celentano
Coatings 2025, 15(1), 45; https://doi.org/10.3390/coatings15010045 - 3 Jan 2025
Viewed by 1001
Abstract
Mechanically flexible substrates are increasingly utilized in electronics and advanced energy technologies like solar cells and high-temperature superconducting coated conductors (HTS-CCs). These substrates offer advantages, such as large surface areas and reduced manufacturing costs through reel-to-reel processing, but often lack the surface smoothness [...] Read more.
Mechanically flexible substrates are increasingly utilized in electronics and advanced energy technologies like solar cells and high-temperature superconducting coated conductors (HTS-CCs). These substrates offer advantages, such as large surface areas and reduced manufacturing costs through reel-to-reel processing, but often lack the surface smoothness needed for optimal performance. For HTS-CCs, specific orientation and high crystalline quality are essential, requiring buffer layers to prepare the amorphous substrate for superconductor deposition. Techniques, such as mechanical polishing, electropolishing, and chemical-mechanical polishing, can help achieve an optimally levelled surface suitable for the subsequent steps of sputtering and ion-beam-assisted deposition (IBAD) necessary for texturing. This review examines Solution Deposition Planarization (SDP) as a cost-effective alternative to traditional electro-mechanical polishing for HTS coated conductors. SDP achieves surface roughness levels below 1 nm through multiple oxide layer coatings, offering reduced production costs. Comparative studies demonstrate planarization efficiencies of up to 20%. Ongoing research aims to enhance SDP’s efficiency for industrial applications in CC production. Full article
Show Figures

Figure 1

11 pages, 2621 KiB  
Article
Comparison of Commercial REBCO Tapes Through Flux Pinning Energy
by Masood Rauf Khan, Antonio Leo, Andrea Masi, Achille Angrisani Armenio, Andrea Augieri, Giuseppe Celentano, Armando Galluzzi, Massimiliano Polichetti, Angela Nigro and Gaia Grimaldi
Crystals 2024, 14(12), 1017; https://doi.org/10.3390/cryst14121017 - 23 Nov 2024
Viewed by 1516
Abstract
This work presents a comparison of different commercial tapes belonging to the second-generation High-Temperature Superconductors (2G HTS) produced by SuNAM Co., Ltd., SuperOx, and Shanghai Superconductors Technology Co., Ltd. (SST) companies. The aim is to investigate pinning mechanisms responsible for best performances, looking [...] Read more.
This work presents a comparison of different commercial tapes belonging to the second-generation High-Temperature Superconductors (2G HTS) produced by SuNAM Co., Ltd., SuperOx, and Shanghai Superconductors Technology Co., Ltd. (SST) companies. The aim is to investigate pinning mechanisms responsible for best performances, looking at the anisotropy of the irreversibility field and of the flux pinning energy. The irreversibility line states the upper limit of current-carrying capacity, whereas the flux pinning energy explores the ability of material defects to act as weak collectively or strong single vortex pinning centers. All investigated samples have artificial pinning centers (APCs) included in the superconducting matrix: BHO-doped EuBCO for SST, Y2O3 in YBCO for SuperOx, and Gd2O3 particles trapped in GdBCO for SuNAM. Resistive transition curves were measured in high magnetic fields up to 16 T for magnetic field orientations parallel and perpendicular to the tape surface. We found that the anistropy of SST tape shows an overall independence both on temperature and magnetic field, while the other two samples show a more complex behavior. This leads to the conclusion that properly engineered APC optimization in coated conductors can further reduce anisotropy of superconducting properties. Full article
(This article belongs to the Special Issue Research on REBCO Films and Conductors)
Show Figures

Figure 1

13 pages, 4545 KiB  
Article
Comparison of Levitation Properties between Bulk High-Temperature Superconductor Blocks and High-Temperature Superconductor Tape Stacks Prepared from Commercial Coated Conductors
by Anke Kirchner, Tilo Espenhahn, Sebastian Klug, Kornelius Nielsch and Ruben Hühne
Materials 2024, 17(18), 4516; https://doi.org/10.3390/ma17184516 - 14 Sep 2024
Cited by 1 | Viewed by 1070
Abstract
Bulk high-temperature superconductors (HTSs) such as REBa2Cu3O7−x (REBCO, RE = Y, Gd) are commonly used in rotationally symmetric superconducting magnetic bearings. However, such bulks have several disadvantages such as brittleness, limited availability and high costs [...] Read more.
Bulk high-temperature superconductors (HTSs) such as REBa2Cu3O7−x (REBCO, RE = Y, Gd) are commonly used in rotationally symmetric superconducting magnetic bearings. However, such bulks have several disadvantages such as brittleness, limited availability and high costs due to the time-consuming and energy-intensive fabrication process. Alternatively, tape stacks of HTS-coated conductors might be used for these devices promising an improved bearing efficiency due to a simplification of manufacturing processes for the required shapes, higher mechanical strength, improved thermal performance, higher availability and therefore potentially reduced costs. Hence, tape stacks with a base area of (12 × 12) mm2 and a height of up to 12 mm were prepared and compared to commercial bulks of the same size. The trapped field measurements at 77 K showed slightly higher values for the tape stacks if compared to bulks with the same size. Afterwards, the maximum levitation forces in zero field (ZFC) and field cooling (FC) modes were measured while approaching a permanent magnet, which allows the stiffness in the vertical and lateral directions to be determined. Similar levitation forces were measured in the vertical direction for bulk samples and tape stacks in ZFC and FC modes, whereas the lateral forces were almost zero for stacks with the REBCO films parallel to the magnet. A 90° rotation of the tape stacks with respect to the magnet results in the opposite behavior, i.e., a high lateral but negligible vertical stiffness. This anisotropy originates from the arrangement of decoupled superconducting layers in the tape stacks. Therefore, a combination of stacks with vertical and lateral alignment is required for stable levitation in a bearing. Full article
(This article belongs to the Special Issue Novel Superconducting Materials and Applications of Superconductivity)
Show Figures

Figure 1

13 pages, 6376 KiB  
Article
High Current Measurement of Commercial REBCO Tapes in Liquid Helium: Experimental Challenges and Solutions
by Andrea Masi, Rosa Freda, Andrea Formichetti, Alberto Greco, Andrea Alimenti, Masood Rauf Khan and Giuseppe Celentano
Appl. Sci. 2024, 14(17), 7697; https://doi.org/10.3390/app14177697 - 31 Aug 2024
Cited by 1 | Viewed by 1492
Abstract
Recent advances in high-temperature superconductors (HTS) have made them extremely attractive for low-temperature, high-magnetic-field-power applications such as in fusion technology, where the advantages over traditional low-temperature superconductors (LTS) allow for the design of fusion reactors operating in different and more convenient regimes. However, [...] Read more.
Recent advances in high-temperature superconductors (HTS) have made them extremely attractive for low-temperature, high-magnetic-field-power applications such as in fusion technology, where the advantages over traditional low-temperature superconductors (LTS) allow for the design of fusion reactors operating in different and more convenient regimes. However, the performance enhancement exhibited by novel conductors poses several challenges for the measurement of their superconducting properties. The high critical currents coupled with the relatively low thermal stability of the conductors and their mechanical fragility render this task a challenge, as the angular anisotropies complicate the experimental setup. In this work, we describe the development of our novel high-current measurement facility, focusing on the solutions introduced regarding critical aspects such as the superconducting leads and the sample holder design. We show how simple but effectively designed solutions can be adopted to combat the complexity of the measurement. The results reported in this work guide the development of a measurement system able to withstand high critical currents (I > 1500 A) at high magnetic fields (µ0H > 12 T) by evaluating the angular response of 4 mm wide short samples (L ~ 7.5 cm) in a robust and reproducible manner. Full article
(This article belongs to the Special Issue Novel Approaches and Challenges in Nuclear Fusion Engineering)
Show Figures

Figure 1

41 pages, 10274 KiB  
Article
Techno-Economic Assessment of Coaxial HTS HVAC Transmission Cables with Critical Current Grading between Phases Using the OSCaR Tool
by Andrea Musso, Lorenzo Cavallucci, Giuliano Angeli, Marco Bocchi, Angelo L’Abbate, Lorenzo Carmine Vitulano, Sebastian Dambone Sessa, Francesco Sanniti and Marco Breschi
Appl. Sci. 2024, 14(17), 7488; https://doi.org/10.3390/app14177488 - 24 Aug 2024
Cited by 1 | Viewed by 1410
Abstract
In recent years, the scientific and industrial interest regarding alternative technologies for transmission cables has increased. These conductors should efficiently transmit significant amounts of power between grid nodes, which are expected to be particularly congested due to the projected global increase in electricity [...] Read more.
In recent years, the scientific and industrial interest regarding alternative technologies for transmission cables has increased. These conductors should efficiently transmit significant amounts of power between grid nodes, which are expected to be particularly congested due to the projected global increase in electricity production. Superconducting cables are considered a promising solution in this context, offering the potential to transmit large amounts of energy with minimal losses and compact dimensions, thereby potentially benefiting the environment. To evaluate the feasibility of integrating superconducting cables into existing grids, techno-economic approaches should be adopted. Such techniques enable the conceptual design of a specific cable structure, allowing users to explore a wide range of operating parameters to derive optimal designs. This paper reports a comprehensive techno-economic analysis of High Voltage Alternating Current (HVAC) cables realized with High-Temperature Superconducting (HTS) tapes, with the aim to transmit extremely high-power level. The optimal coaxial design is selected using Optimization Tool for Superconducting Cable Research (OSCaR) by implementing a graded approach to the critical current of the HTS tapes used for the different phases. This optimization aims to achieve the most effective balance between the cost of the coated conductors and their electrical properties. The whole set of model equations, the user-defined parameters, and the applied constraints are detailed. The OSCaR tool is then applied to assess the impact on the optimized design of the cable system and the corresponding cost indexes of several crucial parameters, such as the maximum transmitted power, the voltage level, and the line length. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

28 pages, 17468 KiB  
Article
Characterisation of Large-Sized REBaCuO Bulks for Application in Flux Modulation Machines
by Quentin Nouailhetas, Yiteng Xing, Rémi Dorget, Walid Dirahoui, Santiago Guijosa, Frederic Trillaud, Jean Lévêque, Jacques Guillaume Noudem, Julien Labbé and Kévin Berger
Materials 2024, 17(15), 3827; https://doi.org/10.3390/ma17153827 - 2 Aug 2024
Cited by 3 | Viewed by 1094
Abstract
High temperature superconductors (HTSs) are enablers of extensive electrification for aircraft propulsion. Indeed, if used in electrical machines, HTS materials can drastically improve their performance in terms of the power-to-weight ratio. Among the different topologies of superconducting electrical machines, a flux modulation machine [...] Read more.
High temperature superconductors (HTSs) are enablers of extensive electrification for aircraft propulsion. Indeed, if used in electrical machines, HTS materials can drastically improve their performance in terms of the power-to-weight ratio. Among the different topologies of superconducting electrical machines, a flux modulation machine based on HTS bulks is of interest for its compactness and light weight. Such a machine is proposed in the FROST (Flux-barrier Rotating Superconducting Topology) project led by Airbus to develop new technologies as part of their decarbonization goals driven by international policies. The rotor of the machine will house large ring-segment-shaped HTS bulks in order to increase the output power. However, the properties of those bulks are scarcely known and have barely been investigated in the literature. In this context, the present work aims to fill out partially this scarcity within the framework of FROST. Thus, a thorough characterisation of the performances and homogeneity of 11 large REBaCuO bulks was carried out. Ten of the bulks are to be utilized in the machine prototype, originally keeping the eleventh bulk as a spare. A first set of characterisation was conducted on the eleven bulks. For this set, the trapped field mapping and the critical current were estimated. Then, a series of in-depth characterisations on the eleventh bulk followed. It included critical current measurement, X-ray diffraction, and scanning electron microscopy on different millimetre-size samples cut out from the bulk at various locations. The X-ray diffraction and scanning electron microscopy showed weakly oxygenated regions inside the bulk explaining the local drop or loss in superconducting properties. The objective was to determine the causes of the inhomogeneities found in the trapped field measured on all the bulks, sacrificing one of them, here the spare one. To help obtain a clearer picture, a numerical model was then elaborated to reproduce the field map of the eleventh bulk using the experimental data obtained from the characterisation of its various small samples. It is concluded that further characterisations, including the statistics on various bulks, are still needed to understand the underlying reasons for inhomogeneity in the trapped field. Nonetheless, all the bulks presented enough current density to be usable in the construction of the proposed machine. Full article
(This article belongs to the Special Issue Characterization and Application of Superconducting Materials)
Show Figures

Figure 1

17 pages, 8524 KiB  
Article
Axial Stiffness Augmentation by Adding Superconductor Bulks or Limiting Permanent Magnet Rings to a Horizontal Axis Zero-Field Cooled High-Tc Radial Passive Superconducting Bearing
by António J. Arsénio Costa, João F. P. Fernandes and Paulo J. Costa Branco
Actuators 2024, 13(6), 196; https://doi.org/10.3390/act13060196 - 21 May 2024
Cited by 1 | Viewed by 1221
Abstract
This paper analyzes the viability of different solutions to passively augment the axial stiffness of a horizontal axis radial levitation passive magnetic bearing (PMB) with a previously studied topology. The zero-field cooling (ZFC) of high-temperature superconductor (HTS) bulks promotes higher magnetic impulsion and [...] Read more.
This paper analyzes the viability of different solutions to passively augment the axial stiffness of a horizontal axis radial levitation passive magnetic bearing (PMB) with a previously studied topology. The zero-field cooling (ZFC) of high-temperature superconductor (HTS) bulks promotes higher magnetic impulsion and levitation forces and lower electromagnetic losses than those with field-cooling (FC) but, on the other hand, the guiding stability is much lower than those with FC. Because of stability reasons, FC was adopted in most superconducting maglev systems. The trend of this research group has been to develop a horizontal axis HTS ZFC radial levitation PMB presenting notable levitation forces with reduced electromagnetic losses, defined by a topology that creates guiding stability. Previous work has shown that optimizing the bearing geometry to maximize magnetic guidance forces might not be enough to guarantee the axial stiffness required for many applications. First, the extent to which guidance forces are augmented by increasing the number of HTS bulks in the stator is evaluated. Then, the axial stiffness augmentation by passively adding two limiting permanent magnet (PM) rings is evaluated. The results show that the axial stiffness is highly augmented by adding limiting PM rings with no significant additional investment. This change enables the use of the studied ZFC superconducting PMB in high-precision axial stability applications, such as precision gyroscopes, horizontal axis propellers, and turbines. Full article
(This article belongs to the Special Issue Advances in High-Precision Magnetic Levitation Actuators)
Show Figures

Figure 1

19 pages, 7993 KiB  
Article
Optimization Study of Cooling Channel for the Oil Cooling Air Gap Armature in a High-Temperature Superconducting Motor
by Shuai Yu, Yong Zhou, Yongmao Wang, Ji Zhang, Qi Dong, Jie Tian, Jing Chen and Feng Leng
Electronics 2024, 13(1), 97; https://doi.org/10.3390/electronics13010097 - 25 Dec 2023
Cited by 5 | Viewed by 1701
Abstract
With the continuous advancement of science and technology, the application of high-temperature superconductivity has developed rapidly. The high-temperature superconducting (HTS) motor replacing the copper coil in the traditional motor with HTS winding is increasingly used in power equipment, and the effective thermal management [...] Read more.
With the continuous advancement of science and technology, the application of high-temperature superconductivity has developed rapidly. The high-temperature superconducting (HTS) motor replacing the copper coil in the traditional motor with HTS winding is increasingly used in power equipment, and the effective thermal management of HTS winding is vital in ensuring the life and effective operation of the HTS motor. In this study, five enhancement structures of indirect oil cooling channels were designed to improve the heat dissipation capacity of the HTS motor winding, and the enhancement effects of the different structures were comprehensively evaluated through numerical simulation using Fluent software 2022R1. The best enhancement structure was selected through structural optimization. The results showed that the Nusselt number of the gap-type enhanced structure was higher than that of the V- and staggered-type structures at the same flow velocity and 68% higher than that of the bare pipe. At the same inlet flow velocity and with a pressure drop limit of 30 kPa, the performance evaluation criterion value of the gap-type structure was 39% and 63% higher than that of the staggered- and V-type structures, respectively. The gap type is the optimal enhancement structure and can effectively improve the heat dissipation of the HTS winding coil. Full article
(This article belongs to the Special Issue Applied Superconductivity in Power Systems)
Show Figures

Figure 1

Back to TopTop