Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = high hypolipidemic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1039 KiB  
Article
Self-Emulsifying Drug Delivery System Enhances the Antidiabetic Activity of Passiflora ligularis Leaf Extract
by Sandra M. Echeverry, Diana P. Rey, Ivonne H. Valderrama, Ingrid A. Rodriguez, Paula M. Sepúlveda, Bibiana Verlindo de Araujo, Fátima Regina Mena Barreto Silva and Diana Marcela Aragón
Pharmaceutics 2025, 17(6), 730; https://doi.org/10.3390/pharmaceutics17060730 - 31 May 2025
Viewed by 570
Abstract
Background/Objectives: Previous studies have shown that unformulated extracts of Passiflora ligularis leaves exhibit promising antidiabetic activity. This research aimed to demonstrate that formulating the extract into a self-emulsifying drug delivery system (PLE-SEDDS) enhanced its antidiabetic activity in a high-fat-diet/streptozotocin-induced diabetic mouse model. Methods [...] Read more.
Background/Objectives: Previous studies have shown that unformulated extracts of Passiflora ligularis leaves exhibit promising antidiabetic activity. This research aimed to demonstrate that formulating the extract into a self-emulsifying drug delivery system (PLE-SEDDS) enhanced its antidiabetic activity in a high-fat-diet/streptozotocin-induced diabetic mouse model. Methods: Blood glucose levels (BGLs) of diabetic mice were monitored during 21 days of oral administration of P. ligularis extract (PLE) and PLE-SEDDS. Control groups included metformin (positive control), vehicle, and SEDDS vehicle (negative controls). The animals underwent an oral glucose tolerance test (OGTT). The oxidative stress markers superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation quantified by malondialdehyde (MDA) levels were measured in the kidney, liver, and pancreas, complemented with histopathological analysis. Additionally, plasma lipid profile parameters were evaluated. Results: The PLE-SEDDS formulation demonstrated superior efficacy compared to the PLE extract in improving antidiabetic outcomes. Animals treated with PLE-SEDDS exhibited a minimal increase in blood glucose levels (11.5%) during the OGTT, compared to 27.4% with PLE and over 77% in the vehicle groups. PLE-SEDDS also showed greater enhancement of SOD and CAT activity, along with a more pronounced reduction in MDA levels, indicating stronger protection against oxidative stress. Histological analysis revealed significant preservation of pancreatic islets, and lipid profile analysis showed greater reductions in triglycerides, cholesterol, and LDL-C, alongside increased HDL-C levels. Conclusions: Altogether, these findings suggest that PLE-SEDDS exhibits superior antihyperglycemic, hypolipidemic, and antioxidant effects compared to the unformulated extract, making this novel formulation a promising option for treating type 2 diabetes mellitus. Full article
Show Figures

Figure 1

30 pages, 37101 KiB  
Review
Harnessing Thalassochemicals: Marine Saponins as Bioactive Agents in Nutraceuticals and Food Technologies
by Vicente Domínguez-Arca, Thomas Hellweg and Luis T. Antelo
Mar. Drugs 2025, 23(6), 227; https://doi.org/10.3390/md23060227 - 26 May 2025
Viewed by 1046
Abstract
The expanding field of nutraceuticals and functional food science is increasingly turning to marine-derived bioactive compounds, particularly saponins, for their diverse pharmacological properties. These so-called thalassochemicals display distinctive structural features—such as sulfated glycosidic moieties and amphiphilic backbones—that underpin potent antitumor, hypolipidemic, antioxidant, and [...] Read more.
The expanding field of nutraceuticals and functional food science is increasingly turning to marine-derived bioactive compounds, particularly saponins, for their diverse pharmacological properties. These so-called thalassochemicals display distinctive structural features—such as sulfated glycosidic moieties and amphiphilic backbones—that underpin potent antitumor, hypolipidemic, antioxidant, and antimicrobial activities. In contrast to their terrestrial analogs, marine saponins remain underexplored, and their complexity poses analytical and functional challenges. This review provides a critical and integrative synthesis of recent advances in the structural elucidation, biological function, and technological application of marine saponins. Special emphasis is placed on the unresolved limitations in their isolation, characterization, and structural validation, including coelution of isomers, adduct formation in MS spectra, and lack of orthogonal techniques such as NMR or FTIR. We illustrate these limitations through original MS/MS data and propose experimental workflows to improve compound purity and identification fidelity. In addition to discussing known structure–activity relationships (SARs) and mechanisms of action, we extend the scope by integrating recent developments in computational modeling, including machine learning, molecular descriptors, and quantitative structure–activity relationship (QSAR) models. These tools offer new avenues for predicting saponin bioactivity, despite current limitations in available high-quality datasets. Furthermore, we include a classification and comparison of steroidal and triterpenoid saponins from marine versus terrestrial sources, complemented by detailed chemical schematics. We also address the impact of processing techniques, delivery systems, and bioavailability enhancements using encapsulation and nanocarriers. Finally, this review contextualizes these findings within the regulatory and sustainability frameworks that shape the future of saponin commercialization. By bridging analytical chemistry, computational biology, and food technology, this work establishes a roadmap for the targeted development of marine saponins as next-generation nutraceuticals and functional food ingredients. Full article
(This article belongs to the Special Issue Marine Nutraceuticals and Functional Foods: 2nd Edition)
Show Figures

Figure 1

30 pages, 7740 KiB  
Article
Protective Effects of Lotus Seedpod Extract on Hepatic Lipid and Glucose Metabolism via AMPK-Associated Mechanisms in a Mouse Model of Metabolic Syndrome and Oleic Acid-Induced HepG2 Cells
by Hui-Hsuan Lin, Pei-Rong Yu, Chiao-Yun Tseng, Ming-Shih Lee and Jing-Hsien Chen
Antioxidants 2025, 14(5), 595; https://doi.org/10.3390/antiox14050595 - 16 May 2025
Viewed by 887
Abstract
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod [...] Read more.
Metabolic syndrome (MetS) poses considerable toxicological risks due to its association with an increased likelihood of metabolic dysfunction-associated steatotic liver disease (MASLD), and is characterized by hypertension, hyperglycemia, dyslipidemia, and obesity. This study aimed to investigate the therapeutic potential of flavonoid-rich lotus seedpod extract (LSE) in alleviating MetS and MASLD-related hepatic disturbances. In vivo, mice subjected to a high-fat diet (HFD) and streptozotocin (STZ) injection were supplemented with LSE or simvastatin for 6 weeks. Obesity indicators included body weight and epididymal fat, while insulin resistance was measured by fasting serum glucose, serum insulin, homeostasis model assessment–insulin resistance index (HOMA-IR), and oral glucose tolerance (OGTT). Also, the levels of serum lipid profiles and blood pressure were evaluated. Adipokines, proinflammatory cytokines, liver fat droplets, and peri-portal fibrosis were analyzed to clarify the mechanism of MetS. LSE significantly reduced the HFD/STZ-induced MetS markers better than simvastatin, as demonstrated by hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory effects. In vitro, LSE improved oleic acid (OA)-triggered phenotypes of MASLD in hepatocyte HepG2 cells by reducing lipid accumulation and enhancing cell viability. This effect might be mediated through proteins involved in lipogenesis that are downregulated by adenosine monophosphate-activated protein kinase (AMPK). In addition, LSE reduced reactive oxygen species (ROS) generation and glycogen levels, as demonstrated by enhancing insulin signaling involving reducing insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation and increasing glycogen synthase kinase 3 beta (GSK3β) and protein kinase B (PKB) expression. These benefits were dependent on AMPK activation, as confirmed by the AMPK inhibitor compound C. These results indicate that LSE exhibits protective effects against MetS-caused toxicological disturbances in hepatic carbohydrate and lipid metabolism, potentially contributing to its efficacy in preventing MASLD or MetS. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Graphical abstract

19 pages, 3961 KiB  
Article
Effects of Different Drying Methods on Structural Characterization, Rheological Properties, Antioxidant and Hypolipidemic Activities of Polysaccharides from Fig (Ficus carica L.)
by Guojian Zhao, Jingya Wu, Mingguan Yang, Jing Liang, Lei Sun, Ming Jia and Rui Sun
Appl. Sci. 2025, 15(8), 4215; https://doi.org/10.3390/app15084215 - 11 Apr 2025
Viewed by 538
Abstract
In this study, figs were dried by hot air drying (HD), vacuum freeze-drying (FD), vacuum drying (VD) and far-infrared drying (FID). Four fig polysaccharides (FPs) were extracted from different dried figs, and the corresponding names were FPH, FPF, FPV and FPFI. The effects [...] Read more.
In this study, figs were dried by hot air drying (HD), vacuum freeze-drying (FD), vacuum drying (VD) and far-infrared drying (FID). Four fig polysaccharides (FPs) were extracted from different dried figs, and the corresponding names were FPH, FPF, FPV and FPFI. The effects of different drying methods on the structural properties, rheological properties and biological activities of FPs were compared. The result shows that the extraction rate of polysaccharides after FD (2.49%) treatment was 58.60%, 50% and 28.35% higher than that of HD (1.57%), VD (1.66%) and FID (1.94%), respectively. Drying methods result in varying molar ratios of monosaccharides. FPFI has more stable gel properties. HD, VD and FID caused damage to the surface structure of the polysaccharides. FPF exhibited the highest uronic acid content (25.56%), along with relatively low apparent viscosity and molecular weight (1.45 × 105 Da), which contributed to its superior antioxidant and lipid-lowering activities. Therefore, FD is a drying method to obtain fig polysaccharide with high antioxidant and hypolipidemic activity. The results provided a scientific basis for the drying process of fig polysaccharide and a reference for the development of potential hypolipidemic products of fig polysaccharide. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

23 pages, 4289 KiB  
Article
Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms
by Mohammadine Moumou, Imane Mokhtari, Mohamed Harnafi, Mohammed Alrugaibah, Thamer Aljutaily, Hend F. Alharbi, Abdulmalik Alhuwaymil, Abdulkarim S. Almutairi, Hassan Barakat, Dragan Milenkovic, Souliman Amrani and Hicham Harnafi
Metabolites 2025, 15(4), 234; https://doi.org/10.3390/metabo15040234 - 28 Mar 2025
Viewed by 620
Abstract
Background/Objectives: Argania spinosa L. Skeels is a Moroccan endemic plant widely used by the local population as folk medicine. This study aimed to investigate the effects of Argan fruit pulp on lipid metabolism disorders and liver steatosis in hypercaloric diet-fed mice. Methods: [...] Read more.
Background/Objectives: Argania spinosa L. Skeels is a Moroccan endemic plant widely used by the local population as folk medicine. This study aimed to investigate the effects of Argan fruit pulp on lipid metabolism disorders and liver steatosis in hypercaloric diet-fed mice. Methods: Animals were treated with the Argan fruit pulp extract and its fractions for 12 weeks at 100 and 200 mg Kg−1 BW daily. The analysis was conducted on lipid levels in plasma, liver, feces, and bile as well as on glycemia. The liver glutathione, malondialdehyde, and antioxidant enzyme activities were assessed. The hepatic steatosis was evaluated by measuring transaminases and alkaline phosphatase activities and examining histological sections. The polyphenol profiles were determined using HPLC-DAD. Possible underlying mechanisms in the hypolipidemic and hepatoprotective activities were predicted by molecular docking. Results: The crude extract and its aqueous fraction (rich in protocatechuic and gallic acids) significantly restored plasma lipids and glucose levels. Indeed, total cholesterol level (TCHO) was decreased in the liver but increased in bile and feces. The treatment also reduced body weight and liver and adipose tissue mass and prevented liver steatosis. The ethyl acetate fraction exhibited no effect on lipid metabolism but significantly prevented liver oxidative stress. The crude extract and its fractions appear to be nontoxic (LD50 > 5000 mg Kg−1) in mice. The phenolic acids demonstrated strong binding affinity to key targets involved in regulating lipid homeostasis, including ABCA-1, LXR, CYP7A1, HMH-CoA reductase, and PCSK-9. However, the identified flavonoids exhibited high affinities to targets involved in oxidative stress defense (SOD, CAT, and CYP2E1). Conclusions: The Argan fruit pulp, particularly its polyphenols, could be a promising natural approach for preventing cardio-metabolic diseases by improving lipid metabolism and reducing liver oxidative stress. Full article
Show Figures

Graphical abstract

12 pages, 2306 KiB  
Article
A Comprehensive Investigation of Lipid Profile During the Solid-State Fermentation of Rice by Monascus purpureus
by Lan Lan, Yimin Cao, Jiajia Yuan, Rui Feng, Huiqin Pan, Xiuhong Mao, Shen Ji, Qing Hu and Heng Zhou
Foods 2025, 14(3), 537; https://doi.org/10.3390/foods14030537 - 6 Feb 2025
Cited by 2 | Viewed by 975
Abstract
Red yeast rice is a nutraceutical fermented product used worldwide for the symptomatic relief of dyslipidemia and cardiovascular disease. However, the fermentation-induced lipid transformation from rice to red yeast rice remains unclear. Herein, an ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass [...] Read more.
Red yeast rice is a nutraceutical fermented product used worldwide for the symptomatic relief of dyslipidemia and cardiovascular disease. However, the fermentation-induced lipid transformation from rice to red yeast rice remains unclear. Herein, an ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry method was developed for the comprehensive lipid analysis during fermentation. A total of 246 lipids fall in 21 subclasses were annotated in rice and red yeast rice, including 37 lysophospholipids, 14 phospholipids, 29 diglycerides, 114 triglycerides and fatty acid (15 species), ceramide (12 species), hexosylceramide (3 species), sitosterol ester (2 species), monogalactosyldiacylglycerol (2 species), digalactosyldiacylglycerol (2 species), monogalactosylmonoacylglycerol (8 species), digalactosylmonoacylglycerol (5 species), coenzyme Q (1 species), acyl hexosyl campesterol ester (1 species), and acylcarnitine (1 species). Results showed that lipid profiles changed, and new lipid species emerged. Notably, 18 medium- and long-chain triacylglycerols and triacylglycerols with short-chains were tentatively identified. These triacylglycerols also show the effects of body fat accumulation reduction, and hypolipidemic and hypoglycemic activities. Furthermore, lipid species that were profoundly changed were quantified, and the dynamic changes were investigated. This study clarified the molecular species and compositional changes in fermented rice from lipid aspect. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 17385 KiB  
Article
Tremella fuciformis Berk Alleviated Atherosclerosis Symptoms via Nuclear Factor-Kappa B-Mediated Inflammatory Response in ApoE−/− Mice
by Yihao Dong, Qinchun Zhang, Rui Xie, Jundi Zhao, Zhihua Han, Yu Li, Han Yu and Yongfeng Zhang
Nutrients 2025, 17(1), 160; https://doi.org/10.3390/nu17010160 - 31 Dec 2024
Cited by 2 | Viewed by 1261
Abstract
Background: Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Tremella fuciformis Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. [...] Read more.
Background: Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Tremella fuciformis Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. Nevertheless, the potential effects of T. fuciformis on atherosclerosis have not been systematically reported. Method: In this study, ApoE−/− mice were employed as models of atherosclerosis caused by a high-fat diet (HFD) to investigate the effect of T. fuciformis. Gut microbiota and serum metabolism analysis were performed to elucidate the potential mechanism of T. fuciformis for its anti-atherosclerosis effects. Results: T. fuciformis significantly decreased the aortic root wall thickness and the area of lipid droplets, regulated lipid levels, and inhibited fat accumulation to improve aortic root lesions. Furthermore, T. fuciformis significantly altered serum metabolite (including diethyl phthalate and succinate) levels, regulated the abundance of microbiota, such as Coriobacteriaceae_UCG-002 and Alistipes, and suppressed the inflammatory response to ameliorate atherosclerosis via the nuclear factor-kappa B (NF-κB)-mediated inflammatory response in HFD-induced ApoE−/− mice. Conclusions: These results offer a theoretical basis and data to support T. fuciformis as a potential strategy for treating atherosclerosis. Full article
(This article belongs to the Special Issue Functional Evaluation of Edible Mushrooms and Their Active Materials)
Show Figures

Figure 1

18 pages, 3020 KiB  
Article
Metabolomics Characterization of Chemical Composition and Bioactivity of Highland Barley Monascus Tea Decoction Before and After Simulated Digestion In Vitro
by Haiyu Wu, Bin Dang, Wengang Zhang, Jie Zhang, Wancai Zheng, Jing Hao, Ping Ma and Xijuan Yang
Foods 2024, 13(23), 3950; https://doi.org/10.3390/foods13233950 - 6 Dec 2024
Cited by 1 | Viewed by 1181
Abstract
A broadly targeted metabolomics approach based on UPLC-MS/MS was employed to investigate the changes in chemical composition and in vitro activity of highland barley Monascus tea decoction before and after simulated digestion. The characteristic metabolites of the tea decoction before and after in [...] Read more.
A broadly targeted metabolomics approach based on UPLC-MS/MS was employed to investigate the changes in chemical composition and in vitro activity of highland barley Monascus tea decoction before and after simulated digestion. The characteristic metabolites of the tea decoction before and after in vitro-simulated digestion were identified, and the in vitro antioxidant and enzyme inhibitory activities of the tea decoction were further analyzed. The study detected 1431 metabolites, including amino acids and their derivatives, alkaloids, organic acids, nucleotides and their derivatives, lipids, terpenoids, and phenolic acids. A total of 136 differential compounds were identified, primarily distributed in amino acids and their derivatives, alkaloids, organic acids, phenolics, and lipids. in vitro-simulated digestion significantly increased the content of amino acids, alkaloids, lipids, and phenolics in the tea. The differential metabolic compounds were primarily assigned to 20 metabolic pathways, mainly involving the metabolism of amino acids, nucleotides, carbohydrates, fatty acids, and other compounds. Additionally, after simulated digestion in vitro, the comprehensive antioxidant index (60.53%), α-glucosidase inhibitory activity (54.35%), and pancreatic lipase inhibitory activity (4.06%) was significantly improved. The highland barley Monascus tea decoction showed potential hypoglycemic and hypolipidemic efficacy. This study can provide a theoretical basis for the high-value utilization of highland barley and the development of healthy grain tea. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

17 pages, 4370 KiB  
Article
Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion
by Chao Ma, Liying Ni, Mengxue Sun, Fuxia Hu, Zebin Guo, Hongliang Zeng, Wenlong Sun, Ming Zhang, Maoyu Wu and Baodong Zheng
Foods 2024, 13(22), 3621; https://doi.org/10.3390/foods13223621 - 13 Nov 2024
Viewed by 1238
Abstract
Flammulina velutipes is an edible mushroom widely cultivated in China. As a by-product of Flammulina velutipes, the roots are rich in high-quality dietary fiber (DF). In order to obtain high-quality soluble dietary fiber (SDF), steam explosion (SE) is used as an effective [...] Read more.
Flammulina velutipes is an edible mushroom widely cultivated in China. As a by-product of Flammulina velutipes, the roots are rich in high-quality dietary fiber (DF). In order to obtain high-quality soluble dietary fiber (SDF), steam explosion (SE) is used as an effective modification method to improve the extraction rate and avoid the loss of active substances. Mounting evidence shows that SDF alleviates lipid metabolism disorders. However, it is not well understood how the influence of SDF with SE pretreatment could benefit lipid metabolism. In this study, we extracted a soluble dietary fiber from Flammulina velutipes root with an SE treatment, named SE-SDF, using enzymatic assisted extraction. The physicochemical and structural properties of the SE-SDF were investigated, and its hypolipidemic effects were also analyzed using oleic-acid-induced HepG2 cells. In addition, the anti-obesity and hypolipidemic effects of SE-SDF were investigated using a high-fat diet (HFD) mouse model. The results indicate that SE treatment (1.0 MPa, 105 s) increased the SDF content to 8.73 ± 0.23%. The SE-SDF was primarily composed of glucose, galactose, and mannose. In HFD-fed mice, SE-SDF significantly reduced weight gain and improved lipid profiles, while restoring liver function and reducing injury. This work provides an effective method for the processing of fungi waste and adds to its economic value. In future studies, the structural characteristics and the anti-obesity and gut microbiota regulation mechanisms of SE-SDF will be explored in depth, supporting its high-value utilization in healthcare products. Full article
Show Figures

Graphical abstract

20 pages, 1933 KiB  
Article
Polyphenols Investigation and Antioxidant and Anticholinesterase Activities of Rosmarinus officinalis L. Species from Southwest Romania Flora
by Ludovic Everard Bejenaru, Andrei Biţă, George Dan Mogoşanu, Adina-Elena Segneanu, Antonia Radu, Maria Viorica Ciocîlteu and Cornelia Bejenaru
Molecules 2024, 29(18), 4438; https://doi.org/10.3390/molecules29184438 - 18 Sep 2024
Cited by 6 | Viewed by 2021
Abstract
Rosemary is one of the most important medicinal plants for natural therapy due to its multiple pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, antiproliferative, antitumor, hepato- and nephroprotective, hypolipidemic, hypocholesterolemic, antihypertensive, anti-ischemic, hypoglycemic, radioprotective, antimicrobial, antiviral, antiallergic, and wound healing properties. Our study [...] Read more.
Rosemary is one of the most important medicinal plants for natural therapy due to its multiple pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, antiproliferative, antitumor, hepato- and nephroprotective, hypolipidemic, hypocholesterolemic, antihypertensive, anti-ischemic, hypoglycemic, radioprotective, antimicrobial, antiviral, antiallergic, and wound healing properties. Our study reports for the first time, over a 12-month period, the identification and quantification of polyphenols and the investigation of the antioxidant and acetylcholinesterase (AChE) inhibitory activities of the Rosmarinus officinalis L. species harvested at flowering from the flora of southwestern Romania (Oltenia Region). Identification and quantification of polyphenolic acids was made by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). Total phenolic content was determined using the spectrophotometric method. In situ antioxidant and anticholinesterase activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and AChE inhibitory assay, respectively, on high-performance thin-layer chromatography (HPTLC) plates. DPPH radical scavenging activity was also assessed spectrophotometrically. The results revealed significant correlations between specific polyphenolic compounds and the measured biological activities, understanding the role of seasonal variations and providing insights into the optimal harvesting times and medicinal benefits of rosemary. Our research brings new information on the phytochemical profile of R. officinalis as a natural source of polyphenols with antioxidant and AChE inhibitory properties. Full article
Show Figures

Figure 1

22 pages, 2055 KiB  
Article
Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects
by Nuha Saad Alshareef, Sahar Abdulaziz AlSedairy, Laila Naif Al-Harbi, Ghedeir M. Alshammari and Mohammed Abdo Yahya
Antioxidants 2024, 13(9), 1098; https://doi.org/10.3390/antiox13091098 - 10 Sep 2024
Cited by 6 | Viewed by 2457
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats [...] Read more.
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects. Full article
(This article belongs to the Special Issue Natural Antioxidants and Metabolic Diseases)
Show Figures

Figure 1

43 pages, 34906 KiB  
Article
Impacts of Plu kaow (Houttuynia cordata Thunb.) Ethanolic Extract on Diabetes and Dyslipidemia in STZ Induced Diabetic Rats: Phytochemical Profiling, Cheminformatics Analyses, and Molecular Docking Studies
by Shaikh Shahinur Rahman, Anuwatchakij Klamrak, Napapuch Nopkuesuk, Jaran Nabnueangsap, Piyapon Janpan, Kiattawee Choowongkomon, Jureerut Daduang and Sakda Daduang
Antioxidants 2024, 13(9), 1064; https://doi.org/10.3390/antiox13091064 - 30 Aug 2024
Cited by 5 | Viewed by 2563
Abstract
The increasing prevalence of diabetes and dyslipidemia poses significant health challenges, impacting millions of people globally and leading to high rates of illness and death. This study aimed to explore the potential antidiabetic and hypolipidemic effects of Plu kaow (Houttuynia cordata Thunb.) [...] Read more.
The increasing prevalence of diabetes and dyslipidemia poses significant health challenges, impacting millions of people globally and leading to high rates of illness and death. This study aimed to explore the potential antidiabetic and hypolipidemic effects of Plu kaow (Houttuynia cordata Thunb.) ethanolic extract (PK) in streptozotocin (STZ) induced diabetic rats, focusing on its molecular mechanisms. Diabetes was induced in fasting Long Evans rats using streptozotocin (65 mg/kg b. w.), with glibenclamide (5 mg/kg/day) used as the standard experimental drug. The treated groups received oral supplementation of PK (500 mg/kg/day) for 28 days. The study evaluated blood glucose levels, lipid status, body weight, liver, kidney, and heart function biomarkers, antioxidant activity, and histological examination of various organs. Additionally, untargeted metabolomics, cheminformatics, and molecular docking were employed to elucidate the probable mechanisms of action of PK. Based on metabolomic profiling data, the PK was found to contain various putative antidiabetic agents such as kaempferol 7-neohesperidoside, isochlorogenic acid C, rutin, datiscin, and diosmin and they have been proposed to significantly (p < 0.001) reduce blood glucose levels and modulated hyperlipidemia. PK also improved the tested liver, kidney, and heart function biomarkers and reversed damage to normal pancreatic, liver, kidney, and heart cells in histological analysis. In conclusion, PK shows promise as a potential treatment or management option for diabetes and hyperlipidemia, as well as their associated complications in diabetic rats. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

20 pages, 6224 KiB  
Article
Polysaccharides from Trametes versicolor as a Potential Prebiotic to Improve the Gut Microbiota in High-Fat Diet Mice
by Ming Bai, Zhenfeng Huang, Xiaoya Zheng, Mingyong Hou and Song Zhang
Microorganisms 2024, 12(8), 1654; https://doi.org/10.3390/microorganisms12081654 - 13 Aug 2024
Viewed by 2265
Abstract
Polysaccharides derived from Trametes versicolor have been found to exhibit hypolipidemic activity in hyperlipidemic mice, but the mechanism by which they modulate intestinal flora is still unclear. Currently, this study aimed to investigate the regulatory effects of extracellular (EPTV) and intracellular polysaccharides from [...] Read more.
Polysaccharides derived from Trametes versicolor have been found to exhibit hypolipidemic activity in hyperlipidemic mice, but the mechanism by which they modulate intestinal flora is still unclear. Currently, this study aimed to investigate the regulatory effects of extracellular (EPTV) and intracellular polysaccharides from T. versicolor (IPTV) on the dysbiosis of intestinal flora in mice fed a high-fat diet (HFD). The results showed that the oral administration of T. versicolor polysaccharides significantly ameliorated lipid accumulation and steatosis in hepatocytes. The gut dysbiosis in the HFD mice was characterized by a decrease in abundance and diversity of bacteria and an increase in the Firmicutes/Bacteroidetes ratio. However, T. versicolor polysaccharides attenuated these changes and reduced the relative abundance of bile-salt-hydrolase (BSH)-producing bacteria, such as Bacillus, Enterococcus, Bifidobacterium, and Lactococcus. It is noteworthy that T. versicolor polysaccharides also restored the disorganization of intestinal fungi in HFD mice, with EPTV treatment leading to a higher relative abundance of Basidiomycota and Ascomycota compared to IPTV. Additionally, T. versicolor polysaccharides enhanced the growth of butyrate-producing bacteria via the buk and but pathways, accompanied by an increase in short-chain fatty acids (SCFAs), especially butyrate. IPTV also increased the expression of G-protein-coupled receptors 41 (GPR41) and 43 (GPR43) by 40.52% and 113.24% each, as compared to 62.42% and 110.28%, respectively, for EPTV. It is suggested that IPTV and EPTV have the potential to counteract hyperlipidemia-associated intestinal flora disorders and improve lipid metabolism. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Graphical abstract

15 pages, 2712 KiB  
Article
Light and Nutrient Conditions Influence Fucoxanthin Production of the Microalgae Cyclotella meneghiniana
by Santhoshkumar Chinnappan, Jingting Cai, Yanfei Li, Zhenxiong Yang, Yangjie Sheng, Keying Cheng, Hong Du, Wenhua Liu and Ping Li
Appl. Sci. 2024, 14(13), 5504; https://doi.org/10.3390/app14135504 - 25 Jun 2024
Cited by 1 | Viewed by 1942
Abstract
Fucoxanthin has attracted the attention of scholars because of its health benefits in terms of anticancer, weight loss, antidiabetic, hypolipidemic, and antioxidant functions. Researchers have found that the fucoxanthin content of microalgae was higher than that of macroalgae. Therefore, the microalgae Cyclotella meneghiniana [...] Read more.
Fucoxanthin has attracted the attention of scholars because of its health benefits in terms of anticancer, weight loss, antidiabetic, hypolipidemic, and antioxidant functions. Researchers have found that the fucoxanthin content of microalgae was higher than that of macroalgae. Therefore, the microalgae Cyclotella meneghiniana was isolated and maintained under varying light and modified nutrient conditions. The results of this study showed that Cyclotella meneghiniana had better photosynthetic activity and higher biomass under low light. Both high trace elements and high nitrogen promoted the accumulation of fucoxanthin in Cyclotella meneghiniana. Low light levels and high trace metal contents enhanced the fucoxanthin production (7.76 ± 0.30 mg g−1 DW). The results of the current study will help to enhance fucoxanthin production for commercialization. Full article
(This article belongs to the Special Issue Microalgae: Physiology, Biotechnology, and Industrial Applications)
Show Figures

Figure 1

14 pages, 2167 KiB  
Article
Antidiabetic Effect of Passiflora ligularis Leaves in High Fat-Diet/Streptozotocin-Induced Diabetic Mice
by Diana P. Rey, Sandra M. Echeverry, Ivonne H. Valderrama, Ingrid A. Rodriguez, Luis F. Ospina, Fatima Regina Mena Barreto Silva and Marcela Aragón
Nutrients 2024, 16(11), 1669; https://doi.org/10.3390/nu16111669 - 29 May 2024
Cited by 3 | Viewed by 2094
Abstract
Type 2 diabetes mellitus (T2DM) is a major global public health concern, prompting the ongoing search for new treatment options. Medicinal plants have emerged as one such alternative. Our objective was to evaluate the antidiabetic effect of an extract from the leaves of [...] Read more.
Type 2 diabetes mellitus (T2DM) is a major global public health concern, prompting the ongoing search for new treatment options. Medicinal plants have emerged as one such alternative. Our objective was to evaluate the antidiabetic effect of an extract from the leaves of Passiflora ligularis (P. ligularis). For this purpose, T2DM was first induced in mice using a high-fat diet and low doses of streptozotocin. Subsequently, an aqueous extract or an ethanolic extract of P. ligularis leaves was administered for 21 days. The following relevant results were found: fasting blood glucose levels were reduced by up to 41%, and by 29% after an oral glucose overload. The homeostasis model assessment of insulin resistance (HOMA-IR) was reduced by 59%. Histopathologically, better preservation of pancreatic tissue was observed. Regarding oxidative stress parameters, there was an increase of up to 48% in superoxide dismutase (SOD), an increase in catalase (CAT) activity by 35% to 80%, and a decrease in lipid peroxidation (MDA) by 35% to 80% in the liver, kidney, or pancreas. Lastly, regarding the lipid profile, triglycerides (TG) were reduced by up to 30%, total cholesterol (TC) by 35%, and low-density lipoproteins (LDL) by up to 32%, while treatments increased high-density lipoproteins (HDL) by up to 35%. With all the above, we can conclude that P. ligularis leaves showed antihyperglycemic, hypolipidemic, and antioxidant effects, making this species promising for the treatment of T2DM. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

Back to TopTop