Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = high heating value (HHV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 452 KiB  
Article
Energy Assessment of Hazelnut Shells (Corylus avellana L.) of Selected Turkish Varieties
by Kamila E. Klimek, Saban Kordali, Anna Borkowska, Ferah Yilmaz and Grzegorz Maj
Energies 2025, 18(14), 3612; https://doi.org/10.3390/en18143612 - 8 Jul 2025
Viewed by 376
Abstract
The purpose of this study was to evaluate the energy and environmental potential of waste biomass in the form of hazelnut shells from selected Turkish varieties of Corylus avellana L. Eight commercial varieties (Çakıldak, Foşa, İnce Kara, Kalın Kara, Palaz, Tombul, Yassı Badem [...] Read more.
The purpose of this study was to evaluate the energy and environmental potential of waste biomass in the form of hazelnut shells from selected Turkish varieties of Corylus avellana L. Eight commercial varieties (Çakıldak, Foşa, İnce Kara, Kalın Kara, Palaz, Tombul, Yassı Badem and Yuvarlak Badem) grown in different regions of the Black Sea coast of Turkey were analyzed. The scope of this study included whole nut and shell weight determination, technical and elemental analysis, higher heating value (HHV) and lower net heating value (LHV), as well as emission factors (CO, CO2, NOx, SO2, dust) and flue gas composition based on stoichiometric calculations. The results showed a significant effect of varietal characteristics on all analyzed parameters. The share of shell in the total weight of the nut ranged from 43.5% (Tombul) to 55.3% (İnce Kara). HHV values ranged from 18.37 to 19.20 MJ·kg−1, and LHV from 17.05 to 17.90 MJ·kg−1. The İnce Kara and Yassı Badem varieties showed the most favorable energy properties. Elemental analysis confirmed a low nitrogen and sulfur content, which translated into low NOx and SO2 emissions. NOx emissions were lowest for the Tombul variety (1.43 kg·Mg−1), and SO2 emissions were close to zero in each variety. The results confirm that Turkish hazelnut shells are a valuable energy resource and can be used as solid fuel or supplementary biomass. In particular, the İnce Kara variety was identified as the most promising due to its high shell weight, very good fuel properties, and high yield potential. This study underscores the importance of selecting the right variety to optimize agricultural waste utilization strategies within a circular economy. Full article
Show Figures

Figure 1

21 pages, 2985 KiB  
Article
Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest
by Florian Empl, Miriam Schatzl, Sonja Kleucker, Alexandre Techy de Almeida Garrett, Fernando Augusto Ferraz, Luiz Henrique Natalli, Dimas Agostinho da Silva, Eduardo da Silva Lopes, Afonso Figueiredo Filho and Stefan Pelz
Forests 2025, 16(7), 1077; https://doi.org/10.3390/f16071077 - 27 Jun 2025
Viewed by 366
Abstract
The Mixed Ombrophyllous Forest (MOF), inserted in the Atlantic Forest biome, is of great ecological value, with deficient management strategies. In this context, sustainable management helps to promote the regeneration and growth of individual trees and control others, while maintaining the natural forest [...] Read more.
The Mixed Ombrophyllous Forest (MOF), inserted in the Atlantic Forest biome, is of great ecological value, with deficient management strategies. In this context, sustainable management helps to promote the regeneration and growth of individual trees and control others, while maintaining the natural forest structure. This study therefore aimed to discuss opportunities and limitations of biochar, produced from two species from the MOF, which are currently only utilized to a limited extent in the study area in southern Brazil. A slow pyrolysis process at a lab scale was designed, biochar was produced, and key properties were analyzed from Hovenia dulcis Thunb. (chosen as an invasive species) and Mimosa scabrella Benth. (chosen as a native, fast-growing species), including branches and stems. The results showed that branches of Mimosa scabrella (BMS) had the highest biochar yield (30.32 ± 0.3%) and the highest electrical conductivity (415.08 ± 24.75 mS cm−1). Stems of Mimosa scabrella (SMS) showed the highest higher heating value (HHV—31.76 ± 0.01 MJ kg−1), lower heating value (LHV—31.03 ± 0.01 MJ kg−1), and energy yield (49.1%), while the branches of Hovenia dulcis (BHD) showed the lowest values. For the elemental analysis, SMS showed the best results, with the highest amount of fixed carbon (78.62 ± 0.22%) and carbon content (85.87 ± 0.083%), and consequently the lowest amount of ash (3.52 ± 0.08%). BHD showed a better water-holding capacity (303.26 ± 15.21%) and higher pH value (7.65 ± 0.14). The investigations conducted on the biochar from both species indicate a strong suitability of these woods for producing high-quality biochar. Full article
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Characterization, Combustion Behaviour, and Kinetic and Thermodynamic Modelling of Mango Peel as a Potential Biomass Feedstock
by Mohamed Anwar Ismail, Ibrahim Dubdub, Suleiman Mousa, Zaid Abdulhamid Alhulaybi Albin Zaid and Majdi Ameen Alfaiad
Polymers 2025, 17(13), 1799; https://doi.org/10.3390/polym17131799 - 27 Jun 2025
Viewed by 349
Abstract
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted [...] Read more.
Mango peel (MP), an abundant agro-industrial residue, was evaluated as a solid biofuel using combined physicochemical characterisation and non-isothermal thermogravimetric kinetics (TGA). Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed hydroxyl-rich surfaces and porous microstructures. Thermogravimetric combustion, conducted at heating rates of 20–80 K min−1, displayed three distinct stages. These stages correspond to dehydration (330–460 K), hemicellulose/cellulose oxidation (420–590 K), and cellulose/lignin oxidation (540–710 K). Kinetic analysis using six model-free methods (Friedman (FR), Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY)) yielded activation energies (Ea) of 52–197 kJ mol−1, increasing with conversion (mean Ea ≈ 111 kJ mol−1). Coats–Redfern (CR) fitting confirmed a three-dimensional diffusion mechanism (D3, R2 > 0.99). Thermodynamic analysis revealed that the formation of the activated complex is endothermic, with activation enthalpy (ΔH) values of 45–285 kJ mol−1. The process was found to be non-spontaneous under the studied conditions, with Gibbs free energy (ΔG) values ranging from 83 to 182 kJ mol−1. With a high heating value (HHV) of 21.9 MJ kg−1 and favourable combustion kinetics, MP is a promising supplementary fuel for industrial biomass boilers. However, its high potassium oxide (K2O) content requires dedicated ash management strategies to mitigate slagging risks, a key consideration for its practical, large-scale application. Full article
(This article belongs to the Special Issue Advances in Cellulose and Wood-Based Composites)
Show Figures

Figure 1

18 pages, 2479 KiB  
Article
Material Properties Changes Caused by High Temperature Drying—Corn Cobs Case Study
by Marek Wróbel, Marcin Jewiarz, Jozef Krilek and Luiza Dmochowska-Kuc
Materials 2025, 18(10), 2302; https://doi.org/10.3390/ma18102302 - 15 May 2025
Cited by 1 | Viewed by 551
Abstract
Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it [...] Read more.
Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it is important to keep the lignin intact. It is responsible for particle adhesion. This paper presents a study focused on high-temperature drying of maize cobs. The process temperatures were selected from a range between 60 and 220 °C. The upper temperature limit prevents significant lignin breakdown. We also do not exceed the self-ignition temperature of the raw material. The study analyzed changes in basic technical parameters. These include moisture content, ash content, volatile matter, and HHV. We tested the grinding and densification process. We measured the raw material’s particle size distribution (PSD), specific density, and the mechanical durability (DU) of the agglomerates. The study showed a positive effect of high-temperature drying on the technical parameters. We found that the drying of corn cobs at a temperature of 180 °C gives the best results. Both PSD and DU values indicate that it is possible to create quality compacted biofuels from this material. Full article
(This article belongs to the Special Issue Innovative Utilization of Biomass for Sustainable Energy Production)
Show Figures

Graphical abstract

23 pages, 5766 KiB  
Article
Modeling of Global and Individual Kinetic Parameters in Wheat Straw Torrefaction: Particle Swarm Optimization and Its Impact on Elemental Composition Prediction
by Ismael Urbina-Salas, David Granados-Lieberman, Martín Valtierra-Rodríguez, Claudia Adriana Ramírez-Valdespino and David Aarón Rodríguez-Alejandro
Algorithms 2025, 18(5), 283; https://doi.org/10.3390/a18050283 - 13 May 2025
Viewed by 463
Abstract
With the growing demand for sustainable energy solutions, biomass torrefaction has emerged as a crucial technology for converting agricultural waste into high-value biofuels. This work develops dual kinetic modeling using global and individual parameters combined using particle swarm optimization (PSO) to predict energy [...] Read more.
With the growing demand for sustainable energy solutions, biomass torrefaction has emerged as a crucial technology for converting agricultural waste into high-value biofuels. This work develops dual kinetic modeling using global and individual parameters combined using particle swarm optimization (PSO) to predict energy densification based on elemental composition (CHNO) and high heating values (HHVs). The global parameters are calculated from experiments conducted at 250 °C, 275 °C, and 300 °C, and the individual parameters are obtained by adjusting experimental points at each temperature. A two-step kinetic model was used and optimized to achieve exceptional adjustment accuracy (98.073–99.999%). The experiments were carried out in an inert atmosphere of nitrogen with a heating rate of 20 °C/min and a 100 min residence time. The results obtained demonstrate a crucial trade-off: while individual parameters provide superior accuracy (an average fit of 99.516%) for predicting degradation by weight loss, global parameters offer better predictions for elemental composition, with average errors of 2.129% (carbon), 1.038% (hydrogen), 9.540% (nitrogen), and 3.997% (oxygen). Furthermore, it has been found that by determining the kinetic parameters at a torrefaction temperature higher than the maximum peak observed in the derivative thermogravimetric (DTG) curve (275 °C), it is possible to predict the behavior of the process within the 250–325 °C range with an R-squared value corresponding to an error lower than 3%. This approach significantly reduces the number of required experiments from twelve to only four by relying on a single isothermal condition for parameter estimation. Full article
(This article belongs to the Special Issue Artificial Intelligence Algorithms in Sustainability)
Show Figures

Figure 1

18 pages, 4764 KiB  
Article
Hydrothermal Carbonization of Biomass Waste for Solid Biofuel Production: Hydrochar Characterization and Its Application in Blast Furnace Injection
by Guangwei Wang, Junyi Wu, Haibo Li, Andrey Karasev, Xiaojun Ning and Chuan Wang
Recycling 2025, 10(3), 89; https://doi.org/10.3390/recycling10030089 - 4 May 2025
Cited by 1 | Viewed by 811
Abstract
Hydrothermal carbonization (HTC) technology converts biomass into a carbon-rich, oxygen-containing solid fuel. Most studies have focused on hydrochar produced under laboratory conditions, leaving a gap in understanding the performance of industrially produced hydrochar. This study comprehensively analyzes three types of industrially produced hydrochar [...] Read more.
Hydrothermal carbonization (HTC) technology converts biomass into a carbon-rich, oxygen-containing solid fuel. Most studies have focused on hydrochar produced under laboratory conditions, leaving a gap in understanding the performance of industrially produced hydrochar. This study comprehensively analyzes three types of industrially produced hydrochar for blast furnace (BF) injection. The results indicate that hydrochar has a higher volatile and lower fixed carbon content. It has a lower high heating value (HHV) than coal and contains more alkali matter. Nevertheless, hydrochar exhibits a better grindability and combustion performance than coal. Blending hydrochar with anthracite significantly enhances the combustion reactivity of the mixture. The theoretical conversion rate calculations reveal a synergistic effect between hydrochar and anthracite during co-combustion. Environmental benefit calculations show that replacing 40% of bituminous coal with hydrochar can reduce CO2 emissions by approximately 145 kg/tHM, which is equivalent to an annual reduction of 528 kton of CO2 and 208 kton of coal in BF operations. While industrially produced hydrochar meets BF injection requirements, its low ignition point and high explosivity necessitate the careful control of the blending ratio. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

17 pages, 3676 KiB  
Article
Investigation of Component Interactions During the Hydrothermal Process Using a Mixed-Model Cellulose/Hemicellulose/Lignin/Protein and Real Cotton Stalk
by Shengjun Guo, Jiachen Zuo, Xiao Yang, Hui Wang, Lihua Cheng and Libo Zhang
Energies 2025, 18(5), 1290; https://doi.org/10.3390/en18051290 - 6 Mar 2025
Cited by 1 | Viewed by 778
Abstract
Converting agricultural and forestry waste into high-value-added bio-oil via hydrothermal liquefaction (HTL) reduces incineration pollution and alleviates fuel oil shortages. Current research focuses on adjusting HTL parameters like temperature, time, catalyst, and pretreatment. Few studies explore raw material composition and its interactions with [...] Read more.
Converting agricultural and forestry waste into high-value-added bio-oil via hydrothermal liquefaction (HTL) reduces incineration pollution and alleviates fuel oil shortages. Current research focuses on adjusting HTL parameters like temperature, time, catalyst, and pretreatment. Few studies explore raw material composition and its interactions with bio-oil properties, limiting guidance for future multi-material hydrothermal co-liquefaction. In view of the above problems, the lignocellulosic model in this paper used cellulose, hemicellulose, lignin, and protein as raw materials. At a low hydrothermal temperature (220 °C), the yield and properties of hydrothermal bio-oil were used as indicators to explore the influence of the proportional content of different model components on the interaction in the hydrothermal process through its simple binary blending and multivariate blending. Then, compared with the hydrothermal liquefaction process of cotton stalk, the interaction between components in the hydrothermal process of real lignocellulose was explored. The results demonstrated significant interactions among cellulose, lignin, and hemicellulose in cotton stalks. The relative strength of component interactions was ranked by yield (wt.%) and property modulation as follows: cellulose–lignin (C-L, 6.82%, synergistic enhancement) > cellulose–hemicellulose (C-X, 1.83%, inhibitory effect) > hemicellulose–lignin (X-L, 1.32%, non-significant interaction). Glycine supplementation enhanced bio-oil yields, with the most pronounced effect observed in cellulose–glycine (C-G) systems, where hydrothermal bio-oil yield increased from 2.29% to 4.59%. Aqueous-phase bio-oil exhibited superior high heating values (HHVs), particularly in hemicellulose–glycine (X-G) blends, which achieved the maximum HHV of 29.364 MJ/kg among all groups. Meanwhile, the characterization results of hydrothermal bio-oil under different mixing conditions showed that the proportion of model components largely determined the composition and properties of hydrothermal bio-oil, which can be used as a regulation method for the synthesis of directional chemicals. Cellulose–lignin (C-L) interactions demonstrated the strongest synergistic enhancement, reaching maximum efficacy at a 3:1 mass ratio. This study will deepen the understanding of the composition of lignocellulose raw materials in the hydrothermal process, promote the establishment of a hydrothermal product model of lignocellulose, and improve the yield of bio-oil. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

16 pages, 1644 KiB  
Article
Phytoremediation of Total Petroleum Hydrocarbons-Contaminated Soils: Case Study of Jerusalem Artichokes with Cost Analysis and Biomass Conversion
by Mantas Rubežius, Žygimantas Kidikas, Christopher Kick and Alfreda Kasiulienė
Agronomy 2025, 15(3), 601; https://doi.org/10.3390/agronomy15030601 - 28 Feb 2025
Cited by 1 | Viewed by 899
Abstract
The application of environmentally friendly technologies, such as phytoremediation, for contaminated soil remediation and biofuel generation should be one of the goals of sustainable development. Phytoremediation is based on the use of plants and their associated microorganisms to clean contaminated soils, resulting in [...] Read more.
The application of environmentally friendly technologies, such as phytoremediation, for contaminated soil remediation and biofuel generation should be one of the goals of sustainable development. Phytoremediation is based on the use of plants and their associated microorganisms to clean contaminated soils, resulting in a positive impact on the environment and the production of biomass that can be utilized for biofuel production. Combining phytoremediation with advanced thermochemical conversion technologies like thermo-catalytic reforming process (TCR) allows for the production of high-quality biochar, bio-oil comparable to fossil crude oil, and hydrogen-rich syngas. This study presents a full-scale phytoremediation experiment conducted at a former oil storage site using energy crops like Jerusalem artichokes (Helianthus tuberosus), where the biomass was later converted into biofuel and other by-products using lab-scale technology. Significant and promising results were obtained: (i) within two years, the initial total petroleum hydrocarbons (TPH) contamination level (698 mg/kg) was reduced to a permissible level (146 mg/kg); (ii) the yield of the harvested Jerusalem artichoke biomass reached 18.3 t/ha dry weight; (iii) the thermochemical conversion produced high-quality products, such as a thermally stable oil a higher heating value (HHV) of 33.85 MJ/kg; (iv) the two-year phytoremediation costs for the rejuvenated soil amounted to3.75 EUR/t. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

44 pages, 7836 KiB  
Review
Biomass Hydrochar: A Critical Review of Process Chemistry, Synthesis Methodology, and Applications
by Joshua O. Ighalo, Florence C. Akaeme, Jordana Georgin, Jivago Schumacher de Oliveira and Dison S. P. Franco
Sustainability 2025, 17(4), 1660; https://doi.org/10.3390/su17041660 - 17 Feb 2025
Cited by 6 | Viewed by 3690
Abstract
Hydrothermal carbonization (HTC) is a novel thermochemical process that turns biomass into hydrochar, a substance rich in carbon that has potential uses in advanced material synthesis, energy production, and environmental remediation. With an emphasis on important chemical pathways, such as dehydration, decarboxylation, and [...] Read more.
Hydrothermal carbonization (HTC) is a novel thermochemical process that turns biomass into hydrochar, a substance rich in carbon that has potential uses in advanced material synthesis, energy production, and environmental remediation. With an emphasis on important chemical pathways, such as dehydration, decarboxylation, and polymerization, that control the conversion of lignocellulosic biomass into useful hydrochar, this review critically investigates the fundamental chemistry of HTC. A detailed analysis is conducted on the effects of process variables on the physicochemical characteristics of hydrochar, including temperature, pressure, biomass composition, water ratio, and residence time. Particular focus is placed on new developments in HTC technology that improve sustainability and efficiency, like recirculating process water and microwave-assisted co-hydrothermal carbonization. Furthermore, the improvement of adsorption capacity for organic contaminants and heavy metals is explored in relation to the functionalization and chemical activation of hydrochar, namely through surface modification and KOH treatment. The performance of hydrochar and biochar in adsorption, catalysis, and energy storage is compared, emphasizing the unique benefits and difficulties of each substance. Although hydrochar has a comparatively high higher heating value (HHV) and can be a good substitute for coal, issues with reactor design, process scalability, and secondary waste management continue to limit its widespread use. In order to maximize HTC as a sustainable and profitable avenue for biomass valorization, this study addresses critical research gaps and future initiatives. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

23 pages, 3644 KiB  
Article
Comparative Study of Thermochemical Valorization of CCN51 Cocoa Shells: Combustion, Pyrolysis, and Gasification
by Cristian Laverde-Albarracín, Juan Félix González, Beatriz Ledesma and Silvia Román-Suero
Appl. Sci. 2025, 15(4), 2071; https://doi.org/10.3390/app15042071 - 16 Feb 2025
Viewed by 1101
Abstract
Cocoa shells (variety CCN51, exclusive from Ecuador) were subjected to different thermochemical processes (combustion, pyrolysis, and gasification) to evaluate their potential for energy production. Pyrolysis was conducted at 500, 600, and 700 °C, yielding solid (35.89–41.27%), liquid (31.13–34.73%), and gas (24.92–32.92%) fractions. The [...] Read more.
Cocoa shells (variety CCN51, exclusive from Ecuador) were subjected to different thermochemical processes (combustion, pyrolysis, and gasification) to evaluate their potential for energy production. Pyrolysis was conducted at 500, 600, and 700 °C, yielding solid (35.89–41.27%), liquid (31.13–34.73%), and gas (24.92–32.92%) fractions. The higher heating value (HHV) of the solid phase increased with temperature, reaching 24.97 MJ/kg at 700 °C. Gasification was performed under air flow at 500, 600, and 700 °C, producing synthesis gas with an HHV ranging from 0.89 to 3.36 MJ/m3. The H2 and CO contents in the gas phase increased with temperature, reaching 9.98% and 11.77% at 700 °C, respectively. Combustion analysis, conducted via thermogravimetry coupled with mass spectrometry, revealed efficient volatile release and oxidation patterns. The high potassium content in the ashes (72.02% K2O) may affect slagging behavior but also presents opportunities for agricultural applications. These findings highlight the potential of CCN51 cocoa shells as a sustainable biomass resource, contributing to Ecuador’s green transition and the local circular economy. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

19 pages, 3623 KiB  
Article
Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing
by Andreja Škorjanc, Sven Gruber, Klemen Rola, Darko Goričanec and Danijela Urbancl
Processes 2025, 13(1), 208; https://doi.org/10.3390/pr13010208 - 13 Jan 2025
Cited by 2 | Viewed by 980
Abstract
Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One [...] Read more.
Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One of the main wastes in food and fruit juice processing is peach pits and apple peels. The aim of this study was to analyse the influence of torrefaction temperature on the properties of food waste, namely apple peels, peach pits and pea shells, in order to improve their energy value and determine their potential for further use and valorisation as a renewable energy source. The aim was to analyse the influence of different torrefaction temperatures on the heating value (HHV), mass yield (MY) and energy yield (EY) in order to better understand the behavior of the thermal properties of individual selected samples. The torrefaction process was carried out at temperatures of 250 °C, 350 °C and 450 °C. The obtained biomass was compared with dried biomass. For apple peels, HHV after torrefaction was (28 kJ/kg), MY decreased by (66–34%), while EY fell by (97–83%). Peach pits, despite a higher HHV after torrefaction (18 kJ/kg), achieved low MY (38–89%) and EY (59–99%), which reduces their efficiency in biochar production. Pea peels had EY (82–97%) and a lower HHV after torrefaction (11 kJ/kg), but their high ash content limits their wider use. The results confirm that, with increasing temperature, MY and EY for all selected biomasses decrease, which is a consequence of the degradation of hemicellulose and cellulose and the loss of volatile compounds. In most cases, increasing the torrefaction temperature improved the resistance to moisture adsorption, as this is related to the thermal process that causes structural changes. The results showed that the torrefaction process improved the hydrophobic properties of the biomass samples. Temperature was seen to have a great impact on mass energy efficiency. Apple peels generally had the highest mass and energy yield. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

14 pages, 1302 KiB  
Article
Characterization of Congolese Woody Biomass and Its Potential as a Bioenergy Source
by Maryse D. Nkoua Ngavouka, Tania S. Mayala, Dick H. Douma, Aaron E. Brown, James M. Hammerton, Andrew B. Ross, Gilbert Nsongola, Bernard M’Passi-Mabiala and Jon C. Lovett
Appl. Sci. 2025, 15(1), 371; https://doi.org/10.3390/app15010371 - 2 Jan 2025
Viewed by 1166
Abstract
This study assesses and characterizes six woody biomass (WB) species commonly harvested in the Republic of Congo: Millettia laurentii (WB1), Millettia eetveldeana (WB2), Hymenocardia ulmoides (WB3), Markhamia tomentosa (WB4), Pentaclethra eetveldeana (WB5), and Hymenocardia acida (WB6). Characterization was performed using proximate analysis with [...] Read more.
This study assesses and characterizes six woody biomass (WB) species commonly harvested in the Republic of Congo: Millettia laurentii (WB1), Millettia eetveldeana (WB2), Hymenocardia ulmoides (WB3), Markhamia tomentosa (WB4), Pentaclethra eetveldeana (WB5), and Hymenocardia acida (WB6). Characterization was performed using proximate analysis with a Thermo Gravimetric Analyser (TGA), ultimate analysis with a CHNS Analyser, higher heating value (HHV) determination, metal content analysis by X-ray fluorescence (XRF), and aboveground biomass (AGB) estimation. The proximate analysis results showed that volatile matter varied between 74.6% and 77.3%, while the ultimate analysis indicated that carbon content ranged from 43% to 46%, with low nitrogen content. XRF analysis revealed low levels of heavy metals in all samples. The HHV results, using three models (Dulong’s equation, Friedl, and proximate analysis), showed higher values with Friedl’s method (17.3–18.2 MJ/kg) and proximate analysis (15.26–19.23 MJ/kg) compared to Dulong’s equation (13.9–14.9 MJ/kg). Savannah biomass (WB6) exhibited high AGB (7.28 t), 14.55 t/ha, and carbon stock (7.28 t). Compared to forest biomass, savannah biomass presents a higher potential for bioenergy production. Minimal statistical analysis of wood biomass showed that parameters such as volatile matter (VM), carbon (C), hydrogen (H), and calculated HHV have low variability, suggesting the biomass is relatively homogeneous. However, moisture and nitrogen showed significant standard deviations, indicating variability in storage conditions or sample nature. Statistical analysis of forest biomass estimation revealed different mean values for diameter, AGB (t and t/ha), and carbon stock, with high standard deviations, indicating a heterogeneous forest with both young and mature trees. These analyses and estimates indicate that these WB species are suitable for biofuel and bioenergy production using gasification, pyrolysis, and combustion processes. Among these thermochemical processes, gasification is the most efficient compared to combustion and pyrolysis. Full article
(This article belongs to the Special Issue Bioenergy and Bioproducts from Biomass and Waste)
Show Figures

Figure 1

12 pages, 469 KiB  
Article
Evaluation and Analysis of the Energy Potential of Grapevine Peduncles of PIWI Group Varieties
by Kamila E. Klimek, Magdalena Kapłan, Grzegorz Maj, Anna Borkowska, Kamil Buczyński, Radek Sotolář and Richard Danko
Energies 2024, 17(23), 6043; https://doi.org/10.3390/en17236043 - 1 Dec 2024
Cited by 1 | Viewed by 1340
Abstract
This paper presents an analysis of the energy potential of grape stalk biomass from PIWI varieties, namely ‘Seyval Blanc’, ‘Muscaris’, ‘Hibernal’, and ‘Regent’, during the combustion process. Biometric, technical, and elemental analyses of the grape stalk biomass were conducted. We evaluated the mass, [...] Read more.
This paper presents an analysis of the energy potential of grape stalk biomass from PIWI varieties, namely ‘Seyval Blanc’, ‘Muscaris’, ‘Hibernal’, and ‘Regent’, during the combustion process. Biometric, technical, and elemental analyses of the grape stalk biomass were conducted. We evaluated the mass, length, and width of the stalks and their contribution to the total cluster mass. The higher and lower heating values, moisture content, volatile compounds, ash, fixed carbon content, and elemental composition were analysed. Emissions of carbon monoxide, nitrogen oxides, carbon dioxide, sulphur, and particulates were also measured. A significant influence of the cultivar on the assessed biometric and technical parameters was found. ‘Muscaris’ exhibited the highest calorific value (HHV 16.44 MJ·kg−1) and the lowest ash content (9.99%). The highest carbon content (45.51%) was recorded for ‘Seyval Blanc’, and the highest hydrogen content (6.74%) for ‘Muscaris’. Nitrogen oxide emissions were the lowest for ‘Seyval Blanc’, making it more environmentally friendly. The biomass of grape stalks from PIWI varieties, particularly ‘Muscaris’ and ‘Seyval Blanc’, shows high energy potential and can be effectively utilised as a renewable energy source. Our results could be summarised as ‘sustainable energy production and reduced greenhouse gas emissions from grape stalks’. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

16 pages, 1908 KiB  
Article
Carbonization of Refuse-Derived Fuel Pellets with Biomass Incorporation to Solid Fuel Production
by Andrei Longo, Nuno Pacheco, Roberta Panizio, Cândida Vilarinho, Paulo Brito and Margarida Gonçalves
Fuels 2024, 5(4), 746-761; https://doi.org/10.3390/fuels5040041 - 4 Nov 2024
Viewed by 1472
Abstract
In this work, dry carbonization (DC) and hydrothermal carbonization (HTC) of refuse-derived fuel (RDF) pellets were conducted to evaluate the physical, chemical, and fuel properties of the produced chars. In the dry carbonization tests, biomass sawdust was incorporated in different proportions on the [...] Read more.
In this work, dry carbonization (DC) and hydrothermal carbonization (HTC) of refuse-derived fuel (RDF) pellets were conducted to evaluate the physical, chemical, and fuel properties of the produced chars. In the dry carbonization tests, biomass sawdust was incorporated in different proportions on the samples to minimize agglomeration caused by the melting of the plastic fraction. The experiments were carried out in a temperature of 400 °C (DC) and 250–300 °C (HTC), in a residence time of 30 min. The respective chars and hydrochars were characterized according to their mass yield, apparent density, proximate, elemental, and mineral composition, chlorine content, high heating value, thermogravimetric profile, and surface functional groups. The results showed that the dry carbonization of RDF pellets with biomass incorporation, followed by a washing step, resulted in the production of chars with improved properties such as higher fixed carbon and higher heating value (HHV) (25–26 MJ/kg) and lower ash and chlorine content. Additionally, the HTC experiments demonstrated that hydrochars showed improved properties without the need for biomass addition and washing, however, with no significant difference in the HHV (20–21 MJ/kg). Therefore, DC of RDF pellets with 10% biomass incorporation seems to be a promising option to overcome the constraints of RDF utilization as an alternative fuel. Full article
(This article belongs to the Special Issue Emerging Sustainable Technologies in Biofuel Production)
Show Figures

Figure 1

16 pages, 2090 KiB  
Article
Elephant Grass Cultivar BRS Capiaçu as Sustainable Biomass for Energy Generation in the Amazon Biome of the Mato Grosso State
by Roberto Carlos Beber, Camila da Silva Turini, Vinicius Carrillo Beber, Roberta Martins Nogueira and Evaldo Martins Pires
Energies 2024, 17(21), 5409; https://doi.org/10.3390/en17215409 - 30 Oct 2024
Cited by 1 | Viewed by 1010
Abstract
Sustainable biomasses are vital to ensure preservation of the Amazon biome within the Mato Grosso State whilst enabling energy generation for the region and its population. Here, the potential of the elephant grass cultivar BRS Capiaçu as an alternative to replace native forest [...] Read more.
Sustainable biomasses are vital to ensure preservation of the Amazon biome within the Mato Grosso State whilst enabling energy generation for the region and its population. Here, the potential of the elephant grass cultivar BRS Capiaçu as an alternative to replace native forest wood as biomass for energy generation is investigated, considering the whole process from plant cultivation to biomass characterisation in terms of productivity of green and dry mass per hectare; density, moisture, ash, volatile and fixed carbon content, as well as higher heating value (HHV). MANOVA indicates that the effects of plant parts and age on density and proximate analysis parameters are influenced by the plant parts and age interaction, whereas HHV can be considered similar between them. The cultivar BRS Capiaçu showed suitable energetic values (17,922 < HHV < 18,918 kJ.kg−1) compared to that of native Amazon wood. Energetic results combined with cultivation outputs of high productivity (dry mass production of 44.1 tonnes.ha−1 at 180 days) with a short cutting interval (3 months), adaptation to the region’s climate and soil, and the possibility of cultivation in areas currently consolidated for agriculture demonstrate the potential of BRS Capiaçu as biomass to reduce native wood usage and deforestation rates. Full article
(This article belongs to the Special Issue Biomass Conversion Technologies: 3rd Edition)
Show Figures

Figure 1

Back to TopTop