Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Subject of the Study and Sampling
- Stems of Mimosa scabrella (SMS);
- Branches of Mimosa scabrella (BMS);
- Stems of Hovenia dulcis (SHD);
- Branches of Hovenia dulcis (BHD).
2.2. Pyrolysis-Based Biochar Production
2.3. Analysis of Key Properties of Target Species
2.4. Statistical Analysis
3. Results and Discussion
3.1. Pyrolysis Yields
3.2. Physical Characteristics of Target Species
3.2.1. Higher and Lower Heating Value
3.2.2. Bulk Density, Initial Moisture Content (Wood), and Raw Moisture Content (Biochar)
Material | Bulk Density (kg m−3) | Initial Moisture Content (%) | Raw Moisture Content (%) | Hygroscopic Moisture Content (%) | Water Content (%) |
---|---|---|---|---|---|
Biomass | |||||
SMS | 239.38 ± 3.37 | 9.02 ± 0.05 | |||
BMS | 200.77 ± 7.41 | 8.98 ± 0.22 | |||
SHD | 218.57 ± 3.87 | 12.13 ± 1.39 | |||
BHD | 175.25 ± 8.23 | 11.30 ± 1.26 | |||
Biochar | |||||
SMS | 165.62 ± 7.49 | 2.02 ± 0.16 | 2.46 | 4.43 | |
BMS | 168.44 ± 10.81 | 2.50 ± 0.11 | 1.94 | 4.39 | |
SHD | 159.44 ± 12.82 | 2.59 ± 0.06 | 1.88 | 4.56 | |
BHD | 156.34 ± 5.50 | 2.69 ± 0.15 | 2.15 | 4.84 |
3.2.3. Proximate and Ultimate Analysis, TOC, and CHN
3.3. Biochar Characterizations
3.3.1. Analysis of Nutrients and Potentially Toxic Elements and Plant Availability
3.3.2. Biochar pH, Electrical Conductivity, and Water-Holding Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MOF | Mixed Ombrophyllous Forest |
EBC | European Biochar Certificate |
SMS | Stem of Mimosa scabrella |
BMS | Branches of Mimosa scabrella |
SHD | Stem of Hovenia dulcis |
BHD | Branches of Hovenia dulcis |
HHV | Higher heating value |
LHV | Lower heating value |
TGA | Thermogravimetric analysis |
TOC | Total organic carbon |
TIC | Total inorganic carbon |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
EC | Electrical conductivity |
WHC | Water-holding capacity |
DTG | Differential thermal gravimetric |
IBI | International Biochar Initiative |
References
- Lacerda, A.E.B.d.; Doetzer Rosot, M.A.; Figueiredo, A.; Cordeiro, M.; Roberta, E.; Kellermann, B.; Izabel, M.; Beimgraben, T.; Mattos, P.P.d.; Oliveira, Y.M.M.d. Sustainable Forest Management in Rural Southern Brazil: Exploring Participatory Forest Management Planning. In Sustainable Forest Management—Case Studies; Diez, J.J., Ed.; InTech: Sydney, Australia, 2012; ISBN 978-953-51-0511-4. [Google Scholar]
- Klipel, J.; Bergamin, R.S.; Esquivel-Muelbert, A.; de Lima, R.A.F.; de Oliveira, A.A.; Prado, P.I.; Müller, S.C. Climatic distribution of tree species in the Atlantic Forest. Biotropica 2022, 54, 1170–1181. [Google Scholar] [CrossRef]
- Rufino Vaz, D.; Dobner, M.; Callegari Scipioni, M.; Nicoletti, M.F.; Arce, J.E. Old-growth and secondary Araucaria Forest characterization. Trees For. People 2022, 9, 100306. [Google Scholar] [CrossRef]
- Fetter, D.; Putzke, J.; Ribas Moraes, J.; Forster, J. Avaliação por meio de monitoramento aéreo de espécie de árvore biologicamente invasora–Caso da proliferação da Hovenia dulcis Thunb junto ao Cinturão Verde da cidade de Santa Cruz do Sul /RS. Rev. Espac. 2015, 36, 1–6. [Google Scholar]
- Rosário, V.A.C.; Guimarães, J.C.; Viani, R.A.G. How Changes in Legally Demanded Forest Restoration Impact Ecosystem Services: A Case Study in the Atlantic Forest, Brazil. Trop. Conserv. Sci. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Roque, R.H.; Sebbenn, A.M.; Boshier, D.H.; Filho, A.F.; Tambarussi, E.V. Logging Affects Genetic Diversity Parameters in an Araucaria angustifolia Population: An Endangered Species in Southern Brazil. Forests 2023, 14, 1046. [Google Scholar] [CrossRef]
- Da Mazza, C.A.S.; Mazza, M.C.M.; Almeida, D.; Santos, J.E.d.; Fushita, A.T. Land Use and Environmental Zoning of Mixed Ombrophilous Forests for Sustainable Use (Irati National Forest, Brazil Southern Region). Braz. Arch. Biol. Technol. 2016, 59, 1–11. [Google Scholar] [CrossRef]
- Faggin, J.M.; Behagel, J.H. Translating Sustainable Forest Management from the global to the domestic sphere: The case of Brazil. For. Policy Econ. 2017, 85, 22–31. [Google Scholar] [CrossRef]
- de Oliveira, A.L.; Borges, L.A.C.; Coelho, M.G., Jr.; de Barros, D.A.; Coelho, L.M., Jr. Forest Replacement in Brazil: A Fundamental Policy for Forestry. Floresta Ambient. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Luiz, C.H.P.; Steinke, V.A. Recent Environmental Legislation in Brazil and the Impact on Cerrado Deforestation Rates. Sustainability 2022, 14, 8096. [Google Scholar] [CrossRef]
- Mundstock Xavier de Carvalho, M. Os fatores do desmatamento da Floresta com Araucária: Agropecuária, lenha e indústria madeireira. Esboços 2012, 18, 32–52. [Google Scholar] [CrossRef]
- David, H.C.; de Araújo, E.J.G.; Morais, V.A.; Scolforo, J.R.S.; Marques, J.M.; Péllico Netto, S.; MacFarlane, D.W. Carbon stock classification for tropical forests in Brazil: Understanding the effect of stand and climate variables. For. Ecol. Manag. 2017, 404, 241–250. [Google Scholar] [CrossRef]
- Figueiredo Filho, A.; Nauiack, C.H.B.; Roik, M.; Gomes, G.S. Inventário Das Florestas Nativas Em Pequenas Propriedades Rurais Na Bacia Do Imbituvão; Centro-Sul do Paraná Irati, Ed.; Centro-Sul do Paraná Irati: Irati, Brazil, 2013. [Google Scholar]
- Zhang, J.; Zhang, S.; Niu, C.; Jiang, J.; Sun, H. Positive Effects of Biochar on the Degraded Forest Soil and Tree Growth in China: A Systematic Review. Phyton 2022, 91, 1601–1616. [Google Scholar] [CrossRef]
- Sarauer, J.L.; Page-Dumroese, D.S.; Coleman, M.D. Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests. GCB Bioenergy 2019, 11, 660–671. [Google Scholar] [CrossRef]
- Bruckman, V.J.; Pumpanen, J. Biochar use in global forests: Opportunities and challenges. Global Change and Forest Soils; Elsevier: Amsterdam, The Netherlands, 2019; pp. 427–453. ISBN 9780444639981. [Google Scholar]
- Latawiec, A.E.; Strassburg, B.B.N.; Junqueira, A.B.; Araujo, E.; de Moraes, L.F.D.; Pinto, H.A.N.; Castro, A.; Rangel, M.; Malaguti, G.A.; Rodrigues, A.F.; et al. Biochar amendment improves degraded pasturelands in Brazil: Environmental and cost-benefit analysis. Sci. Rep. 2019, 9, 11993. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Ghosh, D.; Page-Dumroese, D.S.; Han, H.-S.; Anderson, N. Role of biochar made from low-value woody forest residues in ecological sustainability and carbon neutrality. Soil. Sci. Soc. Am. J. 2025, 89, e20793. [Google Scholar] [CrossRef]
- EBC. European Biochar Certificate—Guidelines of the European Biochar Certificate; Version 10.3G (2012-2023); Ithaka Institute: Arbaz, Switzerland, 2023; Available online: http://www.european-biochar.org (accessed on 5 March 2025).
- Schwerz, F.; Neto, D.D.; Caron, B.O.; Nardini, C.; Sgarbossa, J.; Eloy, E.; Behling, A.; Elli, E.F.; Reichardt, K. Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing. Renew. Energy 2020, 153, 1238–1250. [Google Scholar] [CrossRef]
- Domermuth, D. Small Scale Biochar Production. 2018. Available online: https://biochar-international.org/wp-content/uploads/2018/04/Small_Scale_Biochar_Production_Domermuth.pdf (accessed on 5 March 2025).
- Sagl, C. Small Scale Biochar Kiln. Available online: http://biochar.info/?p=en.small_scale_biochar_kiln (accessed on 6 June 2025).
- Faé Gomes, G.M.; Encarnação, F. The environmental impact on air quality and exposure to carbon monoxide from charcoal production in southern Brazil. Environ. Res. 2012, 116, 136–139. [Google Scholar] [CrossRef]
- Yue, Y.; Lin, Q.; Irfan, M.; Chen, Q.; Zhao, X.; Li, G. Slow Pyrolysis as a Promising Approach for Producing Biochar from Sunflower Straw. BioResources 2018, 13, 7455–7469. [Google Scholar] [CrossRef]
- Nogueira, L.A.H.; Coelho, S.T.; Uhlig, A. Sustainable charcoal production in Brazil. In Criteria and Indicators for Sustainable Woodfuels; FAO: Rome, Italy, 2009. [Google Scholar]
- García-Quezada, J.; Musule-Lagunes, R.; Prieto-Ruíz, J.A.; Vega-Nieva, D.J.; Carrillo-Parra, A. Evaluation of Four Types of Kilns Used to Produce Charcoal from Several Tree Species in Mexico. Energies 2023, 16, 333. [Google Scholar] [CrossRef]
- Świechowski, K.; Matyjewicz, B.; Telega, P.; Białowiec, A. The Influence of Low-Temperature Food Waste Biochars on Anaerobic Digestion of Food Waste. Materials 2022, 15, 945. [Google Scholar] [CrossRef]
- Doumer, M.E.; Arízaga, G.G.C.; Da Silva, D.A.; Yamamoto, C.I.; Novotny, E.H.; Santos, J.M.; dos Santos, L.O.; Wisniewski, A., Jr.; de Andrade, J.B.; Mangrich, A.S. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J. Anal. Appl. Pyrolysis 2015, 113, 434–443. [Google Scholar] [CrossRef]
- DIN 51900:2023-12; Testing of Solid and Liquid Fuels—Determination of Gross Calorific Value by the Bomb Calorimeter and Calculation of Net Calorific Value. DIN Media GmbH: Berlin, Germany, 2023.
- DIN EN ISO 17828:2025-06; Solid Biofuels—Determination of Bulk Density (ISO 17828:2025); German Version EN ISO 17828:2025. DIN Media GmbH: Berlin, Germany, 2025.
- Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten. VDLUFA-Method A 13.2.1. Available online: https://www.methodenbuch.de/produkt/methodenbuch-band-i-boden/ (accessed on 5 March 2025).
- ABNT NBR 14929:2017; Wood—Determination of Moisture of Chips—Method by Drying in Oven-Dried. Associação Brasileira de Normas Técnicas: Sao Paulo, Brazil, 2017.
- DIN 51719:1997-07; Testing of Solid Fuels-Solid Mineral Fuels-Determination of Ash Content. DIN Media GmbH: Berlin, Germany, 1997.
- DIN 51720:2001-03; Testing of Solid Fuels—Determination of Volatile Matter Content. DIN Media GmbH: Berlin, Germany, 2001.
- DIN 51724-3:2012-07; Solid Mineral Fuels—Determination of Sulfur Content—Part 3: Instrumental Methods. DIN Media GmbH: Berlin, Germany, 2012.
- DIN 51732:2014-07; Testing of Solid Mineral Fuels—Determination of Total Carbon, Hydrogen and Nitrogen—Instrumental Methods. DIN Media GmbH: Berlin, Germany, 2014.
- DIN 51733:2016-04; Testing of Solid Mineral Fuels—Ultimate Analysis and Calculation of Oxygen Content. DIN Media GmbH: Berlin, Germany, 2016.
- DIN EN ISO 11885:2009-09; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (ISO 11885:2007); German Version EN ISO 11885:2009. DIN Media GmbH: Berlin, Germany, 2009.
- Rosa, J.M.; Miguel, M.; Knicker, H.E.; Boy, E.F. Testing Established Method for the Determination of the Cation Exchange Capacity in Soils for the Characterization of Biochars. In Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; p. 5071. [Google Scholar]
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Zivanovic, V.; Cornelissen, G.; Mulder, J. Cation exchange capacity of biochar: An urgent method modification. Sci. Total Environ. 2018, 642, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Gillman, G.P.; Sumpter, E.A. Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil. Res. 1986, 24, 61–66. [Google Scholar] [CrossRef]
- Gutachterausschuss Forstliche Analytik (Ed.) Handbuch Forstliche Analytik: Eine Loseblatt-Sammlung der Analysemethoden im Forstbereich; Ohann Heinrich von Thünen-Institut: Eberswalde, Germany, 2022. [Google Scholar]
- DIN EN ISO 11260:2018-11; Soil Quality—Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution (ISO 11260:2018); German Version EN ISO 11260:2018. DIN Media GmbH: Berlin, Germany, 2018.
- DIN EN ISO 10390:2022-08; Soil, Treated Biowaste and Sludge—Determination of pH (ISO 10390:2021); German version EN ISO 10390:2022. DIN Media GmbH: Berlin, Germany, 2022.
- DIN EN ISO 14238:2014-03; Soil Quality—Biological Methods—Determination of Nitrogen Mineralization and Nitrification in Soils and the Influence of Chemicals on These Processes (ISO 14238:2012); German Version EN ISO 14238:2013. DIN Media GmbH: Berlin, Germany, 2014.
- Panwar, N.L.; Pawar, A.; Salvi, B.L. Comprehensive review on production and utilization of biochar. SN Appl. Sci. 2019, 1, 168. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Khass, T.M.; Mostafa, M.E. Thermal degradation behaviour and chemical kinetic characteristics of biomass pyrolysis using TG/DTG/DTA techniques. Biomass Conv. Bioref. 2024, 14, 17779–17803. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar Jain, S.; Singh, D.; Srivastava, K.; Patel, A.K.; Mahlknecht, J.; Shekher Giri, B.; Kumar, M. Determination of thermal degradation behavior and kinetics parameters of chemically modified sun hemp biomass. Bioresour. Technol. 2023, 380, 129065. [Google Scholar] [CrossRef]
- Apaydın Varol, E.; Mutlu, Ü. TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin. Energies 2023, 16, 3674. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Panizio, R.; Castro, C.; Pacheco, N.; Assis, A.C.; Longo, A.; Vilarinho, C.; Teixeira, J.C.; Brito, P.; Gonçalves, M.; Nobre, C. Investigation of biochars derived from waste lignocellulosic biomass and insulation electric cables: A comprehensive TGA and Macro-TGA analysis. Heliyon 2024, 10, e37882. [Google Scholar] [CrossRef]
- Gorshkov, A.; Berezikov, N.; Kaltaev, A.; Yankovsky, S.; Slyusarsky, K.; Tabakaev, R.; Larionov, K. Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere. Energies 2021, 14, 8075. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil: Product Definition and Specification Standards; (IBI-STD-2.1); IBI: Canandaigua, NY, USA, 2015. [Google Scholar]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Wyn, H.K.; Zárate, S.; Carrascal, J.; Yermán, L. A Novel Approach to the Production of Biochar with Improved Fuel Characteristics from Biomass Waste. Waste Biomass Valor. 2020, 11, 6467–6481. [Google Scholar] [CrossRef]
- Panzarini Silva, I.; Moraes e Silva, M.; de Oliveira Machado, G.; Almeida de Araujo, V.; Aparecido Lopes Silva, D.; Luís Christoforo, A.; Antonio Rocco Lahr, F. Effect of Temperature and Time Torrefaction on the Energetic Properties of Bracatinga Wood. Int. J. Agric. For. 2017, 7, 111–114. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Stampfer, K. (Eds.) Energie aus Biomasse: Ressourcen und Bereitstellung, 4th ed.; Springer Vieweg: Wiesbaden/Heidelberg, Germany, 2024; ISBN 978-3-658-40828-2. [Google Scholar]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Rathod, N.; Jain, S.; Patel, M.R. Thermodynamic analysis of biochar produced from groundnut shell through slow pyrolysis. Energy Nexus 2023, 9, 100177. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. Chapter 2: A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Kaltschmitt, M.; Hofbauer, H.; Lenz, V. (Eds.) Energie aus Biomasse: Thermo-chemische Konversion, 4th ed.; Springer Vieweg: Wiesbaden/Heidelberg, Germany, 2024; ISBN 978-3-658-41216-6. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2th ed; Routledge: London, UK, 2015; ISBN 9780203762264. [Google Scholar]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Burhenne, L.; Damiani, M.; Aicher, T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis. Fuel 2013, 107, 836–847. [Google Scholar] [CrossRef]
- Almutairi, A.A.; Ahmad, M.; Rafique, M.I.; Al-Wabel, M.I. Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. J. Saudi Soc. Agric. Sci. 2023, 22, 25–34. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Lisowska, A.; Filipek-Mazur, B.; Kalisz, A.; Gorczyca, O.; Kowalczyk, A. Changes in Soil Sulfate Sulfur Content as an Effect of Fertilizer Granules Containing Elemental Sulfur, Halloysite and Phosphate Rock. Agronomy 2023, 13, 1410. [Google Scholar] [CrossRef]
- Björkman, E.; Strömberg, B. Release of Chlorine from Biomass at Pyrolysis and Gasification Conditions. Energy Fuels 1997, 11, 1026–1032. [Google Scholar] [CrossRef]
- Lane, D.J.; van Eyk, P.J.; Ashman, P.J.; Kwong, C.W.; de Nys, R.; Roberts, D.A.; Cole, A.J.; Lewis, D.M. Release of Cl, S, P, K, and Na during Thermal Conversion of Algal Biomass. Energy Fuels 2015, 29, 2542–2554. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, W.; Rokni, E.; Chen, G.; Sun, R.; Levendis, Y.A. Release of Alkalis and Chlorine from Combustion of Waste Pinewood in a Fixed Bed. Energy Fuels 2019, 33, 1256–1266. [Google Scholar] [CrossRef]
- Ng, J.; DeMartini, N. Effect of Steam on the Release of K and Cl during Biomass and Black Liquor Combustion. Energy Fuels 2022, 36, 7733–7743. [Google Scholar] [CrossRef]
- Peng, B.; Li, X.; Luo, J.; Yu, X. Fate of Chlorine in Rice Straw under Different Pyrolysis Temperatures. Energy Fuels 2019, 33, 9272–9279. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, L.; Yao, Q.; Li, J.; Wang, H.; Shen, L.; Sippula, O.; Yang, J.; Zhao, J.; Liu, J.; et al. Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels. Environ. Pollut. 2022, 292, 118265. [Google Scholar] [CrossRef]
- Giudicianni, P.; Gargiulo, V.; Grottola, C.M.; Alfè, M.; Ferreiro, A.I.; Mendes, M.A.A.; Fagnano, M.; Ragucci, R. Inherent Metal Elements in Biomass Pyrolysis: A Review. Energy Fuels 2021, 35, 5407–5478. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Zubairu, A.; Ngala, A.; Kwari, S.; Usman, K.; Tela Buba, M. Exploring the Effect of Biochar on Soil pH (A Review). In Proceedings of the 46th Conference of Soil Science Society of Nigeria, Sustaining Living Soil Ecosystem Through Adoption of Soil Management Practices for Mitigating Climate Change for National Development, Maiduguri, Nigeria, 14–18 March 2022. [Google Scholar]
- Singh, B.; MM, D.; Shen, Q.; Camps Arbestain, M. (Eds.) Biochar: A Guide to Analytical Methods. In Biochar pH, Electrical Conductivity and Liming Potential; CSIRO Publishing: Clayton, Australia, 2017; Chapter 3. [Google Scholar]
- Yu, O.-Y.; Raichle, B.; Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Int. J. Energy Environ. Eng. 2013, 4, 44. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Atkinson, C.J. How good is the evidence that soil-applied biochar improves water-holding capacity? Soil. Use Manag. 2018, 34, 177–186. [Google Scholar] [CrossRef]
- Feldmeier, S.; Wopienka, E.; Schwarz, M.; Schön, C.; Pfeifer, C. Applicability of Fuel Indexes for Small-Scale Biomass Combustion Technologies, Part 2: TSP and NO x Emissions. Energy Fuels 2019, 33, 11724–11730. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil. Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.-Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef]
- Cong, M.; Hu, Y.; Sun, X.; Yan, H.; Yu, G.; Tang, G.; Chen, S.; Xu, W.; Jia, H. Long-term effects of biochar application on the growth and physiological characteristics of maize. Front. Plant Sci. 2023, 14, 1172425. [Google Scholar] [CrossRef]
- Song, X.; Pan, G.; Zhang, C.; Zhang, L.; Wang, H. Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta-analysis. Ecosyst. Health Sustain. 2016, 2, e01202. [Google Scholar] [CrossRef]
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil. Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Ventura, M.; Alberti, G.; Panzacchi, P.; Vedove, G.D.; Miglietta, F.; Tonon, G. Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biol. Fertil. Soils 2019, 55, 67–78. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Laird, D.A.; Heaton, E.A.; Rathke, S.; Acharya, B.S. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: Field evidence of negative priming. GCB Bioenergy 2020, 12, 240–251. [Google Scholar] [CrossRef]
BHD | SHD | BMS | SMS | |
---|---|---|---|---|
Biomass | ||||
HHV (MJ kg−1) dry basis | 18.97 ± 0.01 | 19.10 ± 0.03 | 19.54 ± 0.03 | 19.50 ± 0.01 |
LHV (MJ kg−1) dry basis | 17.68 ± 0.01 | 17.82 ± 0.03 | 18.25 ± 0.03 | 18.23 ± 0.01 |
Biochar | ||||
HHV (MJ kg−1) dry basis | 30.95 ± 0.01 | 31.42 ± 0.19 | 31.24 ± 0.05 | 31.76 ± 0.01 |
LHV (MJ kg−1) dry basis | 30.22 ± 0.01 | 30.68 ± 0.19 | 30.51 ± 0.05 | 31.03 ± 0.01 |
Energy yield (%) | 44.9 | 45.0 | 48.5 | 49.1 |
Material | Fixed Carbon (%) | Ash (%) | Volatile Matter (%) |
---|---|---|---|
Biomass | |||
SMS | 21.12 ± 0.10 | 2.25 ± 0.13 | 76.63 ± 0.16 |
BMS | 20.58 ± 0.13 | 2.85 ± 0.18 | 76.57 ± 0.25 |
SHD | 18.52 ± 0.34 | 2.65 ± 0.05 | 78.83 ± 0.30 |
BHD | 19.26 ± 0.53 | 2.64 ± 0.07 | 78.10 ± 0.58 |
Biochar | |||
SMS | 78.62 ± 0.22 | 3.52 ± 0.08 | 17.86 ± 0.20 |
BMS | 77.12 ± 0.59 | 4.77 ± 0.08 | 18.12 ± 0.63 |
SHD | 76.63 ± 0.35 | 4.29 ± 0.14 | 19.07 ± 0.22 |
BHD | 76.76 ± 0.07 | 3.79 ± 0.05 | 19.46 ± 0.12 |
Element | SMS | BMS | SHD | BHD |
---|---|---|---|---|
Biomass | ||||
C (%) | 49.44 ± 0.28 | 49.76 ± 0.15 | 48.71 ± 0.14 | 49.20 ± 0.45 |
H (%) | 6.35 ± 0.02 | 6.45 ± 0.01 | 6.38 ± 0.08 | 6.44 ± 0.02 |
N (%) | 0.45 ± 0.05 | 0.50 ± 0.03 | 0.24 ± 0.01 | 0.48 ± 0.02 |
S (%) | 0.04 ± 0.02 | 0.02 ± 0.03 | 0.00 ± 0.00 | 0.01 ± 0.01 |
Cl (%) | 0.05 ± 0.002 | 0.10 ± 0.001 | 0.01 ± 0.002 | 0.01 ± 0.001 |
O (%) | 43.67 ± 0.29 | 43.17 ± 0.16 | 44.66 ± 0.21 | 43.86 ± 0.50 |
Biochar | ||||
C (%) | 85.87 ± 0.83 | 86.14 ± 0.37 | 84.51 ± 0.44 | 85.06 ± 0.39 |
H (%) | 3.47 ± 0.04 | 3.55 ± 0.01 | 3.59 ± 0.10 | 3.54 ± 0.04 |
N (%) | 0.43 ± 0.00 | 0.56 ± 0.02 | 0.46 ± 0.00 | 0.55 ± 0.03 |
S (%) | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.07 ± 0.01 | 0.03 ± 0.01 |
Cl (%) | 0.03 ± 0.00 | 0.07 ± 0.002 | n.d. | 0.01 ± 0.001 |
O (%) | 10.17 ± 0.86 | 9.64 ± 0.36 | 11.37 ± 0.54 | 10.81 ± 0.37 |
Corg/TOC 1 (%) | 85.76 | 85.93 | 84.37 | 84.87 |
Element | SMS | BMS | SHD | BHD |
---|---|---|---|---|
Aqua Regia (mg kg−1) | ||||
Al | 12.68 | 7.76 | 12.10 | 10.35 |
Ca | 5023.23 | 7612.74 | 8124.26 | 10,384.94 |
Cd | n.d. | n.d. | n.d. | n.d. |
Cr | n.d. | n.d. | n.d. | n.d. |
Cu | 4.55 | 5.78 | 14.24 | 2.09 |
Fe | 50.88 | 45.90 | 29.14 | 30.95 |
K | 9082.92 | 10,949.18 | 5026.99 | 5063.08 |
Mg | 1295.93 | 1783.45 | 2220.57 | 2259.62 |
Mn | 78.39 | 100.72 | 53.98 | 60.88 |
Na | 378.75 | 417.87 | 299.19 | 338.25 |
P | 445.96 | 718.33 | 639.92 | 681.18 |
Pb | n.d. | n.d. | n.d. | n.d. |
Zn | 2.56 | 2.98 | 0.23 | 3.32 |
BaCl2 (%) | ||||
Ca | 15% | 6% | 8% | 8% |
K | 52% | 52% | 49% | 52% |
Mg | 7% | 9% | 11% | 12% |
Material | pH Value | Conductivity (mS cm−1) | Water-Holding Capacity (%) |
---|---|---|---|
SMS | 7.73 ± 0.22 | 280.08 ± 6.36 | 269.64 ± 8.53 |
BMS | 8.05 ± 0.03 | 415.08 ± 24.75 | 281.26 ± 13.34 |
SHD | 7.74 ± 0.17 | 91.83 ± 5.30 | 277.07 ± 14.92 |
BHD | 7.65 ± 0.14 | 109.63 ± 4.31 | 303.26 ± 15.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Empl, F.; Schatzl, M.; Kleucker, S.; de Almeida Garrett, A.T.; Ferraz, F.A.; Natalli, L.H.; da Silva, D.A.; da Silva Lopes, E.; Filho, A.F.; Pelz, S. Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest. Forests 2025, 16, 1077. https://doi.org/10.3390/f16071077
Empl F, Schatzl M, Kleucker S, de Almeida Garrett AT, Ferraz FA, Natalli LH, da Silva DA, da Silva Lopes E, Filho AF, Pelz S. Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest. Forests. 2025; 16(7):1077. https://doi.org/10.3390/f16071077
Chicago/Turabian StyleEmpl, Florian, Miriam Schatzl, Sonja Kleucker, Alexandre Techy de Almeida Garrett, Fernando Augusto Ferraz, Luiz Henrique Natalli, Dimas Agostinho da Silva, Eduardo da Silva Lopes, Afonso Figueiredo Filho, and Stefan Pelz. 2025. "Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest" Forests 16, no. 7: 1077. https://doi.org/10.3390/f16071077
APA StyleEmpl, F., Schatzl, M., Kleucker, S., de Almeida Garrett, A. T., Ferraz, F. A., Natalli, L. H., da Silva, D. A., da Silva Lopes, E., Filho, A. F., & Pelz, S. (2025). Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest. Forests, 16(7), 1077. https://doi.org/10.3390/f16071077