Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,018)

Search Parameters:
Keywords = high frame-rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 62045 KiB  
Article
CML-RTDETR: A Lightweight Wheat Head Detection and Counting Algorithm Based on the Improved RT-DETR
by Yue Fang, Chenbo Yang, Chengyong Zhu, Hao Jiang, Jingmin Tu and Jie Li
Electronics 2025, 14(15), 3051; https://doi.org/10.3390/electronics14153051 - 30 Jul 2025
Viewed by 108
Abstract
Wheat is one of the important grain crops, and spike counting is crucial for predicting spike yield. However, in complex farmland environments, the wheat body scale has huge differences, its color is highly similar to the background, and wheat ears often overlap with [...] Read more.
Wheat is one of the important grain crops, and spike counting is crucial for predicting spike yield. However, in complex farmland environments, the wheat body scale has huge differences, its color is highly similar to the background, and wheat ears often overlap with each other, which makes wheat ear detection work face a lot of challenges. At the same time, the increasing demand for high accuracy and fast response in wheat spike detection has led to the need for models to be lightweight function with reduced the hardware costs. Therefore, this study proposes a lightweight wheat ear detection model, CML-RTDETR, for efficient and accurate detection of wheat ears in real complex farmland environments. In the model construction, the lightweight network CSPDarknet is firstly introduced as the backbone network of CML-RTDETR to enhance the feature extraction efficiency. In addition, the FM module is cleverly introduced to modify the bottleneck layer in the C2f component, and hybrid feature extraction is realized by spatial and frequency domain splicing to enhance the feature extraction capability of wheat to be tested in complex scenes. Secondly, to improve the model’s detection capability for targets of different scales, a multi-scale feature enhancement pyramid (MFEP) is designed, consisting of GHSDConv, for efficiently obtaining low-level detail information and CSPDWOK for constructing a multi-scale semantic fusion structure. Finally, channel pruning based on Layer-Adaptive Magnitude Pruning (LAMP) scoring is performed to reduce model parameters and runtime memory. The experimental results on the GWHD2021 dataset show that the AP50 of CML-RTDETR reaches 90.5%, which is an improvement of 1.2% compared to the baseline RTDETR-R18 model. Meanwhile, the parameters and GFLOPs have been decreased to 11.03 M and 37.8 G, respectively, resulting in a reduction of 42% and 34%, respectively. Finally, the real-time frame rate reaches 73 fps, significantly achieving parameter simplification and speed improvement. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

12 pages, 2831 KiB  
Article
IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations
by Shunjie Yu, Lijuan Hu, Yazhen Qin, Guorui Ruan, Yazhe Wang, Hao Jiang, Feifei Tang, Ting Zhao, Jinsong Jia, Jing Wang, Qiang Fu, Xiaohui Zhang, Lanping Xu, Yu Wang, Yuqian Sun, Yueyun Lai, Hongxia Shi, Xiaojun Huang and Qian Jiang
Cancers 2025, 17(15), 2494; https://doi.org/10.3390/cancers17152494 - 29 Jul 2025
Viewed by 230
Abstract
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from [...] Read more.
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from consecutive patients with CEBPAbZIP-inf were reviewed. A Cox proportional hazards regression was used to identify the variables associated with event-free survival (EFS), relapse-free survival (RFS) and survival. Results: 224 CEBPAbZIP-inf patients were included in this study. In the 201 patients, except for the 19 receiving the transplant in the first complete remission with no events (the transplant cohort), multivariate analyses showed that IKZF1 mutations/deletions were significantly associated with poor EFS (p = 0.001) and RFS (p < 0.001); FLT3-ITD mutations, poor RFS (p = 0.048). In addition, increasing WBC count, lower hemoglobin concentration, non-intensive induction, and MRD positivity after first consolidation predicted poor outcomes. On the basis of the number of adverse prognostic covariates for RFS, the 201 patients were classified into low-, intermediate- or high-risk subgroups, and there were significant differences in the 3-year EFS, RFS and survival rates (all p < 0.001); however, except for survival in the low-risk group, these metrics were lower than those in the transplant cohort. Conclusions: We identified a potential high-risk population with adverse prognostic factors in CEBPAbZIP-inf AML patients for which transplantation should be considered. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

21 pages, 3293 KiB  
Article
A Fusion of Entropy-Enhanced Image Processing and Improved YOLOv8 for Smoke Recognition in Mine Fires
by Xiaowei Li and Yi Liu
Entropy 2025, 27(8), 791; https://doi.org/10.3390/e27080791 - 25 Jul 2025
Viewed by 176
Abstract
Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine [...] Read more.
Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine fires faces serious challenges: the underground environment is complex, with smoke and backgrounds being highly integrated and visual features being blurred, which makes it difficult for existing image-based monitoring techniques to meet the actual needs in terms of accuracy and robustness. The conventional ground-based methods are directly used in the underground with a high rate of missed detection and false detection. Aiming at the core problems of mixed target and background information and high boundary uncertainty in smoke images, this paper, inspired by the principle of information entropy, proposes a method for recognizing smoke from mine fires by integrating entropy-enhanced image processing and improved YOLOv8. Firstly, according to the entropy change characteristics of spatio-temporal information brought by smoke diffusion movement, based on spatio-temporal entropy separation, an equidistant frame image differential fusion method is proposed, which effectively suppresses the low entropy background noise, enhances the detail clarity of the high entropy smoke region, and significantly improves the image signal-to-noise ratio. Further, in order to cope with the variable scale and complex texture (high information entropy) of the smoke target, an improvement mechanism based on entropy-constrained feature focusing is introduced on the basis of the YOLOv8m model, so as to more effectively capture and distinguish the rich detailed features and uncertain information of the smoke region, realizing the balanced and accurate detection of large and small smoke targets. The experiments show that the comprehensive performance of the proposed method is significantly better than the baseline model and similar algorithms, and it can meet the demand of real-time detection. Compared with YOLOv9m, YOLOv10n, and YOLOv11n, although there is a decrease in inference speed, the accuracy, recall, average detection accuracy mAP (50), and mAP (50–95) performance metrics are all substantially improved. The precision and robustness of smoke recognition in complex mine scenarios are effectively improved. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

18 pages, 4490 KiB  
Article
Tandem Neural Network Based Design of Acoustic Metamaterials for Low-Frequency Vibration Reduction in Automobiles
by Jianjiao Deng, Jiawei Wu, Xi Chen, Xinpeng Zhang, Shoukui Li, Yu Song, Jian Wu, Jing Xu, Shiqi Deng and Yudong Wu
Crystals 2025, 15(8), 676; https://doi.org/10.3390/cryst15080676 - 24 Jul 2025
Viewed by 321
Abstract
Automotive NVH (Noise, Vibration, and Harshness) performance significantly impacts driving comfort and traffic safety. Vehicles exhibiting superior NVH characteristics are more likely to achieve consumer acceptance and enhance their competitiveness in the marketplace. In the development of automotive NVH performance, traditional vibration reduction [...] Read more.
Automotive NVH (Noise, Vibration, and Harshness) performance significantly impacts driving comfort and traffic safety. Vehicles exhibiting superior NVH characteristics are more likely to achieve consumer acceptance and enhance their competitiveness in the marketplace. In the development of automotive NVH performance, traditional vibration reduction methods have proven to be mature and widely implemented. However, due to constraints related to size and weight, these methods typically address only high-frequency vibration control. Consequently, they struggle to effectively mitigate vehicle body and component vibration noise at frequencies below 200 Hz. In recent years, acoustic metamaterials (AMMs) have emerged as a promising solution for suppressing low-frequency vibrations. This development offers a novel approach for low-frequency vibration control. Nevertheless, conventional design methodologies for AMMs predominantly rely on empirical knowledge and necessitate continuous parameter adjustments to achieve desired bandgap characteristics—an endeavor that entails extensive calculations and considerable time investment. With advancements in machine learning technology, more efficient design strategies have become feasible. This paper presents a tandem neural network (TNN) specifically developed for the design of AMMs. The trained neural network is capable of deriving both the bandgap characteristics from the design parameters of AMMs as well as deducing requisite design parameters based on specified bandgap targets. Focusing on addressing low-frequency vibrations in the back frame of automobile seats, this method facilitates the determination of necessary AMMs design parameters. Experimental results demonstrate that this approach can effectively guide AMMs designs with both speed and accuracy, and the designed AMMs achieved an impressive vibration attenuation rate of 63.6%. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices, Second Edition)
Show Figures

Figure 1

15 pages, 4180 KiB  
Article
Quantitative and Correlation Analysis of Pear Leaf Dynamics Under Wind Field Disturbances
by Yunfei Wang, Xiang Dong, Weidong Jia, Mingxiong Ou, Shiqun Dai, Zhenlei Zhang and Ruohan Shi
Agriculture 2025, 15(15), 1597; https://doi.org/10.3390/agriculture15151597 - 24 Jul 2025
Viewed by 236
Abstract
In wind-assisted orchard spraying operations, the dynamic response of leaves—manifested through changes in their posture—critically influences droplet deposition on both sides of the leaf surface and the penetration depth into the canopy. These factors are pivotal in determining spray coverage and the spatial [...] Read more.
In wind-assisted orchard spraying operations, the dynamic response of leaves—manifested through changes in their posture—critically influences droplet deposition on both sides of the leaf surface and the penetration depth into the canopy. These factors are pivotal in determining spray coverage and the spatial distribution of pesticide efficacy. However, current research lacks comprehensive quantification and correlation analysis of the temporal response characteristics of leaves under wind disturbances. To address this gap, a systematic analytical framework was proposed, integrating real-time leaf segmentation and tracking, geometric feature quantification, and statistical correlation modeling. High-frame-rate videos of fluttering leaves were acquired under controlled wind conditions, and background segmentation was performed using principal component analysis (PCA) followed by clustering in the reduced feature space. A fine-tuned Segment Anything Model 2 (SAM2-FT) was employed to extract dynamic leaf masks and enable frame-by-frame tracking. Based on the extracted masks, time series of leaf area and inclination angle were constructed. Subsequently, regression analysis, cross-correlation functions, and Granger causality tests were applied to investigate cooperative responses and potential driving relationships among leaves. Results showed that the SAM2-FT model significantly outperformed the YOLO series in segmentation accuracy, achieving a precision of 98.7% and recall of 97.48%. Leaf area exhibited strong linear coupling and directional causality, while angular responses showed weaker correlations but demonstrated localized synchronization. This study offers a methodological foundation for quantifying temporal dynamics in wind–leaf systems and provides theoretical insights for the adaptive control and optimization of intelligent spraying strategies. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 6462 KiB  
Article
Phenotypic Trait Acquisition Method for Tomato Plants Based on RGB-D SLAM
by Penggang Wang, Yuejun He, Jiguang Zhang, Jiandong Liu, Ran Chen and Xiang Zhuang
Agriculture 2025, 15(15), 1574; https://doi.org/10.3390/agriculture15151574 - 22 Jul 2025
Viewed by 187
Abstract
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive [...] Read more.
The acquisition of plant phenotypic traits is essential for selecting superior varieties, improving crop yield, and supporting precision agriculture and agricultural decision-making. Therefore, it plays a significant role in modern agriculture and plant science research. Traditional manual measurements of phenotypic traits are labor-intensive and inefficient. In contrast, combining 3D reconstruction technologies with autonomous vehicles enables more intuitive and efficient trait acquisition. This study proposes a 3D semantic reconstruction system based on an improved ORB-SLAM3 framework, which is mounted on an unmanned vehicle to acquire phenotypic traits in tomato cultivation scenarios. The vehicle is also equipped with the A * algorithm for autonomous navigation. To enhance the semantic representation of the point cloud map, we integrate the BiSeNetV2 network into the ORB-SLAM3 system as a semantic segmentation module. Furthermore, a two-stage filtering strategy is employed to remove outliers and improve the map accuracy, and OctoMap is adopted to store the point cloud data, significantly reducing the memory consumption. A spherical fitting method is applied to estimate the number of tomato fruits. The experimental results demonstrate that BiSeNetV2 achieves a mean intersection over union (mIoU) of 95.37% and a frame rate of 61.98 FPS on the tomato dataset, enabling real-time segmentation. The use of OctoMap reduces the memory consumption by an average of 96.70%. The relative errors when predicting the plant height, canopy width, and volume are 3.86%, 14.34%, and 27.14%, respectively, while the errors concerning the fruit count and fruit volume are 14.36% and 14.25%. Localization experiments on a field dataset show that the proposed system achieves a mean absolute trajectory error (mATE) of 0.16 m and a root mean square error (RMSE) of 0.21 m, indicating high localization accuracy. Therefore, the proposed system can accurately acquire the phenotypic traits of tomato plants, providing data support for precision agriculture and agricultural decision-making. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2545 KiB  
Article
Reliable Indoor Fire Detection Using Attention-Based 3D CNNs: A Fire Safety Engineering Perspective
by Mostafa M. E. H. Ali and Maryam Ghodrat
Fire 2025, 8(7), 285; https://doi.org/10.3390/fire8070285 - 21 Jul 2025
Viewed by 474
Abstract
Despite recent advances in deep learning for fire detection, much of the current research prioritizes model-centric metrics over dataset fidelity, particularly from a fire safety engineering perspective. Commonly used datasets are often dominated by fully developed flames, mislabel smoke-only frames as non-fire, or [...] Read more.
Despite recent advances in deep learning for fire detection, much of the current research prioritizes model-centric metrics over dataset fidelity, particularly from a fire safety engineering perspective. Commonly used datasets are often dominated by fully developed flames, mislabel smoke-only frames as non-fire, or lack intra-video diversity due to redundant frames from limited sources. Some works treat smoke detection alone as early-stage detection, even though many fires (e.g., electrical or chemical) begin with visible flames and no smoke. Additionally, attempts to improve model applicability through mixed-context datasets—combining indoor, outdoor, and wildland scenes—often overlook the unique false alarm sources and detection challenges specific to each environment. To address these limitations, we curated a new video dataset comprising 1108 annotated fire and non-fire clips captured via indoor surveillance cameras. Unlike existing datasets, ours emphasizes early-stage fire dynamics (pre-flashover) and includes varied fire sources (e.g., sofa, cupboard, and attic fires), realistic false alarm triggers (e.g., flame-colored objects, artificial lighting), and a wide range of spatial layouts and illumination conditions. This collection enables robust training and benchmarking for early indoor fire detection. Using this dataset, we developed a spatiotemporal fire detection model based on the mixed convolutions ResNets (MC3_18) architecture, augmented with Convolutional Block Attention Modules (CBAM). The proposed model achieved 86.11% accuracy, 88.76% precision, and 84.04% recall, along with low false positive (11.63%) and false negative (15.96%) rates. Compared to its CBAM-free baseline, the model exhibits notable improvements in F1-score and interpretability, as confirmed by Grad-CAM++ visualizations highlighting attention to semantically meaningful fire features. These results demonstrate that effective early fire detection is inseparable from high-quality, context-specific datasets. Our work introduces a scalable, safety-driven approach that advances the development of reliable, interpretable, and deployment-ready fire detection systems for residential environments. Full article
Show Figures

Figure 1

25 pages, 8560 KiB  
Article
Visual Point Cloud Map Construction and Matching Localization for Autonomous Vehicle
by Shuchen Xu, Kedong Zhao, Yongrong Sun, Xiyu Fu and Kang Luo
Drones 2025, 9(7), 511; https://doi.org/10.3390/drones9070511 - 21 Jul 2025
Viewed by 302
Abstract
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. [...] Read more.
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. However, conventional digital maps suffer from high construction costs, easy misalignment, and low localization accuracy. Thus, this paper proposes a visual point cloud map (VPCM) construction and matching localization for autonomous vehicles. We fuse multi-source information from vehicle-mounted sensors and the regional road network to establish the geographically high-precision VPCM. In the absence of satellite signals, we segment the prior VPCM on the road network based on real-time localization results, which accelerates matching speed and reduces mismatch probability. Simultaneously, by continuously introducing matching constraints of real-time point cloud and prior VPCM through improved iterative closest point matching method, the proposed solution can effectively suppress the drift error of the odometry and output accurate fusion localization results based on pose graph optimization theory. The experiments carried out on the KITTI datasets demonstrate the effectiveness of the proposed method, which can autonomously construct the high-precision prior VPCM. The localization strategy achieves sub-meter accuracy and reduces the average error per frame by 25.84% compared to similar methods. Subsequently, this method’s reusability and localization robustness under light condition changes and environment changes are verified using the campus dataset. Compared to the similar camera-based method, the matching success rate increased by 21.15%, and the average localization error decreased by 62.39%. Full article
Show Figures

Figure 1

20 pages, 47324 KiB  
Article
A Real-Time Cotton Boll Disease Detection Model Based on Enhanced YOLOv11n
by Lei Yang, Wenhao Cui, Jingqian Li, Guotao Han, Qi Zhou, Yubin Lan, Jing Zhao and Yongliang Qiao
Appl. Sci. 2025, 15(14), 8085; https://doi.org/10.3390/app15148085 - 21 Jul 2025
Viewed by 286
Abstract
Existing methods for detecting cotton boll diseases frequently exhibit high rates of both false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study [...] Read more.
Existing methods for detecting cotton boll diseases frequently exhibit high rates of both false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study proposes an enhanced YOLOv11n model (YOLOv11n-ECS) for improved detection accuracy. A dataset of cotton boll diseases under different lighting conditions and shooting angles in the field was constructed. To mitigate false negatives and false positives encountered by the original YOLOv11n model during detection, the EMA (efficient multi-scale attention) mechanism is introduced to enhance the weights of important features and suppress irrelevant regions, thereby improving the detection accuracy of the model. Partial Convolution (PConv) is incorporated into the C3k2 module to reduce computational redundancy and lower the model’s computational complexity while maintaining high recognition accuracy. Furthermore, to enhance the localization accuracy of diseased bolls, the original CIoU loss is replaced with Shape-IoU. The improved model achieves floating point operations (FLOPs), parameter count, and model size at 96.8%, 96%, and 96.3% of the original YOLOv11n model, respectively. The improved model achieves an mAP@0.5 of 85.6% and an mAP@0.5:0.95 of 62.7%, representing improvements of 2.3 and 1.9 percentage points, respectively, over the baseline YOLOv11n model. Compared with CenterNet, Faster R-CNN, YOLOv8-LSW, MSA-DETR, DMN-YOLO, and YOLOv11n, the improved model shows mAP@0.5 improvements of 25.7, 21.2, 5.5, 4.0, 4.5, and 2.3 percentage points, respectively, along with corresponding mAP@0.5:0.95 increases of 25.6, 25.3, 8.3, 2.8, 1.8, and 1.9 percentage points. Deployed on a Jetson TX2 development board, the model achieves a recognition speed of 56 frames per second (FPS) and an mAP of 84.2%, confirming its suitability for real-time detection. Furthermore, the improved model effectively reduces instances of both false negatives and false positives for diseased cotton bolls while yielding higher detection confidence, thus providing robust technical support for intelligent cotton boll disease detection. Full article
Show Figures

Figure 1

39 pages, 2628 KiB  
Article
A Decentralized Multi-Venue Real-Time Video Broadcasting System Integrating Chain Topology and Intelligent Self-Healing Mechanisms
by Tianpei Guo, Ziwen Song, Haotian Xin and Guoyang Liu
Appl. Sci. 2025, 15(14), 8043; https://doi.org/10.3390/app15148043 - 19 Jul 2025
Viewed by 436
Abstract
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This [...] Read more.
The rapid growth in large-scale distributed video conferencing, remote education, and real-time broadcasting poses significant challenges to traditional centralized streaming systems, particularly regarding scalability, cost, and reliability under high concurrency. Centralized approaches often encounter bottlenecks, increased bandwidth expenses, and diminished fault tolerance. This paper proposes a novel decentralized real-time broadcasting system employing a peer-to-peer (P2P) chain topology based on IPv6 networking and the Secure Reliable Transport (SRT) protocol. By exploiting the global addressing capability of IPv6, our solution simplifies direct node interconnections, effectively eliminating complexities associated with Network Address Translation (NAT). Furthermore, we introduce an innovative chain-relay transmission method combined with distributed node management strategies, substantially reducing reliance on central servers and minimizing deployment complexity. Leveraging SRT’s low-latency UDP transmission, packet retransmission, congestion control, and AES-128/256 encryption, the proposed system ensures robust security and high video stream quality across wide-area networks. Additionally, a WebSocket-based real-time fault detection algorithm coupled with a rapid fallback self-healing mechanism is developed, enabling millisecond-level fault detection and swift restoration of disrupted links. Extensive performance evaluations using Video Multi-Resolution Fidelity (VMRF) metrics across geographically diverse and heterogeneous environments confirm significant performance gains. Specifically, our approach achieves substantial improvements in latency, video quality stability, and fault tolerance over existing P2P methods, along with over tenfold enhancements in frame rates compared with conventional RTMP-based solutions, thereby demonstrating its efficacy, scalability, and cost-effectiveness for real-time video streaming applications. Full article
Show Figures

Figure 1

26 pages, 7857 KiB  
Article
Investigation of an Efficient Multi-Class Cotton Leaf Disease Detection Algorithm That Leverages YOLOv11
by Fangyu Hu, Mairheba Abula, Di Wang, Xuan Li, Ning Yan, Qu Xie and Xuedong Zhang
Sensors 2025, 25(14), 4432; https://doi.org/10.3390/s25144432 - 16 Jul 2025
Viewed by 299
Abstract
Cotton leaf diseases can lead to substantial yield losses and economic burdens. Traditional detection methods are challenged by low accuracy and high labor costs. This research presents the ACURS-YOLO network, an advanced cotton leaf disease detection architecture developed on the foundation of YOLOv11. [...] Read more.
Cotton leaf diseases can lead to substantial yield losses and economic burdens. Traditional detection methods are challenged by low accuracy and high labor costs. This research presents the ACURS-YOLO network, an advanced cotton leaf disease detection architecture developed on the foundation of YOLOv11. By integrating a medical image segmentation model, it effectively tackles challenges including complex background interference, the missed detection of small targets, and restricted generalization ability. Specifically, the U-Net v2 module is embedded in the backbone network to boost the multi-scale feature extraction performance in YOLOv11. Meanwhile, the CBAM attention mechanism is integrated to emphasize critical disease-related features. To lower the computational complexity, the SPPF module is substituted with SimSPPF. The C3k2_RCM module is appended for long–range context modeling, and the ARelu activation function is employed to alleviate the vanishing gradient problem. A database comprising 3000 images covering six types of cotton leaf diseases was constructed, and data augmentation techniques were applied. The experimental results show that ACURS-YOLO attains impressive performance indicators, encompassing a mAP_0.5 value of 94.6%, a mAP_0.5:0.95 value of 83.4%, 95.5% accuracy, 89.3% recall, an F1 score of 92.3%, and a frame rate of 148 frames per second. It outperforms YOLOv11 and other conventional models with regard to both detection precision and overall functionality. Ablation tests additionally validate the efficacy of each component, affirming the framework’s advantage in addressing complex detection environments. This framework provides an efficient solution for the automated monitoring of cotton leaf diseases, advancing the development of smart sensors through improved detection accuracy and practical applicability. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

26 pages, 3771 KiB  
Article
BGIR: A Low-Illumination Remote Sensing Image Restoration Algorithm with ZYNQ-Based Implementation
by Zhihao Guo, Liangliang Zheng and Wei Xu
Sensors 2025, 25(14), 4433; https://doi.org/10.3390/s25144433 - 16 Jul 2025
Viewed by 222
Abstract
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. [...] Read more.
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. Therefore, in order to improve the visibility and signal-to-noise ratio of remote sensing images based on CMOS imaging systems, this paper proposes a low-light remote sensing image enhancement method and a corresponding ZYNQ (Zynq-7000 All Programmable SoC) design scheme called the BGIR (Bilateral-Guided Image Restoration) algorithm, which uses an improved multi-scale Retinex algorithm in the HSV (hue–saturation–value) color space. First, the RGB image is used to separate the original image’s H, S, and V components. Then, the V component is processed using the improved algorithm based on bilateral filtering. The image is then adjusted using the gamma correction algorithm to make preliminary adjustments to the brightness and contrast of the whole image, and the S component is processed using segmented linear enhancement to obtain the base layer. The algorithm is also deployed to ZYNQ using ARM + FPGA software synergy, reasonably allocating each algorithm module and accelerating the algorithm by using a lookup table and constructing a pipeline. The experimental results show that the proposed method improves processing speed by nearly 30 times while maintaining the recovery effect, which has the advantages of fast processing speed, miniaturization, embeddability, and portability. Following the end-to-end deployment, the processing speeds for resolutions of 640 × 480 and 1280 × 720 are shown to reach 80 fps and 30 fps, respectively, thereby satisfying the performance requirements of the imaging system. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 21508 KiB  
Article
SPL-YOLOv8: A Lightweight Method for Rape Flower Cluster Detection and Counting Based on YOLOv8n
by Yue Fang, Chenbo Yang, Jie Li and Jingmin Tu
Algorithms 2025, 18(7), 428; https://doi.org/10.3390/a18070428 - 11 Jul 2025
Viewed by 350
Abstract
The flowering stage is a critical phase in the growth of rapeseed crops, and non-destructive, high-throughput quantitative analysis of rape flower clusters in field environments holds significant importance for rapeseed breeding. However, detecting and counting rape flower clusters remains challenging in complex field [...] Read more.
The flowering stage is a critical phase in the growth of rapeseed crops, and non-destructive, high-throughput quantitative analysis of rape flower clusters in field environments holds significant importance for rapeseed breeding. However, detecting and counting rape flower clusters remains challenging in complex field conditions due to their small size, severe overlapping and occlusion, and the large parameter sizes of existing models. To address these challenges, this study proposes a lightweight rape flower clusters detection model, SPL-YOLOv8. First, the model introduces StarNet as a lightweight backbone network for efficient feature extraction, significantly reducing computational complexity and parameter counts. Second, a feature fusion module (C2f-Star) is integrated into the backbone to enhance the feature representation capability of the neck through expanded spatial dimensions, mitigating the impact of occluded regions on detection performance. Additionally, a lightweight Partial Group Convolution Detection Head (PGCD) is proposed, which employs Partial Convolution combined with Group Normalization to enable multi-scale feature interaction. By incorporating additional learnable parameters, the PGCD enhances the detection and localization of small targets. Finally, channel pruning based on the Layer-Adaptive Magnitude-based Pruning (LAMP) score is applied to reduce model parameters and runtime memory. Experimental results on the Rapeseed Flower-Raceme Benchmark (RFRB) demonstrate that the SPL-YOLOv8n-prune model achieves a detection accuracy of 92.2% in Average Precision (AP50), comparable to SOTA methods, while reducing the giga floating point operations per second (GFLOPs) and parameters by 86.4% and 95.4%, respectively. The model size is only 0.5 MB and the real-time frame rate is 171 fps. The proposed model effectively detects rape flower clusters with minimal computational overhead, offering technical support for yield prediction and elite cultivar selection in rapeseed breeding. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

18 pages, 3556 KiB  
Article
Multi-Sensor Fusion for Autonomous Mobile Robot Docking: Integrating LiDAR, YOLO-Based AprilTag Detection, and Depth-Aided Localization
by Yanyan Dai and Kidong Lee
Electronics 2025, 14(14), 2769; https://doi.org/10.3390/electronics14142769 - 10 Jul 2025
Viewed by 503
Abstract
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based [...] Read more.
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based AprilTag detection, depth-aided 3D localization, and LiDAR-based orientation correction. A key contribution of this work is the construction of a custom AprilTag dataset featuring real-world visual disturbances, enabling the YOLOv8 model to achieve high-accuracy detection and ID classification under challenging conditions. To ensure precise spatial localization, 2D visual tag coordinates are fused with depth data to compute 3D positions in the robot’s frame. A LiDAR group-symmetry mechanism estimates heading deviation, which is combined with visual feedback in a hybrid PID controller to correct angular errors. A finite-state machine governs the docking sequence, including detection, approach, yaw alignment, and final engagement. Simulation and experimental results demonstrate that the proposed system achieves higher docking success rates and improved pose accuracy under various challenging conditions compared to traditional vision- or LiDAR-only approaches. Full article
Show Figures

Figure 1

27 pages, 12221 KiB  
Article
Retinal Vessel Segmentation Based on a Lightweight U-Net and Reverse Attention
by Fernando Daniel Hernandez-Gutierrez, Eli Gabriel Avina-Bravo, Mario Alberto Ibarra-Manzano, Jose Ruiz-Pinales, Emmanuel Ovalle-Magallanes and Juan Gabriel Avina-Cervantes
Mathematics 2025, 13(13), 2203; https://doi.org/10.3390/math13132203 - 5 Jul 2025
Viewed by 956
Abstract
U-shaped architectures have achieved exceptional performance in medical image segmentation. Their aim is to extract features by two symmetrical paths: an encoder and a decoder. We propose a lightweight U-Net incorporating reverse attention and a preprocessing framework for accurate retinal vessel segmentation. This [...] Read more.
U-shaped architectures have achieved exceptional performance in medical image segmentation. Their aim is to extract features by two symmetrical paths: an encoder and a decoder. We propose a lightweight U-Net incorporating reverse attention and a preprocessing framework for accurate retinal vessel segmentation. This concept could be of benefit to portable or embedded recognition systems with limited resources for real-time operation. Compared to the baseline model (7.7 M parameters), the proposed U-Net model has only 1.9 M parameters and was tested on the DRIVE (Digital Retinal Images for Vesselness Extraction), CHASE (Child Heart and Health Study in England), and HRF (High-Resolution Fundus) datasets for vesselness analysis. The proposed model achieved Dice coefficients and IoU scores of 0.7871 and 0.6318 on the DRIVE dataset, 0.8036 and 0.6910 on the CHASE-DB1 Retinal Vessel Reference dataset, as well as 0.6902 and 0.5270 on the HRF dataset, respectively. Notably, the integration of the reverse attention mechanism contributed to a more accurate delineation of thin and peripheral vessels, which are often undetected by conventional models. The model comprised 1.94 million parameters and 12.21 GFLOPs. Furthermore, during inference, the model achieved a frame rate average of 208 FPS and a latency of 4.81 ms. These findings support the applicability of the proposed model in real-world clinical and mobile healthcare environments where efficiency and Accuracy are essential. Full article
(This article belongs to the Special Issue Advanced Research in Image Processing and Optimization Methods)
Show Figures

Figure 1

Back to TopTop