Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = heterotrimeric G protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1273 KiB  
Perspective
Glucagon-like Peptide-1 Receptor (GLP-1R) Signaling: Making the Case for a Functionally Gs Protein-Selective GPCR
by Anastasios Lymperopoulos, Victoria L. Altsman and Renee A. Stoicovy
Int. J. Mol. Sci. 2025, 26(15), 7239; https://doi.org/10.3390/ijms26157239 - 26 Jul 2025
Viewed by 792
Abstract
Spurred by the enormous therapeutic success of glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP1-RAs) against diabetes and obesity, glucagon family receptor pharmacology has garnered a tremendous amount of interest. Glucagon family receptors, e.g., the glucagon receptor itself (GCGR), the GLP-1R, and the glucose-dependent insulinotropic [...] Read more.
Spurred by the enormous therapeutic success of glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP1-RAs) against diabetes and obesity, glucagon family receptor pharmacology has garnered a tremendous amount of interest. Glucagon family receptors, e.g., the glucagon receptor itself (GCGR), the GLP-1R, and the glucose-dependent insulinotropic peptide receptor (GIPR), belong to the incretin receptor superfamily, i.e., receptors that increase blood glucose-dependent insulin secretion. All incretin receptors are class B1 G protein-coupled receptors (GPCRs), coupling to the Gs type of heterotrimeric G proteins which activates adenylyl cyclase (AC) to produce cyclic adenosine monophosphate (cAMP). Most GPCRs undergo desensitization, i.e., uncouple from G proteins and internalize, thanks to interactions with the βarrestins (arrestin-2 and -3). Since the βarrestins can also mediate their own G protein-independent signaling, any given GPCR can theoretically signal (predominantly) either via G proteins or βarrestins, i.e., be a G protein- or βarrestin-“biased” receptor, depending on the bound ligand. A plethora of experimental evidence suggests that the GLP-1R does not undergo desensitization in physiologically relevant tissues in vivo, but rather, it produces robust and prolonged cAMP signals. A particular property of constant cycling between the cell membrane and caveolae/lipid rafts of the GLP-1R may underlie its lack of desensitization. In contrast, GIPR signaling is extensively mediated by βarrestins and the GIPR undergoes significant desensitization, internalization, and downregulation, which may explain why both agonists and antagonists of the GIPR exert the same physiological effects. Here, we discuss this evidence and make a case for the GLP-1R being a phenotypically or functionally Gs-selective receptor. We also discuss the implications of this for the development of GLP-1R poly-ligands, which are increasingly pursued for the treatment of obesity and other diseases. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 4638 KiB  
Article
Genome-Wide Identification, Evolution and Expression Analysis of the G-Protein Gene Family in Poplar (Populus alba × Populus glandulosa)
by Bobo Song, Qian Liu, Zitong Zeng, Yiyang Gu, Wenxin Ye, Fangfang Fu and Meiling Ming
Forests 2025, 16(5), 805; https://doi.org/10.3390/f16050805 - 12 May 2025
Viewed by 448
Abstract
Heterotrimeric G-proteins are key signal transduction mediators involved in regulating plant growth and development, and responses to various stress in plants. G-proteins are extensively investigated in model plants, such as Arabidopsis thaliana and Oryza sativa. However, the identification and function of G-proteins in [...] Read more.
Heterotrimeric G-proteins are key signal transduction mediators involved in regulating plant growth and development, and responses to various stress in plants. G-proteins are extensively investigated in model plants, such as Arabidopsis thaliana and Oryza sativa. However, the identification and function of G-proteins in woody species, particularly Populus, remain largely unexplored. In this study, we performed a genome-wide identification and comprehensive analysis of the G-protein gene family in poplar, aiming to reveal their evolutionary history, structural diversity and potential function roles. As a result, a total of 27 G-protein genes were identified in the poplar genome, including 18 Gα, 4 Gβ and 5 Gγ subunits. Phylogenetic analysis indicated that 27 G-protein genes were divided into three subgroups. Gene structure, conserved domain and motifs indicated the conserved nature of G-protein at sequence and structure. In addition, synteny analysis revealed that whole-genome duplication events contributing to the expansion of the G-protein gene family in poplar. Cis-regulatory element analysis indicated that many G-protein genes in poplar contain hormone and stress related motifs, suggesting that G-protein genes are involved in environmental adaptation. Expression profiling analysis demonstrated that G-protein genes exhibited tissue-specific expression and stress-responsive expression patterns, highlighting their potential regulatory roles in growth and development and responses to biotic and abiotic stresses. This study provides valuable insights into the poplar G-protein gene family and lays the foundation for further functional analyses, contributing to improving stress tolerance in forestry species. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

10 pages, 1851 KiB  
Article
i2 Induces Cell Migration in PC3 Prostate Cancer Cells in the Absence of Rac1 Activation
by Rarnice Johnson, Silvia Caggia and Shafiq A. Khan
Int. J. Mol. Sci. 2025, 26(6), 2663; https://doi.org/10.3390/ijms26062663 - 15 Mar 2025
Viewed by 840
Abstract
Metastatic prostate cancer occurs when the tumor spreads from the prostate gland to other parts of the body. Previous studies have shown that Gαi2, a subunit of the heterotrimeric G protein complex, plays a critical role in inducing cell migration and [...] Read more.
Metastatic prostate cancer occurs when the tumor spreads from the prostate gland to other parts of the body. Previous studies have shown that Gαi2, a subunit of the heterotrimeric G protein complex, plays a critical role in inducing cell migration and invasion in prostate cancer cells in response to diverse stimuli. Rac1 is a small rho-GTPase, which is activated by the phosphoinositide 3-kinase (PI3K)/AKT pathway and plays an essential role during cell migration. Previous studies have shown that the knockdown of Gαi2 attenuates cell migration without causing any reduction in basal Rac1 activity in both PC3 and DU145 cells, and has only marginal effects on the epidermal growth facotor (EGF)-induced increase in Rac1 activity. Therefore, Gαi2 may be involved in the regulation of cell motility and invasion independently or downstream of Rac1 activation. In this study, we investigated the possible mechanism of Gαi2 at the level of the Rac1-dependent activation of Wiskott-Aldrich Syndrome Protein)-family verprolin homologous protein2 (Wave2) and actin related protein 2/3 (Arp 2/3) proteins, downstream effectors of activated Rac1. PC3 cells with a stable overexpression of constitutively active Rac1 were transfected with control siRNA or Gαi2 siRNA to knockdown endogenous Gαi2 expression. Western blot analysis showed that the Rac1-dependent activation of Wave2 was impaired in the absence of Gαi2. The overexpression of constitutively active Gαi2 (Gαi2-Q205L) in PC3 cells significantly increased cell migration compared to cells transfected with control plasmids. In the parallel experiments, a specific Gαi2 inhibitor blocked Giα2-Q205L-induced cell migration in PC3 cells. Furthermore, the Rac1 inhibitor did not block increased cell migration in PC3 cells overexpressing constitutively active Gαi2. We conclude that activated Gαi2 plays a crucial role in cell migration in prostate cancer cells independent of Rac1 activation. Full article
(This article belongs to the Special Issue Molecular Research in Prostate Cancer)
Show Figures

Figure 1

35 pages, 3833 KiB  
Review
Role of GPCR Signaling in Anthracycline-Induced Cardiotoxicity
by Nimish Biswal, Ritika Harish, Minahil Roshan, Sathvik Samudrala, Xuanmao Jiao, Richard G. Pestell and Anthony W. Ashton
Cells 2025, 14(3), 169; https://doi.org/10.3390/cells14030169 - 22 Jan 2025
Cited by 1 | Viewed by 1945
Abstract
Anthracyclines are a class of chemotherapeutics commonly used to treat a range of cancers. Despite success in improving cancer survival rates, anthracyclines have dose-limiting cardiotoxicity that prevents more widespread clinical utility. Currently, the therapeutic options for these patients are limited to the iron-chelating [...] Read more.
Anthracyclines are a class of chemotherapeutics commonly used to treat a range of cancers. Despite success in improving cancer survival rates, anthracyclines have dose-limiting cardiotoxicity that prevents more widespread clinical utility. Currently, the therapeutic options for these patients are limited to the iron-chelating agent dexrazoxane, the only FDA-approved drug for anthracycline cardiotoxicity. However, the clinical use of dexrazoxane has failed to replicate expectations from preclinical studies. A limited list of GPCRs have been identified as pathogenic in anthracycline-induced cardiotoxicity, including receptors (frizzled, adrenoreceptors, angiotensin II receptors) previously implicated in cardiac remodeling in other pathologies. The RNA sequencing of iPSC-derived cardiac myocytes from patients has increased our understanding of the pathogenic mechanisms driving cardiotoxicity. These data identified changes in the expression of novel GPCRs, heterotrimeric G proteins, and the regulatory pathways that govern downstream signaling. This review will capitalize on insights from these experiments to explain aspects of disease pathogenesis and cardiac remodeling. These data provide a cornucopia of possible unexplored potential pathways by which we can reduce the cardiotoxic side effects, without compromising the anti-cancer effects, of doxorubicin and provide new therapeutic options to improve the recovery and quality of life for patients undergoing chemotherapy. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

15 pages, 1521 KiB  
Article
Disease-Associated Dopamine Receptor D2 Variants Exhibit Functional Consequences Depending on Different Heterotrimeric G-Protein Subunit Combinations
by Nele Niebrügge, Olga Trovato, Roman Praschberger and Andreas Lieb
Biomedicines 2025, 13(1), 46; https://doi.org/10.3390/biomedicines13010046 - 28 Dec 2024
Viewed by 1599
Abstract
Background: Dopamine receptors (DRs) are G-protein-coupled receptors (GPCRs) found in the central nervous system (CNS). DRs are essential for mediating various downstream signaling cascades and play a critical role in regulating the dopaminergic nigrostriatal pathway, which is involved in motor control. Recently, mutations [...] Read more.
Background: Dopamine receptors (DRs) are G-protein-coupled receptors (GPCRs) found in the central nervous system (CNS). DRs are essential for mediating various downstream signaling cascades and play a critical role in regulating the dopaminergic nigrostriatal pathway, which is involved in motor control. Recently, mutations in DRD2 (WT), p.Ile212Phe (I212F), and p.Met345Arg (M345R) have been associated with hyperkinetic movement disorders and shown to alter heterotrimeric G-protein complex signaling and β-arrestin recruitment. Methods: To conduct a detailed investigation of the I212F and M345R functional phenotypes, we used the TRansdUcer PATHway (TRUPATH) assay to study heterotrimeric G-protein recruitment and the Parallel Receptorome Expression and Screening via Transcriptional Output (PRESTO-Tango) assay to evaluate transcriptional activation following arrestin translocation for β-arrestin recruitment. Results: In our study, we could confirm the reported mutant’s loss-of-function phenotype in β-arrestin 2 recruitment (reduced agonist potency and decreased maximal signaling efficacy in comparison to the WT). However, a detailed analysis of basal/constitutive activity also revealed a gain-of-function phenotype for mutant M345R. For a more comprehensive investigation of heterotrimeric G-protein complex signaling, we investigated the impact of WT mutants in combination with (i) a specifically suggested assay, and (ii) the most abundantly expressed heterotrimeric G-protein complex combinations in WT receptor-enriched regions. We were able to confirm the reported gain-of-function phenotype by Rodriguez-Contreras et al. and extend it by the use of the most abundant heterotrimeric G-protein subunits, GαoA and Gαi1, β1 and β2, and γ3 and γ7, in mouse and human basal ganglia. Conclusions: Although our results indicate that the interaction of the two variants with the most highly expressed heterotrimeric G-protein complex subunit combinations also results in a gain-of-function phenotype, they also clearly demonstrate that the phenotype can be significantly altered, dependent on heterotrimeric G-protein complex expression. Full article
(This article belongs to the Special Issue Dopamine Signaling Pathway in Health and Disease—2nd Edition)
Show Figures

Figure 1

23 pages, 1440 KiB  
Review
Direct Vascular Effects of Angiotensin II (A Systematic Short Review)
by György L. Nádasy, András Balla, Gabriella Dörnyei, László Hunyady and Mária Szekeres
Int. J. Mol. Sci. 2025, 26(1), 113; https://doi.org/10.3390/ijms26010113 - 26 Dec 2024
Cited by 5 | Viewed by 3677
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects [...] Read more.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Health and Diseases)
Show Figures

Figure 1

16 pages, 3457 KiB  
Article
Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses
by Ailing Han, Zhengyuan Xu, Zhenyu Cai, Yuling Zheng, Mingjiong Chen, Liyuan Wu and Qiufang Shen
Plants 2024, 13(24), 3521; https://doi.org/10.3390/plants13243521 - 17 Dec 2024
Cited by 3 | Viewed by 1280
Abstract
Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental [...] Read more.
Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis. Phylogenetic analysis classified these genes into four distinct subgroups with obvious evolutionary relationships. Further analysis on gene structure, protein motif, and structure indicated that G-proteins within each evolutionary branch exhibited similar exon-intron organization, conserved motif patterns, and structural features. Collinearity analysis showed no significant collinear relationships among those G-protein genes, indicating a unique evolutionary trajectory within barley. Moreover, cis-regulatory elements detected in the upstream sequences of these genes were involved in response to plant hormones and signaling molecules. Expression analyses revealed tissue-specific expression patterns and differential regulation in response to abiotic stresses. The expression patterns of G-protein genes were further validated using a quantitative real-time PCR (qRT-PCR) technique, indicating the reliability of transcriptomic data, as well as special responses to salt, drought, and waterlogging stresses. These findings may provide underlying mechanisms by which G-protein genes participate in salt tolerance of barley, and also highlight candidate genes for potential genetic engineering applications in improving crop resilience to salinity stress. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

13 pages, 1181 KiB  
Review
Trade-Off Regulation in Plant Growth and Stress Responses Through the Role of Heterotrimeric G Protein Signaling
by Horim Lee
Plants 2024, 13(22), 3239; https://doi.org/10.3390/plants13223239 - 19 Nov 2024
Cited by 4 | Viewed by 1684
Abstract
Unlike animals, plants are sessile organisms that cannot migrate to more favorable conditions and must constantly adapt to a variety of biotic and abiotic stresses. Therefore, plants exhibit developmental plasticity to cope, which is probably based on the underlying trade-off mechanism that allocates [...] Read more.
Unlike animals, plants are sessile organisms that cannot migrate to more favorable conditions and must constantly adapt to a variety of biotic and abiotic stresses. Therefore, plants exhibit developmental plasticity to cope, which is probably based on the underlying trade-off mechanism that allocates energy expenditure between growth and stress responses to achieve appropriate growth and development under different environmental conditions. Plant heterotrimeric G protein signaling plays a crucial role in the trade-off involved in the regulation of normal growth and stress adaptation. This review examines the composition and signaling processes of heterotrimeric G proteins in plants, detailing how they balance growth and adaptive responses in plant immunity and thermomorphogenesis through recent advances in the field. Understanding the trade-offs associated with plant G protein signaling will have significant implications for agricultural innovation, particularly in the development of crops with improved resilience and minimal growth penalties under environmental stress. Full article
Show Figures

Figure 1

19 pages, 4525 KiB  
Article
Mechanistic Insights into Substrate Recognition of Human Nucleoside Diphosphate Kinase C Based on Nucleotide-Induced Structural Changes
by Rezan Amjadi, Sebastiaan Werten, Santosh Kumar Lomada, Clara Baldin, Klaus Scheffzek, Theresia Dunzendorfer-Matt and Thomas Wieland
Int. J. Mol. Sci. 2024, 25(18), 9768; https://doi.org/10.3390/ijms25189768 - 10 Sep 2024
Cited by 1 | Viewed by 1295
Abstract
Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a [...] Read more.
Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a 1.25 Å resolution structure of human homohexameric NDPK-C bound to ADP and describe the yet unknown complexes formed with GDP, UDP and cAMP, all obtained at a high resolution via X-ray crystallography. Each nucleotide represents a distinct group of mono- or diphosphate purine or pyrimidine bases. We analyzed different NDPK-C nucleotide complexes in the presence and absence of Mg2+ and explain how this ion plays an essential role in NDPKs’ phosphotransferase activity. By analyzing a nucleotide-depleted NDPK-C structure, we detected conformational changes upon substrate binding and identify flexible regions in the substrate binding site. A comparison of NDPK-C with other human isoforms revealed a strong similarity in the overall composition with regard to the 3D structure, but significant differences in the charge and hydrophobicity of the isoforms’ surfaces. This may play a role in isoform-specific NDPK interactions with ligands and/or important complex partners like other NDPK isoforms, as well as monomeric and heterotrimeric G proteins. Considering the recently discovered role of NDPK-C in different pathologies, these high-resolution structures thus might provide a basis for interaction studies with other proteins or small ligands, like activators or inhibitors. Full article
Show Figures

Figure 1

16 pages, 27820 KiB  
Article
Gα Solicits OsNYC4 and GW2-WG1-OsbZIP47 Modules to Regulate Grain Size in Rice (Oryza sativa L.)
by Shiwei Ma, Yiqiong Sun, Xuan Chen, Jiayi Guo, Shuhong Wu, Guofeng Wu, Guanpeng Huang, Manegdebwaoga Arthur Fabrice Kabore, Samuel Tareke Woldegiorgis, Yufang Ai, Lina Zhang, Wei Liu and Huaqin He
Agronomy 2024, 14(7), 1514; https://doi.org/10.3390/agronomy14071514 - 12 Jul 2024
Viewed by 1310
Abstract
Grain size is one of the critical factors determining rice yield. Previous studies have found the grain-size-regulating function of Gα in rice. However, the regulatory mechanism underlying the development of rice grain mediated by Gα is still unclear. To reveal the functional mechanism [...] Read more.
Grain size is one of the critical factors determining rice yield. Previous studies have found the grain-size-regulating function of Gα in rice. However, the regulatory mechanism underlying the development of rice grain mediated by Gα is still unclear. To reveal the functional mechanism of Gα in grain size regulation, a mutant of Gα (Gα-Cas9) was firstly constructed through a CRISPR/Cas9 strategy and was then grown in a greenhouse and field. The results showed that the seed length, plant height, 1000-grain weight, and spike length were significantly decreased in Gα-Cas9 compared to wild-type (WT) Pi-4b. During the grain filling stage, the increase in the grain dry weight of Pi-4b occurred earlier than that of Gα-Cas9. The total starch content and amylose content of matured grains of Pi-4b were higher than those of Gα-Cas9. Secondly, transcriptome sequencing analysis of Gα-Cas9 and Pi-4b during grain filling was performed to elucidate the functional pathways regulated by Gα. In total, 2867 and 4534 differentially expressed genes (DEGs) were discovered at 5 DAF and 10 DAF, and the starch and sucrose metabolism pathway enriched by DEGs was involved in grain size regulation mediated by Gα. Gα regulated the expression of starch-synthesis-related genes during grain filling, and the Gα protein interacted with OsNYC4 to trigger the sugar signaling pathway to promote starch accumulation in grain. Additionally, the GW2-WG1-OsbZIP47 pathway was switched off by Gα to relieve the inhibition of rice grain development. In this study, the results should provide new insights into the G protein signal transduction pathway. Full article
(This article belongs to the Special Issue Genetic and Molecular Research on Rice Grain Yield)
Show Figures

Figure 1

14 pages, 3063 KiB  
Article
KCTD Proteins Have Redundant Functions in Controlling Cellular Growth
by Robert Rizk, Dominic Devost, Darlaine Pétrin and Terence E. Hébert
Int. J. Mol. Sci. 2024, 25(9), 4993; https://doi.org/10.3390/ijms25094993 - 3 May 2024
Viewed by 2109
Abstract
We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout [...] Read more.
We explored the functional redundancy of three structurally related KCTD (Potassium Channel Tetramerization Domain) proteins, KCTD2, KCTD5, and KCTD17, by progressively knocking them out in HEK 293 cells using CRISPR/Cas9 genome editing. After validating the knockout, we assessed the effects of progressive knockout on cell growth and gene expression. We noted that the progressive effects of knockout of KCTD isoforms on cell growth were most pervasive when all three isoforms were deleted, suggesting some functions were conserved between them. This was also reflected in progressive changes in gene expression. Our previous work indicated that Gβ1 was involved in the transcriptional control of gene expression, so we compared the gene expression patterns between GNB1 and KCTD KO. Knockout of GNB1 led to numerous changes in the expression levels of other G protein subunit genes, while knockout of KCTD isoforms had the opposite effect, presumably because of their role in regulating levels of Gβ1. Our work demonstrates a unique relationship between KCTD proteins and Gβ1 and a global role for this subfamily of KCTD proteins in maintaining the ability of cells to survive and proliferate. Full article
Show Figures

Figure 1

15 pages, 5093 KiB  
Article
Conserved Role of Heterotrimeric G Proteins in Plant Defense and Cell Death Progression
by Parastoo Karimian, Yuri Trusov and Jose Ramon Botella
Genes 2024, 15(1), 115; https://doi.org/10.3390/genes15010115 - 18 Jan 2024
Cited by 5 | Viewed by 2114
Abstract
Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G [...] Read more.
Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gβ, and Gγ. In Arabidopsis, the Gβγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gβ exhibit constitutively active defense responses, suggesting a contrasting negative role for Gβ in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gβγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gβγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2604 KiB  
Article
i2 Protein Inhibition Blocks Chemotherapy- and Anti-Androgen-Induced Prostate Cancer Cell Migration
by Silvia Caggia, Alexis Johnston, Dipak T. Walunj, Aanya R. Moore, Benjamin H. Peer, Ravyn W. Everett, Adegboyega K. Oyelere and Shafiq A. Khan
Cancers 2024, 16(2), 296; https://doi.org/10.3390/cancers16020296 - 10 Jan 2024
Cited by 5 | Viewed by 2002
Abstract
We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. [...] Read more.
We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. In this study, we have identified potent, metabolically stable, second generation Gαi2 inhibitors which inhibit cell migration in prostate cancer cells. Recent studies have shown that chemotherapy can induce the cancer cells to migrate to distant sites to form metastases. In the present study, we determined the effects of taxanes (docetaxel), anti-androgens (enzalutamide and bicalutamide) and histone deacetylase (HDAC) inhibitors (SAHA and SBI-I-19) on cell migration in prostate cancer cells. All treatments induced cell migration, and simultaneous treatments with new Gαi2 inhibitors blocked their effects on cell migration. We concluded that a combination treatment of Gαi2 inhibitors and chemotherapy could blunt the capability of cancer cells to migrate and form metastases. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

11 pages, 671 KiB  
Entry
Interaction of Prokineticin Receptors with Accessory Proteins
by Roberta Lattanzi and Rossella Miele
Encyclopedia 2023, 3(4), 1498-1508; https://doi.org/10.3390/encyclopedia3040107 - 30 Nov 2023
Cited by 1 | Viewed by 2132
Definition
G protein-coupled receptors (GPCRs) are transmembrane proteins that mediate the intracellular pathway of signals not only through heterotrimeric GTP-binding proteins (G proteins) but also through their associations with a variety of additional partner proteins. Prokineticin receptors 1 (PKR1) and 2 (PKR2) are new [...] Read more.
G protein-coupled receptors (GPCRs) are transmembrane proteins that mediate the intracellular pathway of signals not only through heterotrimeric GTP-binding proteins (G proteins) but also through their associations with a variety of additional partner proteins. Prokineticin receptors 1 (PKR1) and 2 (PKR2) are new members of the GPCRs whose ligands are the novel chemokines prokineticin 1 (PK1) and prokineticin 2 (PK2). The multiplicity of G proteins coupled to PKRs, the ability of PKR2 to heterodimerize, the interaction of PKR2 with accessory proteins, and the existence of alternative splice isoforms of PKR2/PK2 explain the complexity of the system in the signal transduction pathway and, consequently, in the modulation of various physiological and pathological functions. Knowledge of these mechanisms provides the basis for the development of targeted drugs with therapeutic efficacy in PK-dependent diseases. Full article
(This article belongs to the Section Medicine & Pharmacology)
Show Figures

Graphical abstract

9 pages, 268 KiB  
Editorial
From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt—The Biological Roller Coaster to Which the Renin–Angiotensin System Has Had to Adapt: An Editorial
by György L. Nádasy, András Balla and Mária Szekeres
Biomedicines 2023, 11(11), 3004; https://doi.org/10.3390/biomedicines11113004 - 9 Nov 2023
Cited by 2 | Viewed by 1345
Abstract
Angiotensin II (Ang II) is a hormone with much more complex actions than is typical for other agonists with heterotrimeric G protein-coupled receptors (GPCRs) [...] Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology)
Back to TopTop