From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt—The Biological Roller Coaster to Which the Renin–Angiotensin System Has Had to Adapt: An Editorial
1. Pleiotropic Effects of Ang II
2. The Natural History of Water and Salt Balance
3. The Natural History of the Elements of RAS
4. Minor Variabilities of the Human RAS Genes
5. The Diverse Functions of AT1R
6. The Role of Ang II in Maintaining Blood Pressure under Basal Conditions
7. The Role of Ang II in Maintaining Blood Pressure under Extreme Conditions
8. Salt Appetite, Salt Preference and the Overconsumption of Salt
9. The RAS as a Pharmacological Target in Large Populations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunyady, L.; Catt, K.J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. (Review). Mol. Endocrinol. 2006, 20, 953–970. [Google Scholar] [CrossRef]
- Toth, A.; Turu, G.; Hunyady, L.; Balla, A. Novel mechanisms of G-protein.coupled receptors functions: QT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract. Red Clin. Endocrynol. Metabol. 2018, 32, 69–82. [Google Scholar] [CrossRef]
- Gem, J.B.; Kovacs, K.B.; Szalai, L.; Szakadati, G.; Porkolab, E.; Szalai, B.; Turu, G.; Toth, A.D.; Szekeres, M.; Hunyady, L.; et al. Characterization of Type 1 Angiotensin receptor activation induced dual-specificity MAPK phosphatase gene expression changes in rat vascular smooth muscle cells. Cells 2021, 10, 3538. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanism of vascular aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef]
- Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Triggiani, V. Vasopressin secretion control: Central neural path-ways, neurotransmitters and effects of drugs. Curr. Pharm. Design 2012, 18, 4714–4724. [Google Scholar] [CrossRef]
- Iovino, M.; Messana, T.; Lisco, G.; Vanacore, A.; Giagulli, V.A.; Guastamacchia, E.; DePergola, G.; Triggiani, V. Signal trans-duction of mineralocorticoid and angiotensin II receptors in the central control of sodium appetite: A narrative review. Internatl J. Mol. Sci. 2021, 22, 11735. [Google Scholar] [CrossRef]
- Miotto, D.S.; Duchatsch, F.; Dionizio, A.; Buzalaf, M.A.R.; Amaral, S.L. Physical training vs. perindopril treatment on arterial stiffening of spontaneously hypertensive rats: A proteomic analysis and possible mechanisms. Biomedicines 2023, 11, 1381. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Jain, M.S.; Petukhov, P.A.; Kurilova, O.V.; Ilinsky, V.V.; Trakhtman, P.E.; Dadali, E.L.; Samokhodskaya, L.M.; Kamalov, A.A.; Kost, O.A. Blood ACE phenotyping for personalized medicine: Revelation of patients with conforma-tionally altered ACE. Biomedicines 2023, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, E.; Cojocaru, C.; Vlad, C.-E.; Eva, L. Role of the Renin-Angiotensin System in long COVID’s cardiovascular injuries. Biomedicines 2023, 11, 2004. [Google Scholar] [CrossRef] [PubMed]
- Colbert, E.H. Evolution of the Vertebrates, 2nd ed.; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Takei, Y. Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn. J. Physiol. 2000, 50, 171–186. [Google Scholar] [CrossRef]
- Smith, H.W. From Fish to Philosopher; The Story of Our Internal Environment; Little, Brown: Boston, MA, USA, 1953. [Google Scholar]
- Takei, Y.; Wong, M.K.-S.; Pipil, S.; Ozaki, H.; Suzuki, Y.; Iwasaki, W.; Kusakabe, M. Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater. Am. J. Physiol. Regul. Physiol. 2017, 312, R231–R244. [Google Scholar] [CrossRef] [PubMed]
- Dantzler, W.H. Comparative aspects of renal function. In The Kidney: Physiology and Pathophysiology, 2nd ed.; Seldin, D.W., Giemiesch, G., Eds.; Raven Press: New York, NY, USA, 1992; pp. 885–942. [Google Scholar]
- De Martino, C.; Zamboni, L.L. A morphologic study of the mesonephros of the human embryo. J. Ultrastruct. Res. 1966, 16, 399–427. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H. Renin-angiotensin system in vertebrates: Phylogenetic view of structure and function. (Review). Anat. Sci. Int. 2017, 92, 215–247. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H. Angiotensin receptors—evolutionary overview and perspectives. Review. Comp. Biochem. Physiol. Part. A 2001, 128, 11–30. [Google Scholar] [CrossRef]
- Riviere, G.; Michaud, A.; Corradi, H.R.; Sturrock, E.D.; Acharya, K.R.; Cogez, V.; Bohin, J.P.; Vieau, D.; Corvol, P. Character-ization of the first angiotensin-converting-like enzyme in bacteria: Ancestor ACE is already active. Gene 2007, 399, 81–90. [Google Scholar] [CrossRef]
- Riviere, G. (Angiotensin converting enzyme: A protein conserved during evolution. Review) (French). J. Societ Biol. 2009, 203, 281–293. [Google Scholar]
- Moskowitz, D.W.; Johnson, F.E. The central role of angiotensin I-converting enzyme in vertebrate pathophysiology. Curr. Top. Med. Chem. 2004, 4, 1443–1454. [Google Scholar] [CrossRef]
- Armour, K.J.; O’Toole, L.B.; Hazon, N. Mechanisms of ACTH- and angiotensin II stimulated 1 alpha-hydroxycorticosterone secretion in the dogfish, Scyliorhynus canicula. J. Mol. Endocrinol. 1993, 10, 235–244. [Google Scholar] [CrossRef]
- Lio, P.; Vannucci, M. Investigating the evolution and structure of chemokine receptors. Gene 2003, 317, 29–37. [Google Scholar] [CrossRef]
- Bolanos, J.; DeLeon, L.F.; Ochoa, E.; Darias, J.; Raja, H.A.; Shearer, C.A.; Miller, A.N.; Vanderheyden, P.; Porras-Alfaro, A.; Caballero-George, C. Phylogenetic diversity of sponge-associated fungi from the Cariibean and the Pacific of Panama and their in vitro effect on angiotensin and endothelin receptors. Marine Biotechnol. 2015, 17, 533–564. [Google Scholar] [CrossRef]
- Telenti, A.; Hodcroft, E.B.; Robertson, D.L. The evolution biology of SARS-CoV-2 variants. (Review). Cold Spring Harbor Perspect Med. 2022, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Tiwari, A.; Pande, V.; Sinha, A. Evolutionary trilogy of malaria, angiotensin II and hypertension: Deeper insights and the way forward. J. Hum. Hypertens. 2021, 36, 344–351. [Google Scholar] [CrossRef]
- Yuan, Y.; Meng, L.; Zhou, Y.; Lu, N. Genetic polymorphism of angiotensin-converting enzyme and hypertrophic cardio-myopathy risk. Medicine 2017, 96, 48. [Google Scholar] [CrossRef] [PubMed]
- Bleumink, G.S.; Schut, A.F.; Sturkenboom, M.C.; Deckers, J.W.; van Duijn, C.M.; Stricker, B.H. Genetic polymorphisms and heart failure. Genet Med. 2004, 6, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, X.; Zhou, Y.; Shang, X.; Yu, H. The genetic risk factors for pregnancy-induced hypertension: Evidence from genetic polymorphisms. Review. FASEB J. 2022, 36, e22413. [Google Scholar] [CrossRef]
- Kumar, A.; Sarde, S.J.; Bhandari, A. Revising angiotensinogen from phylogenetic and genetic variants perspectives. Biochem. Biophys. Res. Commun. 2014, 446, 504–518. [Google Scholar] [CrossRef]
- Szekeres, M.; Nádasy, G.L.; Turu, G.; Süpeki, K.; Szidonya, L.; Buday, L.; Chaplin, T.; Clark, A.J.L.; Hunyady, L. Angiotensin II-induced expression of brain-derived neurotrophic factor in human and rat adrenocortical cells. Endocrinology 2010, 151, 1695–1703. [Google Scholar] [CrossRef]
- Nadasy, G.L.; Varbiro, S.; Szekeres, M.; Kocsis, A.; Szekacs, B.; Monos, E.; Kollai, M. Biomechanics of resistance artery wall remodeling in angiotensin-II hypertension and subsequent recovery. Kidney Blood Press. Res. 2010, 33, 37–47. [Google Scholar] [CrossRef]
- Monori-Kiss, A.; Antal, P.; Szekeres, M.; Varbiro, S.; Fees, A.; Szekacs, B.; Nadasy, G.L. Morphological remodeling of the intramural coronary resistance artery network geometry in chronically Angiotensin II infused hypertensive female rats. Heliyon 2020, 6, e03807. [Google Scholar] [CrossRef]
- Turu, G.; Simon, A.; Gyombolai, P.; Szidonya, L.; Bagdy, G.; Lenkei, Z.; Hunyady, L. The role of diacylglycerol lipase in con-stitutive and angiotensin AT1 receptor-stimulated cannabinoid CB1 receptor activity. J. Biol. Chem. 2007, 282, 7753–7757. [Google Scholar] [CrossRef]
- Szekeres, M.; Nadasy, G.L.; Turu, G.; Soltesz-Katona, E.; Toth, Z.E.; Balla, A.; Catt, K.J.; Hunyady, L. Angiotensin II induces vascular endocannabinoid release which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. J. Biol. Chem. 2012, 287, 31540–31550. [Google Scholar] [CrossRef] [PubMed]
- Szekeres, M.; Nadasy, G.L.; Soltesz-Katona, E.; Hunyady, L. Control of myogenic tone and agonist induced contraction of intramural coronary resistance arterioles by cannabinoid type 1 receptors and endocannabinoids. Prostaglandins Other Lipid Mediat. 2018, 134, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Szekeres, M.; Nadasy, G.L.; Turu, G.; Soltesz-Katona, E.; Benyo, Z.; Offermanns, S.; Ruisanchez, E.; Szabo, E.; Takats, Z.; Batkai, S.; et al. Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signal-ing-induced vasoconstriction and hypertension. Mol. Cell Endocrinol. 2015, 403, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Miklos, Z.; Wafa, D.; Nadasy, G.L.; Toth, Z.E.; Besztercei, B.; Dornyei, G.; Laska, Z.; Benyo, Z.; Ivanics, T.; Hunyady, L.; et al. Angiotensin II-induced cardiac effects are modulated by endocannabinoid-mediated CB1 receptor activation. Cells 2021, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dietrich, N.; Kornfeld, K. Angiotensin Converting Enzyme (ACE) inhibitor extends Caenorhabditis elegans life span. PLoS Genet. 2016, 12, e1005866. [Google Scholar] [CrossRef] [PubMed]
- Takimoto-Ohnishi, E.; Murakami, K. Renin–angiotensin system research: From molecules to the whole body. J. Physiol. Sci. 2019, 69, 581–587. [Google Scholar] [CrossRef]
- Christie, G.A.; Lucas, C.; Bateman, D.N.; Waring, W.S. Redefining the ACE-inhibitor dose-response relationship: Substantial blood pressure lowering after massive doses. Eur. J. Clin. Pharmacol. 2006, 62, 989–993. [Google Scholar] [CrossRef]
- Gleeson, P.J.; Crippa, I.A.; Mongkolpun, W.; Cavicchi, F.Z.; Meerhaghe, T.V.; Brimioulle, S.; Taccone, F.S.; Vincent, J.-L.; Creteur, J. Renin as a marker of tissue-perfusion and prognosis in critically ill patients. Crit. Care Med. 2019, 47, 152–158. [Google Scholar] [CrossRef]
- Reschreiter, H.; Kowarik, K. Bronze age mining in Hallstatt. A new picture of everyday life in the salt mines and beyond. Archeol. Austriat 2019, 103, 99–136. [Google Scholar]
- Roberts, W.C. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am. J. Cardiol. 2001, 88, 1338–1346. [Google Scholar] [CrossRef]
- Brown, I.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Salt Reduction. Available online: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (accessed on 1 October 2023).
- Storn, B.I.; Anderson, C.A.; Ix, J.H. Sodium reduction in populations insights from the Institute of Medicine Committee. JAMA 2013, 310, 31–32. [Google Scholar]
- Schweda, F. Salt feed-back on the renin-angiotensin-aldosterone system (Review). Pflugers Arch. Eur. J. Physiol. 2015, 467, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Balafa, O.; Kalaitzidis, R.G. Salt sensitivity and hypertension. J. Hum. Hypertens. 2021, 35, 184–192. [Google Scholar] [CrossRef]
- Kanbay, M.; Chen, Y.; Solak, Y.; Sanders, P.W. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr. Opin. Nephrol. Hypertens. 2011, 20, 37–43. [Google Scholar] [CrossRef]
- He, F.J.; McGregor, G.A. Effect of longer-term salt reduction on blood pressure. (Review). Cochrane Database Syst. Rev. 2004, 3, CD004937. [Google Scholar]
- Zidek, W. Can salt substitution or reduction replace pharmaceuticals for arterial hypertension? Review. Innere Medizin 2022, 63, 1097–1104. [Google Scholar] [CrossRef]
- Kantor, E.D.; Rehm, C.D.; Haas, J.S.; Chan, A.T.; Giovannucci, E.L. Trends in drug use among adults in the United States from 1999–2012. JAMA 2015, 314, 1818–1831. [Google Scholar] [CrossRef]
- Rouette, J.; McDonald, E.G.; Schuster, T.; Brophy, J.M.; Azoulay, L. Treatment and prescribing trends of antihypertensive drugs in 2.7 million UK primary care patients over 1 years: A population-based cohort study. BMJ Open 2022, 12, e057510. [Google Scholar] [CrossRef]
- Jiao, T.; Platt, R.; Douros, A.; Filion, K.B. Prescription patterns for the use of antihypertensive drugs for primary prevention among patients with hypertension in the United Kingdom. Am. J. Hypertens. 2021, 35, 42–53. [Google Scholar] [CrossRef]
- Sundball, J.; Adelborg, K.; Mansfield, K.E.; Tomlinson, L.A.; Schmidt, M. Seventeen-year nationwide trends in antihypertensive drug use in Denmark. Am. J. Cardiol. 2017, 120, 2193–2200. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nádasy, G.L.; Balla, A.; Szekeres, M. From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt—The Biological Roller Coaster to Which the Renin–Angiotensin System Has Had to Adapt: An Editorial. Biomedicines 2023, 11, 3004. https://doi.org/10.3390/biomedicines11113004
Nádasy GL, Balla A, Szekeres M. From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt—The Biological Roller Coaster to Which the Renin–Angiotensin System Has Had to Adapt: An Editorial. Biomedicines. 2023; 11(11):3004. https://doi.org/10.3390/biomedicines11113004
Chicago/Turabian StyleNádasy, György L., András Balla, and Mária Szekeres. 2023. "From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt—The Biological Roller Coaster to Which the Renin–Angiotensin System Has Had to Adapt: An Editorial" Biomedicines 11, no. 11: 3004. https://doi.org/10.3390/biomedicines11113004
APA StyleNádasy, G. L., Balla, A., & Szekeres, M. (2023). From Living in Saltwater to a Scarcity of Salt and Water, and Then an Overabundance of Salt—The Biological Roller Coaster to Which the Renin–Angiotensin System Has Had to Adapt: An Editorial. Biomedicines, 11(11), 3004. https://doi.org/10.3390/biomedicines11113004