Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,120)

Search Parameters:
Keywords = heritage digitization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10814 KiB  
Article
Exploring How Micro-Computed Tomography Imaging Technology Impacts the Preservation of Paleontological Heritage
by Michela Amendola, Andrea Barucci, Andrea Baucon, Chiara Zini, Claudia Borrelli, Simone Casati, Andrea di Cencio, Sandra Fiore, Salvatore Siano, Juri Agresti, Carlos Neto de Carvalho, Federico Bernardini, Girolamo Lo Russo, Alberto Collareta and Giulia Bosio
Heritage 2025, 8(8), 310; https://doi.org/10.3390/heritage8080310 (registering DOI) - 2 Aug 2025
Abstract
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This [...] Read more.
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This work explores the application of micro-CT across three critical areas of museum practice: sample virtualization, restoration assessment, and the analysis of fossil specimens. Specifically, micro-CT scanning was applied to fossils stored in the G.A.M.P.S. collection (Scandicci, Italy), enabling the creation of highly detailed non-invasive 3D models for digital archiving and virtual exhibitions. At the Opificio delle Pietre Dure in Florence, micro-CT was employed to evaluate fossil bone restoration treatments, focusing on the internal impact of menthol as a consolidant and its effects on the structural integrity of the material. Furthermore, micro-CT was utilized to investigate a sealed bee preserved in its cocoon within a paleosol in Costa Vicentina (Portugal), providing unprecedented insights into its internal anatomy and state of preservation, all while maintaining the integrity of the specimen. The results of this study underscore the versatility of micro-CT as a powerful non-destructive tool for advancing the fields of conservation, restoration, and scientific analysis of cultural and natural heritage. By integrating high-resolution imaging with both virtual and hands-on conservation strategies, micro-CT empowers museums to enhance research capabilities, improve preservation methodologies, and foster greater public engagement with their collections. Full article
25 pages, 830 KiB  
Article
Writing Is Coding for Sustainable Futures: Reimagining Poetic Expression Through Human–AI Dialogues in Environmental Storytelling and Digital Cultural Heritage
by Hao-Chiang Koong Lin, Ruei-Shan Lu and Tao-Hua Wang
Sustainability 2025, 17(15), 7020; https://doi.org/10.3390/su17157020 (registering DOI) - 1 Aug 2025
Abstract
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage [...] Read more.
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage with AI-mediated multimodal creation to address environmental challenges. Using grounded theory methodology with 57 twelfth-grade students from technology-integrated high schools, we analyzed their experiences creating environmental stories and digital cultural artifacts using MidJourney, Kling, and Sora. Data collection involved classroom observations, semi-structured interviews, and reflective journals, analyzed through systematic coding procedures (κ = 0.82). Five central themes emerged: writing as algorithmic design for sustainability (89.5%), emotional scaffolding for environmental awareness (78.9%), aesthetics of imperfection in cultural preservation (71.9%), collaborative dynamics in sustainable creativity (84.2%), and pedagogical value of prompt literacy (91.2%). Findings indicate that AI deepens environmental consciousness and reframes writing as a computational process for addressing global issues. This research contributes a theoretical framework integrating expressive writing with algorithmic thinking in AI-assisted sustainability education, aligned with SDGs 4, 11, and 13. Full article
27 pages, 4582 KiB  
Article
Palazzo Farnese and Dong’s Fortified Compound: An Art-Anthropological Cross-Cultural Analysis of Architectural Form, Symbolic Ornamentation, and Public Perception
by Liyue Wu, Qinchuan Zhan, Yanjun Li and Chen Chen
Buildings 2025, 15(15), 2720; https://doi.org/10.3390/buildings15152720 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
This study presents a cross-cultural comparison of two fortified residences—Palazzo Farnese in Italy and Dong’s Fortified Compound in China—through a triadic analytical framework encompassing architectural form, symbolic ornamentation, and public perception. By combining field observation, iconographic interpretation, and digital ethnography, the research investigates [...] Read more.
This study presents a cross-cultural comparison of two fortified residences—Palazzo Farnese in Italy and Dong’s Fortified Compound in China—through a triadic analytical framework encompassing architectural form, symbolic ornamentation, and public perception. By combining field observation, iconographic interpretation, and digital ethnography, the research investigates how heritage meaning is constructed, encoded, and reinterpreted across distinct sociocultural contexts. Empirical materials include architectural documentation, decorative analysis, and a curated dataset of 4947 user-generated images and 1467 textual comments collected from Chinese and international platforms between 2020 and 2024. Methods such as CLIP-based visual clustering and BERTopic-enabled sentiment modelling were applied to extract patterns of perception and symbolic emphasis. The findings reveal contrasting representational logics: Palazzo Farnese encodes dynastic authority and Renaissance cosmology through geometric order and immersive frescoes, while Dong’s Compound conveys Confucian ethics and frontier identity via nested courtyards and traditional ornamentation. Digital responses diverge accordingly: international users highlight formal aesthetics and photogenic elements; Chinese users engage with symbolic motifs, family memory, and ritual significance. This study illustrates how historically fortified residences are reinterpreted through culturally specific digital practices, offering an interdisciplinary approach that bridges architectural history, symbolic analysis, and digital heritage studies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Viewed by 120
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

19 pages, 4759 KiB  
Article
Research on User Experience and Continuous Usage Mechanism of Digital Interactive Installations in Museums from the Perspective of Distributed Cognition
by Aili Zhang, Yanling Sun, Shaowen Wang and Mengjuan Zhang
Appl. Sci. 2025, 15(15), 8558; https://doi.org/10.3390/app15158558 (registering DOI) - 1 Aug 2025
Viewed by 111
Abstract
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study [...] Read more.
With the increasing application of digital interactive installations in museums, their role in enhancing audience engagement and cultural dissemination effectiveness has become prominent. However, ensuring the sustained use of these technologies remains challenging. Based on distributed cognition and perceived value theories, this study investigates key factors influencing users’ continuous usage of digital interactive installations using the Capital Museum in Beijing as a case study. A theoretical model was constructed and empirically validated through Bayesian Structural Equation Modeling (Bayesian-SEM) with 352 valid samples. The findings reveal that perceived ease of use plays a critical direct predictive role in continuous usage intention. Environmental factors and peer interaction indirectly influence user behavior through learner engagement, while user satisfaction serves as a core mediator between perceived ease of use and continuous usage intention. Notably, perceived usefulness and entertainment showed no direct effects, indicating that convenience and social experience outweigh functional benefits in this context. These findings emphasize the importance of optimizing interface design, fostering collaborative environments, and enhancing user satisfaction to promote sustained participation. This study provides practical insights for aligning digital innovation with audience needs in museums, thereby supporting the sustainable integration of technology in cultural heritage education and preservation. Full article
Show Figures

Figure 1

16 pages, 1651 KiB  
Article
Modular Pipeline for Text Recognition in Early Printed Books Using Kraken and ByT5
by Yahya Momtaz, Lorenza Laccetti and Guido Russo
Electronics 2025, 14(15), 3083; https://doi.org/10.3390/electronics14153083 (registering DOI) - 1 Aug 2025
Viewed by 110
Abstract
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular [...] Read more.
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular pipeline that addresses these problems by combining modern layout analysis and language modeling techniques. The pipeline begins with historical layout-aware text segmentation using Kraken, a neural network-based tool tailored for early typographic structures. Initial optical character recognition (OCR) is then performed with Kraken’s recognition engine, followed by post-correction using a fine-tuned ByT5 transformer model trained on manually aligned line-level data. By learning to map noisy OCR outputs to verified transcriptions, the model substantially improves recognition quality. The pipeline also integrates a preprocessing stage based on our previous work on bleed-through removal using robust statistical filters, including non-local means, Gaussian mixtures, biweight estimation, and Gaussian blur. This step enhances the legibility of degraded pages prior to OCR. The entire solution is open, modular, and scalable, supporting long-term preservation and improved accessibility of cultural heritage materials. Experimental results on 15th-century incunabula show a reduction in the Character Error Rate (CER) from around 38% to around 15% and an increase in the Bilingual Evaluation Understudy (BLEU) score from 22 to 44, confirming the effectiveness of our approach. This work demonstrates the potential of integrating transformer-based correction with layout-aware segmentation to enhance OCR accuracy in digital humanities applications. Full article
Show Figures

Figure 1

13 pages, 5152 KiB  
Article
FEM-Based Design and Micromachining of a Ratchet Click Mechanism in Mechanical Watch Movements
by Alessandro Metelli, Giuseppe Soardi, Andrea Abeni and Aldo Attanasio
Micromachines 2025, 16(8), 875; https://doi.org/10.3390/mi16080875 - 29 Jul 2025
Viewed by 199
Abstract
The ratchet click mechanism in mechanical watch movements is a micro-component essential to prevent the unwinding of the caliber mainspring, providing secure energy storage during recharging. Despite its geometrical simplicity, the ratchet click undergoes to a complex distribution of stress, elevated strains, and [...] Read more.
The ratchet click mechanism in mechanical watch movements is a micro-component essential to prevent the unwinding of the caliber mainspring, providing secure energy storage during recharging. Despite its geometrical simplicity, the ratchet click undergoes to a complex distribution of stress, elevated strains, and cyclical mechanical deformations, affecting its long-term reliability. Despite being a crucial element in all mechanical watch movements, the non-return system appears to have been overlooked in scientific literature, with no studies available on its design, modeling, and micromachining. In this work, we introduce a novel Finite Element Method (FEM) -based design strategy for the ratchet click, systematically refining its geometry and dimensional parameters to minimize peak stress and improve durability. A mechanical simulation model was created to simulate the boundary conditions, contact interactions, and stress distributions on the part. If compared with the standard component, the optimized design exhibits a decrease in peak stress values. The mechanism was micro-machined, and it was experimentally tested to validate the numerical model outputs. The integrated digital–physical approach not only underscores the scientific contribution of coupling advanced simulation with experimental validation of complex micromechanisms but also provides a generalizable method for enhancing performance of micro-mechanical components while preserving their historical design heritage. Full article
Show Figures

Figure 1

17 pages, 11812 KiB  
Article
Heritage GIS: Deep Mapping, Preserving, and Sustaining the Intangibility of Cultures and the Palimpsests of Landscape in the West of Ireland
by Charles Travis
Sustainability 2025, 17(15), 6870; https://doi.org/10.3390/su17156870 - 29 Jul 2025
Viewed by 301
Abstract
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s [...] Read more.
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s “Yeats Country.” Drawing on interdisciplinary dialogues from the humanities, social sciences, and geospatial sciences, it illustrates how digital spatial technologies can excavate, preserve, and sustain intangible cultural knowledge embedded within such palimpsestic landscapes. Using MAXQDA 24 software to mine and code historical, literary, folkloric, and environmental texts, the study constructed bespoke GIS attribute tables and visualizations integrated with elevation models and open-source archaeological data. The result is a richly layered cartographic method that reveals the spectral and affective dimensions of heritage landscapes through climate, memory, literature, and spatial storytelling. By engaging with “deep mapping” and theories such as “Spectral Geography,” the research offers new avenues for sustainable heritage conservation, cultural tourism, and public education that are sensitive to both ecological and cultural resilience in the West of Ireland. Full article
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 401
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

20 pages, 4277 KiB  
Article
BIM and HBIM: Comparative Analysis of Distinct Modelling Approaches for New and Heritage Buildings
by Alcínia Zita Sampaio, Augusto M. Gomes, João Tomé and António M. Pinto
Heritage 2025, 8(8), 299; https://doi.org/10.3390/heritage8080299 - 28 Jul 2025
Viewed by 217
Abstract
The Building Information Modelling (BIM) methodology has been applied in distinct sectors of the construction industry with a growing demonstration of benefits, supporting the elaboration of integrated and collaborative projects. The main foundation of the methodology is the generation of a three-dimensional (3D) [...] Read more.
The Building Information Modelling (BIM) methodology has been applied in distinct sectors of the construction industry with a growing demonstration of benefits, supporting the elaboration of integrated and collaborative projects. The main foundation of the methodology is the generation of a three-dimensional (3D) digital representation, the BIM model, concerning the different disciplines that make up a complete project. The BIM model includes a database referring to all the information regarding the geometric and physical aspects of the project. The procedure related to the generation of BIM models presents a significant difference depending on whether the project refers to new or old buildings. Current BIM systems contain libraries with various types of parametric objects that are effortlessly adaptable to new constructions. However, the generation of models of old buildings, supported by the definition of detailed new parametric objects, is required. The present study explores the distinct modelling procedures applied in the generation of specific parametric objects for new and old constructions, with the objective of evaluating the comparative complexity that the designer faces in modelling specific components. For a correct representation of new buildings in the design phase or for the reproduction of the accurate architectural configuration of heritage buildings, the modelling process presents significant differences identified in the study. Full article
Show Figures

Figure 1

40 pages, 6652 KiB  
Systematic Review
How Architectural Heritage Is Moving to Smart: A Systematic Review of HBIM
by Huachun Cui and Jiawei Wu
Buildings 2025, 15(15), 2664; https://doi.org/10.3390/buildings15152664 - 28 Jul 2025
Viewed by 299
Abstract
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to [...] Read more.
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to identify key research patterns, emerging trends, and forecast future directions. A total of 1516 documents were initially retrieved from the Web of Science Core Collection using targeted search terms. Following a relevance screening, 1175 documents were related to the topic. CiteSpace 6.4.R1, VOSviewer 1.6.20, and Bibliometrix 4.1, three bibliometric tools, were employed to conduct both quantitative and qualitative assessments. The results show three historical phases of HBIM, identify core journals, influential authors, and leading regions, and extract six major keyword clusters: risk assessment, data acquisition, semantic annotation, digital twins, and energy and equipment management. Nine co-citation clusters further outline the foundational literature in the field. The results highlight growing scholarly interest in workflow integration and digital twin applications. Future projections emphasize the transformative potential of artificial intelligence in HBIM, while also recognizing critical implementation barriers, particularly in developing countries and resource-constrained contexts. This study provides a comprehensive and systematic framework for HBIM research, offering valuable insights for scholars, practitioners, and policymakers involved in heritage preservation and digital management. Full article
Show Figures

Figure 1

30 pages, 3923 KiB  
Article
Exploring the Key Factors Influencing the Plays’ Continuous Intention of Ancient Architectural Cultural Heritage Serious Games: An SEM–ANN–NCA Approach
by Qian Bao, Siqin Wang, Ken Nah and Wei Guo
Buildings 2025, 15(15), 2648; https://doi.org/10.3390/buildings15152648 - 27 Jul 2025
Viewed by 326
Abstract
Serious games (SGs) have been widely employed in the digital preservation and transmission of architectural heritage. However, the key determinants and underlying mechanisms driving users’ continuance intentions toward ancient-architecture cultural heritage serious games (CH-SGs) have not been thoroughly investigated. Accordingly, a conceptual model [...] Read more.
Serious games (SGs) have been widely employed in the digital preservation and transmission of architectural heritage. However, the key determinants and underlying mechanisms driving users’ continuance intentions toward ancient-architecture cultural heritage serious games (CH-SGs) have not been thoroughly investigated. Accordingly, a conceptual model grounded in the stimulus–organism–response (S–O–R) framework was developed to elucidate the affective and behavioral effects experienced by CH-SG users. Partial least squares structural equation modeling (PLS-SEM) and artificial neural networks (ANNs) were employed to capture both the linear and nonlinear relationships among model constructs. By integrating sufficiency logic (PLS-SEM) and necessity logic (necessary condition analysis, NCA), “must-have” and “should-have” factors were identified. Empirical results indicate that cultural authenticity, knowledge acquisition, perceived enjoyment, and design aesthetics each exert a positive influence—of varying magnitude—on perceived value, cultural identification, and perceived pleasure, thereby shaping users’ continuance intentions. Moreover, cultural authenticity and perceived enjoyment were found to be necessary and sufficient conditions, respectively, for enhancing perceived pleasure and perceived value, which in turn indirectly bolster CH-SG users’ sustained use intentions. By creating an immersive, narratively rich, and engaging cognitive experience, CH-SGs set against ancient architectural backdrops not only stimulate users’ willingness to visit and protect heritage sites but also provide designers and developers with critical insights for optimizing future CH-SG design, development, and dissemination. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

33 pages, 6092 KiB  
Article
3D Reconstruction of Unrealised Monumental Heritage and Its Impact on Gallery Experience
by Jure Ahtik, Anja Škerjanc, Helena Gabrijelčič Tomc and Tanja Nuša Kočevar
Buildings 2025, 15(15), 2632; https://doi.org/10.3390/buildings15152632 - 25 Jul 2025
Viewed by 253
Abstract
The research was initiated by the Plečnik House gallery (Ljubljana, Slovenia) and focuses on the 3D architectural reconstruction of the unrealised monument of the Czech military leader Jan Žižka, designed by the Slovenian architect Jože Plečnik. In addition, the experience with the 3D [...] Read more.
The research was initiated by the Plečnik House gallery (Ljubljana, Slovenia) and focuses on the 3D architectural reconstruction of the unrealised monument of the Czech military leader Jan Žižka, designed by the Slovenian architect Jože Plečnik. In addition, the experience with the 3D reconstructed monument in the exhibition “Plečnik and the Sacred” was analysed. Using the available references and interpretative approaches, a digital and 3D-printed reconstruction was created that retains Plečnik’s architectural style. The experimental phase included a detailed interpretation of the studied references, 3D modelling, 3D printing, exhibition and experience analysis. The dimensions of the finished 3D-printed model are 52.80 × 55.21 × 44.60 cm. It was produced using stereolithography (SLA) for figurative elements and fused deposition modelling (FDM) for architectural components. The reconstruction was evaluated using participant testing, including semantic differential analysis, comparative studies, and knowledge-based questionnaires. The results showed that architectural elements were reconstructed with an average similarity score of 1.97 out of 5. Statues followed with a score of 1.81, and props, though detailed, met audience expectations, scoring 1.61. Clothing received the lowest score of 1.40. This research emphasises the importance of a hypothetical digital 3D reconstruction of never constructed monument for broader understanding of Plečnik’s legacy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Accessible Interface for Museum Geological Exhibitions: PETRA—A Gesture-Controlled Experience of Three-Dimensional Rocks and Minerals
by Andrei Ionuţ Apopei
Minerals 2025, 15(8), 775; https://doi.org/10.3390/min15080775 - 24 Jul 2025
Viewed by 413
Abstract
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as [...] Read more.
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as VR/AR systems and traditional touchscreen kiosks, creating a clear need for more intuitive, accessible, and more engaging and inclusive solutions. This paper presents PETRA, an open-source, gesture-controlled system for exploring 3D rocks and minerals. Developed in the TouchDesigner environment, PETRA utilizes a standard webcam and the MediaPipe framework to translate natural hand movements into real-time manipulation of digital specimens, requiring no specialized hardware. The system provides a customizable, node-based framework for creating touchless, interactive exhibits. Successfully evaluated during a “Long Night of Museums” public event with 550 visitors, direct qualitative observations confirmed high user engagement, rapid instruction-free learnability across diverse age groups, and robust system stability in a continuous-use setting. As a practical case study, PETRA demonstrates that low-cost, webcam-based gesture control is a viable solution for creating accessible and immersive learning experiences. This work offers a significant contribution to the fields of digital mineralogy, human–machine interaction, and cultural heritage by providing a hygienic, scalable, and socially engaging method for interacting with geological collections. This research confirms that as digital archives grow, the development of human-centered interfaces is paramount in unlocking their full scientific and educational potential. Full article
(This article belongs to the Special Issue 3D Technologies and Machine Learning in Mineral Sciences)
Show Figures

Figure 1

20 pages, 262 KiB  
Article
Comics as Heritage: Theorizing Digital Futures of Vernacular Expression
by Ilan Manouach and Anna Foka
Heritage 2025, 8(8), 295; https://doi.org/10.3390/heritage8080295 - 24 Jul 2025
Viewed by 881
Abstract
This paper investigates digital comics—particularly webcomics and webtoons—as emerging forms of cultural heritage, analyzing their exponential global influence alongside the limitations of traditional heritage frameworks in systematically preserving them. The UNESCO heritage model, rooted in concepts of physical fixity and authenticity, is shown [...] Read more.
This paper investigates digital comics—particularly webcomics and webtoons—as emerging forms of cultural heritage, analyzing their exponential global influence alongside the limitations of traditional heritage frameworks in systematically preserving them. The UNESCO heritage model, rooted in concepts of physical fixity and authenticity, is shown as inadequate for born-digital works like comics, which derive meaning from technological infrastructure, dynamic platforms, and ongoing community interaction rather than static material forms. Drawing on heritage futures and digital materiality theories, the authors argue that digital comics exemplify "temporal authenticity," evolving through continual transformation and algorithmic curation. The paper details how platform recommendation systems and analytics directly shape which comics achieve cultural visibility and preservation, while community-driven initiatives—such as The Flashpoint Archive—demonstrate effective models for holistic, grassroots digital preservation beyond institutional reach. Ultimately, the study calls for new theoretical and practical approaches to heritage, recognizing digital comics as both cultural artifacts and dynamic, platform-specific vernacular expressions. Full article
(This article belongs to the Section Digital Heritage)
Back to TopTop