Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = heparanase-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13312 KB  
Article
Precision-Engineered Dermatan Sulfate-Mimetic Glycopolymers for Multi-Targeted SARS-CoV-2 Inhibition
by Lihao Wang, Lei Gao, Chendong Yang, Mengfei Yin, Jiqin Sun, Luyao Yang, Chanjuan Liu, Simon F. R. Hinkley, Guangli Yu and Chao Cai
Mar. Drugs 2025, 23(12), 486; https://doi.org/10.3390/md23120486 - 18 Dec 2025
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose major global health challenges despite extensive vaccination efforts. Variant escape, waning immunity, and reduced vaccine efficacy in immunocompromised populations underscore the urgent need for complementary antiviral therapeutics. Here, we report the design, synthesis, [...] Read more.
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose major global health challenges despite extensive vaccination efforts. Variant escape, waning immunity, and reduced vaccine efficacy in immunocompromised populations underscore the urgent need for complementary antiviral therapeutics. Here, we report the design, synthesis, and biological evaluation of precision-engineered dermatan sulfate (DS)-mimetic glycopolymers as multi-targeted inhibitors of SARS-CoV-2. Guided by molecular docking and virtual screening, sulfation at the C2 and C4 positions of iduronic acid was identified as critical for binding to the viral spike protein and inhibiting host and viral enzymes, including heparanase (HPSE) and main protease (Mpro). Chemically synthesized DS disaccharides were covalently grafted onto polymer scaffolds via a post-modification strategy, yielding glycopolymers with well-defined assembly that form uniform nanoparticles under physiological conditions. Surface plasmon resonance and pseudovirus assays revealed strong binding to the viral spike protein (KD ≈ 177 nM), potent viral neutralization, and minimal cytotoxicity. Cellular uptake studies further demonstrated efficient internalization of nanoparticles and intracellular inhibition of HPSE and Mpro. These results establish a modular, non-anticoagulant, and glycosaminoglycan-mimetic platform for the development of broad-spectrum antiviral agents to complement vaccination and enhance preparedness against emerging coronavirus variants. Full article
Show Figures

Figure 1

18 pages, 3681 KB  
Article
A Novel Chimeric Molecule of Heparanase and Ig-Fc Enables Histochemical and Cytochemical Detection of O-sulfated Heparan Sulfate
by Jia Shi, Momoko Nakamura, Ryoya Baba, Sojiro Arakawa, Arisa Yamaguchi, Tomonori Hariya, Rin Suzuki, Yu Inazuki, Katsuhiko Takahashi, Makoto Tsuiji, Teruaki Oku, Mayumi Komine, Momo Shimekake, Kyohei Higashi, Masao Nakamura, Kazuki Sasaki, Motowo Nakajima, Tatsuro Irimura and Nobuaki Higashi
Int. J. Mol. Sci. 2025, 26(23), 11293; https://doi.org/10.3390/ijms262311293 - 22 Nov 2025
Viewed by 309
Abstract
A chimeric protein of heparanase and Ig-Fc was designed as a novel tool to expand the detection of structurally heterogeneous heparan sulfate (HS) and related glycosaminoglycans. The whole mouse heparanase gene was combined with the gene segment encoding the mouse IgG1 hinge-Fc domain. [...] Read more.
A chimeric protein of heparanase and Ig-Fc was designed as a novel tool to expand the detection of structurally heterogeneous heparan sulfate (HS) and related glycosaminoglycans. The whole mouse heparanase gene was combined with the gene segment encoding the mouse IgG1 hinge-Fc domain. A point mutation E335A was inserted to disable putative HS degradation activity. Chimeric proteins consisted of the latent form of the enzyme devoid of HS degradation activity. The chimeric proteins bound to heparin, N-desulfated heparin, and O-sulfated N-acetylheparosan. Their binding spectrum to glycosaminoglycans differed from that of anti-HS mAb 10E4. The chimeric proteins bound to Kato III and A549 cell lines. The binding was reduced by knocking down EXT1 gene expression. One of the chimeric proteins stained the epidermal cells in the hyperplastic spinous layer of inflamed atopic dermatitis skin and inflammatory cells in the dermis, which were not stained with mAb 10E4. The protein stained a polarized structure on the surface of monocytic U937 and THP1 cells. Similar polarized structures were observed with anti-syndecan-1 antibody staining. The chimeric protein and anti-syndecan-1 antibody precipitated similar sets of proteins that included syndecan-1 from the lysates of U937 cells. These novel chimeric proteins are useful to detect HS abundant in O-sulfation in histochemical, cytochemical, and biochemical studies. Full article
(This article belongs to the Special Issue Advances in Heparin, Heparan Sulfate and Heparanase, 2nd Edition)
Show Figures

Figure 1

23 pages, 1820 KB  
Review
Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease
by Nicola Greco, Valentina Masola and Maurizio Onisto
Biomolecules 2025, 15(11), 1597; https://doi.org/10.3390/biom15111597 - 14 Nov 2025
Viewed by 835
Abstract
Heparan sulfate proteoglycans (HSPGs) are essential constituents of the extracellular matrix (ECM) and cell surface, orchestrating a wide range of biological processes, such as cell adhesion, migration, proliferation, and intercellular communication. Through their highly sulfated glycosaminoglycan chains, HSPGs serve as crucial modulators of [...] Read more.
Heparan sulfate proteoglycans (HSPGs) are essential constituents of the extracellular matrix (ECM) and cell surface, orchestrating a wide range of biological processes, such as cell adhesion, migration, proliferation, and intercellular communication. Through their highly sulfated glycosaminoglycan chains, HSPGs serve as crucial modulators of bioavailability and signaling of growth factors, cytokines, and chemokines, thereby influencing tissue homeostasis. Their dynamic remodeling is mediated by numerous enzymes, with heparanase (HPSE) playing a predominant role as the only known human endo-β-D-glucuronidase that specifically cleaves heparan sulfate chains. Beyond its well-documented enzymatic activity in ECM degradation and the release of HS-bound molecules, HPSE also exerts non-enzymatic functions that regulate intracellular signaling cascades, transcriptional programs, and immune cell behavior. Dysregulated HPSE expression or activity has been implicated in various pathological conditions, including fibrosis, chronic inflammation, cancer progression, angiogenesis, metastasis, and immune evasion, positioning this enzyme as a pivotal driver of ECM plasticity in both health and disease. This review provides an updated overview of HSPG biosynthesis, structure, localization, and functional roles, emphasizing the activity of HPSE and its impact on tissue remodeling and disease pathogenesis. We further explored its involvement in the hallmark processes of cancer, the inflammatory tumor microenvironment, and its contribution to fibrosis. Finally, we summarize current therapeutic strategies targeting HPSE, outlining their potential to restore ECM homeostasis and counteract HPSE-driven pathological mechanisms. A deeper understanding of the HSPG/HPSE axis may pave the way for innovative therapeutic interventions in cancer, inflammatory disorders, and fibrotic diseases. Full article
(This article belongs to the Special Issue The Role of Glycosaminoglycans and Proteoglycans in Human Disease)
Show Figures

Figure 1

47 pages, 3659 KB  
Review
Structure and Function of the Extracellular Matrix in Normal and Pathological Conditions: Looking at the Bicuspid Aortic Valve
by Francesco Nappi
Int. J. Mol. Sci. 2025, 26(22), 10825; https://doi.org/10.3390/ijms262210825 - 7 Nov 2025
Cited by 1 | Viewed by 1352
Abstract
This review will focus on the structure and role of the ECM in physiological conditions and pathological alterations, based on a cardiological case. The patient has a particular case of connective tissue disease (CTD), specifically bicuspid aortic valve type (BAV). The presented clinical [...] Read more.
This review will focus on the structure and role of the ECM in physiological conditions and pathological alterations, based on a cardiological case. The patient has a particular case of connective tissue disease (CTD), specifically bicuspid aortic valve type (BAV). The presented clinical case is as follows: a 34-year-old patient has been diagnosed with BAV. The subject is concerned about how his condition may affect his daily life. The subject is worried about passing the disease on to his children. He asked experts for advice on the causes, possible consequences and treatments. BAV is a major congenital heart defect, affecting 1–2% of the global population. This review provides an overview of the structure and function of the ECM, which plays an important role in the architecture of heart valves and vascular structures associated with connective tissue disease. The BAV has been observed to affect the connective tissue, although the underlying causes remain unclear. ECM is a 3-dimensional network of macromolecules that provides structural support for cells and tissues. Extensive research has established the regulatory functions of ECM, given its role in orchestrating cell signalling, functions, properties and morphology. Extracellular and cell-bound factors represent a substantial proportion of the major constituents of the ECM. The following proteins and glycoproteins are of particular interest: collagen, elastin, laminins, tenascins, proteoglycans, glycosaminoglycans and hyaluronan. Relevant cell receptors include CD44. Full article
Show Figures

Graphical abstract

15 pages, 1122 KB  
Article
Cross-Sectional Analysis of Sleep Quality and Vascular Health in Shift- and Day-Working Nurses
by Gleb Saharov, Barbara Salti, Maram Bareya, Anat Keren-Politansky, Yona Nadir and Tamar Shochat
Clocks & Sleep 2025, 7(4), 58; https://doi.org/10.3390/clockssleep7040058 - 11 Oct 2025
Viewed by 837
Abstract
Sleep disturbances and shift work are associated with increased cardiovascular risk, possibly through disruptions in endothelial and hemostatic function. While prior studies link acute sleep deprivation to vascular dysfunction, the impact of chronic sleep quality and circadian misalignment on endothelial health in healthy [...] Read more.
Sleep disturbances and shift work are associated with increased cardiovascular risk, possibly through disruptions in endothelial and hemostatic function. While prior studies link acute sleep deprivation to vascular dysfunction, the impact of chronic sleep quality and circadian misalignment on endothelial health in healthy individuals, particularly shift workers, remains underexplored. The aim of this study was to examine the association between objectively measured sleep quality and endothelial/hemostatic function in healthy female hospital nurses, comparing shift and day workers, and considering time-of-day variation. In this repeated-measures study, 100 female nurses (51 shift, 49 day workers) aged 25–50 wore actigraphy devices for 7–14 days to assess total sleep time (TST), sleep efficiency (SEF), and wake after sleep onset (WASO). Endothelial function was measured using EndoPAT (Reactive Hyperemia Index—RHI). Hemostatic markers included plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (VWF), heparanase and heparanase procoagulant activity assessed by ELISA, and chromogenic assays in morning and evening. TST was not associated with any vascular outcomes. Poor sleep quality (low SEF, high WASO) was significantly associated with reduced RHI and elevated PAI-1 level, heparanase level, and heparanase procoagulant activity levels. Regression models revealed significant main effects of SEF and WASO on endothelial and coagulation markers, with some interactions depending on shift type and time of measurement. No significant associations were found for VWF. Impaired sleep quality, but not sleep duration, is associated with endothelial dysfunction and procoagulant activation, particularly among shift-working nurses. These findings suggest that sleep quality may play a critical role in vascular health and support the use of sleep-based interventions to reduce cardiovascular risk in shift-working populations. Full article
(This article belongs to the Section Human Basic Research & Neuroimaging)
Show Figures

Figure 1

17 pages, 3777 KB  
Article
Heparanase-Neutralizing Monoclonal Antibody (mAb A54) Attenuates Tumor Growth and Metastasis
by Uri Barash, Malik Farhoud, Maali Odeh, Eliezer Huberman, Liang Wu and Israel Vlodavsky
Cells 2025, 14(17), 1379; https://doi.org/10.3390/cells14171379 - 4 Sep 2025
Viewed by 1274
Abstract
Heparanase is the only human enzyme responsible for heparan sulfate (HS) breakdown, an activity that remodels the extracellular matrix (ECM) and strongly drives cancer metastasis and angiogenesis. Compelling evidence implies that heparanase promotes essentially all aspects of the tumorigenic process, namely, tumor initiation, [...] Read more.
Heparanase is the only human enzyme responsible for heparan sulfate (HS) breakdown, an activity that remodels the extracellular matrix (ECM) and strongly drives cancer metastasis and angiogenesis. Compelling evidence implies that heparanase promotes essentially all aspects of the tumorigenic process, namely, tumor initiation, vascularization, growth, metastasis, and chemoresistance. A key mechanism by which heparanase accelerates cancer progression is by enabling the release and bioavailability of HS-bound growth factors, chemokines, and cytokines, residing in the tumor microenvironment and supporting tumor growth and metastasis. The currently available heparanase inhibitors are mostly HS/heparin-like compounds that lack specificity and exert multiple off-target side effects. To date, only four such compounds have progressed to clinical trials, and none have been approved for clinical use. We have generated and characterized an anti-heparanase monoclonal antibody (A54 mAb) that specifically inhibits heparanase enzymatic activity (ECM degradation assay) and cellular uptake. Importantly, A54 mAb attenuates xenograft tumor growth and metastasis (myeloma, glioma, pancreatic, and breast carcinomas) primarily when administered (syngeneic or immunocompromised mice) in combination with conventional anti-cancer drugs. Co-crystallization of the A54 Fab fragment and the heparanase enzyme revealed that the interaction between the two proteins takes place adjacent to the enzyme HS/heparin binding domain II (HBDII; Pro271-Ala276), likely hindering heparanase from interacting with HS substrates via steric occlusion of the active site cleft. Collectively, we have generated and characterized a novel mAb that specifically neutralizes heparanase enzymatic activity and attenuates its pro-tumorigenic effects in preclinical models, paving the way for its clinical examination against cancer, inflammation, and other diseases. Full article
Show Figures

Figure 1

13 pages, 3997 KB  
Article
Transient Inflammation of Pancreatic Exocrine Tissue in Autoimmune Diabetes Follows Onset of Islet Damage and Utilizes Heparanase-1
by Charmaine J. Simeonovic, Zuopeng Wu, Sarah K. Popp, Gerard F. Hoyne and Christopher R. Parish
Int. J. Mol. Sci. 2025, 26(9), 4120; https://doi.org/10.3390/ijms26094120 - 26 Apr 2025
Viewed by 1104
Abstract
Inflammation of the exocrine pancreas accompanies autoimmune diabetes in mouse models and humans. However, the relationship between inflammation in the exocrine and endocrine (islet) compartments has not been explored. To address this issue, we used a transgenic mouse model in which autoimmune diabetes [...] Read more.
Inflammation of the exocrine pancreas accompanies autoimmune diabetes in mouse models and humans. However, the relationship between inflammation in the exocrine and endocrine (islet) compartments has not been explored. To address this issue, we used a transgenic mouse model in which autoimmune diabetes is acutely induced after the transfer of islet beta cell-specific transgenic T cells. Histological analyses demonstrated that inflammation of the exocrine pancreas, which was initially mild, resulted in the transient but widespread disruption of acinar tissue. Islet inflammation preceded exacerbated exocrine pathology, progressed to T cell-induced islet damage/destruction and persisted when exocrine inflammation subsided. Heparanase-1 (HPSE-1), an endoglycosidase that degrades heparan sulfate in basement membranes (BMs), when preferentially expressed in recipient cells but not donor (HPSE-1-deficient (HPSE-KO)) T cells, played a critical role in both exocrine and islet inflammation. In this context, HPSE-1 facilitates the passage of autoimmune T cells across the sub-endothelial basement membrane (BM) of pancreatic blood vessels and initially into the exocrine tissue. Peak exocrine inflammation that preceded or accompanied the acute onset of diabetes and HPSE-1 potentially contributed to acinar damage. In contrast to inflammation, HPSE-1 expressed by donor T cells played a key role in the induction of diabetes by allowing autoimmune T cells to traverse peri-islet BMs in order to destroy insulin-producing beta cells. Overall, our findings suggest that major exocrine pancreas injury is not required for the initiation of autoimmune islet damage and is not essential at the time of diabetes onset. Full article
Show Figures

Figure 1

37 pages, 2539 KB  
Review
Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity
by Jasmine Holail, Hatouf Husni Sukkarieh and Ahmad Aljada
Pharmaceuticals 2025, 18(3), 396; https://doi.org/10.3390/ph18030396 - 12 Mar 2025
Cited by 2 | Viewed by 3123
Abstract
Current research demonstrates the expanding therapeutic potential of heparin derivatives in oncology, extending beyond traditional anticoagulation mechanisms. This systematic analysis examines the structural characteristics, molecular mechanisms, and therapeutic applications of heparin-based compounds in malignancy treatment. The essential antithrombin binding pentasaccharide sequence has enabled [...] Read more.
Current research demonstrates the expanding therapeutic potential of heparin derivatives in oncology, extending beyond traditional anticoagulation mechanisms. This systematic analysis examines the structural characteristics, molecular mechanisms, and therapeutic applications of heparin-based compounds in malignancy treatment. The essential antithrombin binding pentasaccharide sequence has enabled development of specialized molecular variants, particularly fractionated heparins and their non-anticoagulant counterparts. These agents exert antineoplastic effects via multiple pathways, particularly through modulation of heparanase enzymatic activity and specific protein–glycosaminoglycan interactions. Evidence from pivotal clinical trials (FRAGMATIC, MAGNOLIA, GASTRANOX) confirms efficacy in managing cancer-associated thrombosis while indicating potential enhancement of chemotherapeutic outcomes. The preparation methods utilize enzymatic cleavage reactions and selective chemical derivatization to generate structurally modified heparins exhibiting unique molecular characteristics and biological activities. Analysis of the glycosaminoglycan analog dociparstat sodium reveals significant activity in myeloid malignancies, mediated by specific interference with CXCL12/CXCR4 signaling cascades. Significant challenges remain in manufacturing scale-up, analytical validation, and long-term safety assessment. Future studies must address dose optimization, combination strategies, and controlled clinical trials to determine the full therapeutic potential of these compounds in clinical oncology. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 743 KB  
Article
Endothelial Dysfunction and Hemostatic System Activation in Relation to Shift Workers, Social Jetlag, and Chronotype in Female Nurses
by Gleb Saharov, Barbara Salti, Maram Bareya, Anat Keren-Politansky, Muhammed Fodi, Tamar Shochat and Yona Nadir
Int. J. Mol. Sci. 2025, 26(2), 482; https://doi.org/10.3390/ijms26020482 - 8 Jan 2025
Cited by 1 | Viewed by 1700
Abstract
Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study [...] Read more.
Circadian misalignment, due to shiftwork and/or individual chronotype and/or social jetlag (SJL), quantified as the difference between internal and social timing, may contribute to cardiovascular disease. Markers of endothelial dysfunction and activation of the coagulation system may predict cardiovascular pathology. The present study aim was to investigate the effects of shift work, SJL, and chronotype on endothelial function and coagulation parameters. One hundred female nurses underwent endothelial function testing using the EndoPAT and blood sampling for coagulation markers, repeated at 06:00–9:00 and 18:00–21:00. We found that compared with day workers, endothelial function and fibrinogen levels were lower (p = 0.001, p = 0.005, respectively) and the procoagulant parameters of plasminogen activator inhibitor-1 (PAI-1) and heparanase level and activity were higher amongst shift workers (p = 0.009, p = 0.03, p = 0.029, respectively). High SJL was associated with lower endothelial function (p = 0.002) and higher PAI-1, heparanase procoagulant activity, heparanase level, and D-Dimer level (p = 0.004, p = 0.003, p = 0.021, p = 0.006, respectively). In the late chronotype, PAI-1 and heparanase procoagulant activity were higher than in the early chronotype (p = 0.009, p = 0.007, respectively). Diurnal variation was found for PAI-1, von-Willebrand factor (vWF), heparanase, and heparan-sulfate with higher levels in the mornings. The correlation between shift/day workers and SJL or chronotype was moderately strong, indicating that SJL and chronotype are independent factors. In conclusion, findings suggest endothelial impairment and increased thrombotic risk in nurses working in shifts or with high SJL or late chronotype. The thrombotic risk is increased in the morning independent of circadian misalignment cause. These findings strengthen the importance of the alliance to the biological daily rhythm in daily life. Further research is needed to evaluate inhibitors of heparanase to attenuate the thrombotic risk in individuals with circadian misalignment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

11 pages, 1594 KB  
Article
Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate
by James Hopkins, Ipsita Volety, Farreh Qatanani and Deepak Shukla
Viruses 2024, 16(12), 1832; https://doi.org/10.3390/v16121832 - 26 Nov 2024
Cited by 1 | Viewed by 1237
Abstract
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess [...] Read more.
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication. We show that higher HPSE 2 negatively affects HSV-2 replication which may be through the regulation of cell surface HS. By acting as a competitive inhibitor of HPSE, HPSE 2 may be interfering with HPSE’s interactions with HS. We demonstrate that the enhanced expression of HPSE 2, either via viral infection or plasmid transfection, reduces HPSE’s ability to cleave HS, thereby hindering viral egress. Conversely, low HPSE 2 levels achieved through siRNA transfection allow HPSE to cleave more HS, reducing viral entry. Altogether, we propose a hypothetical model in which the modulation of HPSE 2 impedes HSV-2 replication by regulating HS availability on the cell surface. This dual role of HPSE 2 in viral replication and potential tumor suppression underscores its significance in cellular processes and viral pathogenesis. Full article
(This article belongs to the Special Issue Viruses and Eye Diseases)
Show Figures

Figure 1

19 pages, 4676 KB  
Article
Steroids and Malignancy Increase Local Heparanase and Decrease Markers of Osteoblast Activity in Bone Tissue Microcirculation
by Keren Asayag, Eli Peled, Mai Assalia, Yonatan Crispel, Chen Yanovich, Haim Cohen, Anat Keren-Politansky and Yona Nadir
Biomolecules 2024, 14(12), 1506; https://doi.org/10.3390/biom14121506 - 26 Nov 2024
Cited by 1 | Viewed by 1963
Abstract
Bone metastasis and steroids are known to activate the coagulation system and induce osteoporosis, pathological bone fractures, and bone pain. Heparanase is a protein known to enhance the hemostatic system and to promote angiogenesis, metastasis, and inflammation. The objective of the present study [...] Read more.
Bone metastasis and steroids are known to activate the coagulation system and induce osteoporosis, pathological bone fractures, and bone pain. Heparanase is a protein known to enhance the hemostatic system and to promote angiogenesis, metastasis, and inflammation. The objective of the present study was to evaluate the effects of steroids and malignancy on the coagulation factors and osteoblast activity in the bone tissue. The effects of dexacort and malignant medium were evaluated in osteoblasts derived from human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs). The bones of mice treated with dexacort for 1 month were studied. Bone biopsies of ten patients with bone metastasis, ten with steroid-induced avascular necrosis (AVN), and ten with osteoarthritis were compared to ten controls. We found that dexacort and malignant medium significantly increased the heparanase levels in osteoblasts and HUVECs and decreased the levels of alkaline phosphatase (ALKP). Peptide 16AC, derived from heparanase, which interacts with tissue factor (TF), further increased the effect, while peptide 6, which inhibits interactions between heparanase and TF, reversed the effect in these cells. The bone microcirculation of mice treated with dexacort exhibited significantly higher levels of heparanase, TF, TF pathway inhibitor (TFPI), TFPI-2, thrombin, and syndecan-1, but reduced levels of osteocalcin and ALKP. The pathological human bone biopsies’ microcirculation exhibited significantly dilated blood vessels and higher levels of heparanase, TF, TFPI, TFPI-2, and fibrin. In summary, steroids and malignancy increased the activation of the coagulation system in the bone microcirculation and reduced the osteoblast activity. Heparanase inhibitors should be further investigated to attenuate bone fractures and pain. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

32 pages, 1461 KB  
Review
Significant Advancements and Evolutions in Chimeric Antigen Receptor Design
by Anna Gaimari, Anna De Lucia, Fabio Nicolini, Lucia Mazzotti, Roberta Maltoni, Giovanna Rughi, Matteo Zurlo, Matteo Marchesini, Manel Juan, Daniel Parras, Claudio Cerchione, Giovanni Martinelli, Sara Bravaccini, Sarah Tettamanti, Anna Pasetto, Luigi Pasini, Chiara Magnoni, Luca Gazzola, Patricia Borges de Souza and Massimiliano Mazza
Int. J. Mol. Sci. 2024, 25(22), 12201; https://doi.org/10.3390/ijms252212201 - 13 Nov 2024
Cited by 6 | Viewed by 4319
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells [...] Read more.
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients. Full article
Show Figures

Figure 1

10 pages, 2160 KB  
Article
Splice Variant of Spalax Heparanase Skipping Exon 12
by Nicola J. Nasser, Eviatar Nevo and Aaron Avivi
Genes 2024, 15(8), 1039; https://doi.org/10.3390/genes15081039 - 7 Aug 2024
Viewed by 1387
Abstract
The subterranean blind mole rat, Spalax, has evolved significantly over 47 million years to thrive in its underground habitat. A key enzyme in this adaptation is heparanase, which degrades heparan sulfate (HS) in the extracellular matrix (ECM), facilitating angiogenesis and releasing growth [...] Read more.
The subterranean blind mole rat, Spalax, has evolved significantly over 47 million years to thrive in its underground habitat. A key enzyme in this adaptation is heparanase, which degrades heparan sulfate (HS) in the extracellular matrix (ECM), facilitating angiogenesis and releasing growth factors for endothelial cells. Spalax heparanase has various splice variants influencing tumor growth and metastasis differently. We report a novel splice variant from a hypoxia-exposed kidney sample resulting from exon 12 skipping. This variant maintains the translation frame but lacks enzymatic activity, offering insights into Spalax’s unique adaptations. Full article
(This article belongs to the Special Issue Application of Animal Modeling in Cancer)
Show Figures

Figure 1

14 pages, 1127 KB  
Article
The Uptake of Heparanase into Mast Cells Is Regulated by Its Enzymatic Activity to Degrade Heparan Sulfate
by Jia Shi, Yoshiki Onuki, Fumiya Kawanami, Naoko Miyagawa, Fumika Iwasaki, Haruna Tsuda, Katsuhiko Takahashi, Teruaki Oku, Masato Suzuki, Kyohei Higashi, Hayamitsu Adachi, Yoshio Nishimura, Motowo Nakajima, Tatsuro Irimura and Nobuaki Higashi
Int. J. Mol. Sci. 2024, 25(11), 6281; https://doi.org/10.3390/ijms25116281 - 6 Jun 2024
Cited by 3 | Viewed by 2177
Abstract
Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized [...] Read more.
Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized into mastocytoma MST cells, peritoneal cell-derived mast cells, and bone marrow-derived mast cells. The internalized amount of L-Hpse was significantly higher than that of M-Hpse. In MST cells, L-Hpse was continuously internalized for up to 8 h, while the uptake of M-Hpse was saturated after 2 h of incubation. L-Hpse and M-Hpse are similarly bound to the MST cell surface. The expression level of cell surface heparan sulfate was reduced in MST cells incubated with M-Hpse. The internalized amount of M-Hpse into mast cells was significantly increased in the presence of heparastatin (SF4), a small molecule heparanase inhibitor that does not affect the binding of heparanase to immobilized heparin. Enzymatically quiescent M-Hpse was prepared with a point mutation at Glu335. The internalized amount of mutated M-Hpse was significantly higher than that of wild-type M-Hpse but similar to that of wild-type and mutated L-Hpse. These results suggest that the enzymatic activity of heparanase negatively regulates the mast cell-mediated uptake of heparanase, possibly via the downregulation of cell surface heparan sulfate expression. Full article
(This article belongs to the Special Issue Heparin, Heparan Sulfate and Heparanase in Health and Disease)
Show Figures

Graphical abstract

25 pages, 1536 KB  
Review
Classification and Molecular Functions of Heparan Sulfate Proteoglycans and Their Molecular Mechanisms with the Receptor
by Yasunari Matsuzaka and Ryu Yashiro
Biologics 2024, 4(2), 105-129; https://doi.org/10.3390/biologics4020008 - 28 Mar 2024
Cited by 10 | Viewed by 12056
Abstract
Heparan sulfate proteoglycans are highly glycosylated proteins in which heparan sulfate, a glycosaminoglycan sugar chain, is an acidic sugar chain consisting of a repeating disaccharide structure of glucuronic acid and N-acetylglucosamine is locally sulfated. Syndecan, one of the transmembrane HSPGs, functions as a [...] Read more.
Heparan sulfate proteoglycans are highly glycosylated proteins in which heparan sulfate, a glycosaminoglycan sugar chain, is an acidic sugar chain consisting of a repeating disaccharide structure of glucuronic acid and N-acetylglucosamine is locally sulfated. Syndecan, one of the transmembrane HSPGs, functions as a receptor that transmits signals from the extracellular microenvironment to the inside of the cell. In the vascular system, heparan sulfate proteoglycans, a major component of the glycocalyx, enable the binding of various plasma-derived molecules due to their diversity, epimerization of glycosaminoglycans chains, long chains, and sulfation. Heparan sulfate proteoglycans present in the extracellular matrix serve as a reservoir for bioactive molecules such as chemokines, cytokines, and growth factors. Aberrant expression of heparan sulfate proteoglycans, heparanase, and sulfatase is observed in many pathological conditions. Therefore, it can be applied to therapeutic strategies for a wide range of fields including Alzheimer’s disease, heart failure, cancer, organ transplants, diabetes, chronic inflammation, aging, and autoimmune diseases. Full article
Show Figures

Figure 1

Back to TopTop