Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = hemp seed oil (HSO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1971 KiB  
Article
Sustainable Microwave-Assisted Extraction of Hemp Seed Oil as Functional Additive into Polybutylene Succinate (PBS) Films for Food Packaging
by Giovanni Dal Poggetto, Mattia Di Maro, Luca Gargiulo, Donatella Duraccio, Gabriella Santagata and Giovanna Gomez d’Ayala
Polymers 2025, 17(10), 1376; https://doi.org/10.3390/polym17101376 - 16 May 2025
Viewed by 502
Abstract
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant [...] Read more.
In this study, microwave-assisted extraction (MAE) was performed to recover antioxidant hemp seed oil (HSO) with the purpose of developing polybutylene succinate (PBS)/HSO-based films for active packaging to improve food shelf-life. It was found that MAE achieved comparable yields, structural characteristics, and antioxidant activity to Soxhlet extraction, but in significantly less time (2.5 min vs. 6 h). PBS-based films with 0.5 and 1 wt% HSO were prepared by compression molding. Morphological investigation of the PBS-HSO films highlighted uniform oil droplet dispersion and good compatibility. HSO reduced PBS crystallinity but did not affect the α-form of PBS. Thermal analysis showed reductions in Tm and Tc, whereas Tg remained unchanged at −17 °C. PBS containing 1 wt% HSO exhibited a 42% decrease in Young’s modulus, 47% reduction in elongation at break, and 47% decrease in tensile strength due to the plasticizing effect of the oil and, which reduced the intermolecular forces and facilitated polymer chain disentanglement, in agreement with the FTIR analysis, which showed a distinct broadening of the carbonyl stretching region associated with the amorphous phase (1720–1730 cm−1) in the PBS-HSO films compared to neat PBS. Migration tests showed that the films are unsuitable for fatty foods but safe for aqueous, acidic, and alcoholic foods. Full article
Show Figures

Figure 1

20 pages, 782 KiB  
Article
Effect of Hemp Seed Oil on Milk Performance, Blood Parameters, Milk Fatty Acid Profile, and Rumen Microbial Population in Milk-Producing Buffalo: Preliminary Study
by Qichao Gu, Bo Lin, Dan Wan, Zhiwei Kong, Qinfeng Tang, Qi Yan, Xinghua Cai, Hao Ding, Guangsheng Qin and Caixia Zou
Animals 2025, 15(4), 514; https://doi.org/10.3390/ani15040514 - 11 Feb 2025
Viewed by 986
Abstract
Vegetable oils rich in unsaturated fatty acids have been shown to improve animal health and enrich milk with functional fatty acids in various studies. This study investigates the effects of dietary supplementation with hemp seed oil (HSO), a native vegetable oil from the [...] Read more.
Vegetable oils rich in unsaturated fatty acids have been shown to improve animal health and enrich milk with functional fatty acids in various studies. This study investigates the effects of dietary supplementation with hemp seed oil (HSO), a native vegetable oil from the “longevity village” of Bama (Guangxi, China), on the milk performance, milk fatty acid composition, blood indicators, and rumen bacterial community of milk-producing buffalo. Seventeen healthy, four-year-old, crossbred, milk-producing buffaloes with the same parity (three), as well as similar body weights (BW = 580 ± 25 kg), number of days producing milk (DIM, 153 ± 10 d), and milk yields (8.56 ± 0.89 kg/d) were divided into three groups (n = 6, 5, and 6) and assigned to the following diets: (1) no HSO supplement (H0, n = 6), (2) a supplement of 100 g/d of HSO (H1, n = 5), and (3) a supplement of 200 g/d of HSO (H2, n = 6). The total experimental period was 42 days (including a 14-day adaptation period and a 28-day treatment period). The data were statistically analyzed by repeated measures analysis of variance. The results showed that compared to that of no HSO supplement group, the dry matter intake (DMI) showed a decreasing tendency (p = 0.06), while feed efficiency and rumen fermentation remained similar across all the groups (p > 0.05) with dietary HSO supplementation. Moreover, with dietary HSO supplementation, the total antioxidant capacity (T-AOC) (p = 0.05) and catalase (CAT) (p < 0.01) and glutathione peroxidase (GSH-Px) (p = 0.02) contents in the serum were greatly increased, with the highest levels observed in the H2 group (increased by 1.16 U/mL, 1.15 U/mL, and 134.51 U/mL, respectively). In contrast, the malondialdehyde (MDA) content was significantly decreased with dietary HSO supplementation (p = 0.02) and was the lowest in the H1 group (decreased by 0.72 nmol/mL). The high-density lipoprotein cholesterol (HDL-C) content in the blood showed an increasing tendency with dietary HSO supplementation (p = 0.09). Moreover, with dietary HSO supplementation, the proportions of C18:0 (p = 0.02), C18:1n9t (p = 0.02), C18:2n6c (p = 0.02), C18:3n3 (p < 0.01), C18:2n9c (p = 0.04), omega-3 (p = 0.02), and omega-6 (p = 0.02) were significantly increased, with the highest levels observed in the H2 group (increased by 5.29 g/100 g FA, 1.81 g/100 g FA, 0.55 g/100 g FA, 0.14 g/100 g FA, 0.75 g/100 g FA, 0.17 g/100 g FA, and 0.56 g/100 g FA, respectively). Additionally, rumen Acetobacter abundance was significantly affected by HSO addition (p = 0.03), with rumen Acetobacter abundance decreasing in the H1 group (by 0.55%) and increasing in the H2 group (by 0.73%). These results suggest that adding HSO to milk-producing buffalo diets does not affect feed efficiency or rumen fermentation, although it decreases the DMI. Meanwhile, it can improve the nutritional quality of milk, enhance the antioxidant status, and regulate blood lipid metabolism in milk-producing buffaloes. Full article
Show Figures

Figure 1

13 pages, 669 KiB  
Review
Nutritional and Industrial Insights into Hemp Seed Oil: A Value-Added Product of Cannabis sativa L.
by Aggeliki Mygdalia, Ioannis Panoras, Eirini Vazanelli and Eleni Tsaliki
Seeds 2025, 4(1), 5; https://doi.org/10.3390/seeds4010005 - 15 Jan 2025
Viewed by 2460
Abstract
Industrial hemp is mainly cultivated for its fibers aimed at the production of textiles, paper, and cordage; the inflorescences for medicinal purposes; and the seeds are used by the food industry due to their high nutritional and functional matrix of protein, fiber, lipids, [...] Read more.
Industrial hemp is mainly cultivated for its fibers aimed at the production of textiles, paper, and cordage; the inflorescences for medicinal purposes; and the seeds are used by the food industry due to their high nutritional and functional matrix of protein, fiber, lipids, and microelements. Hemp seed oil (HsO) is a unique source of polyunsaturated fatty acids, with a phenomenal ω6:ω3 ratio of 2.5–3.0, significantly enhancing human health when consumed daily. HsO is mostly obtained through cold pressing due to minimal thermal treatment, and although of lower yield compared to solvent extraction, it presents higher quality lipid fractions and organoleptic characteristics such as color, taste, flavor, and density. Although HsO is a powerful source of polyunsaturated fatty acids, antioxidants, and phytosterols, its production lacks standardized quality control parameters, except for THC, which is subject to EU legislation. Therefore, it is essential to build up a quality protocol system for standardizing seed conservation, oil extraction methods, and quality parameters. This review aims to display an overall nutritional framework of the HsO and encourage further research into its use in the food value chain. Full article
Show Figures

Figure 1

18 pages, 3966 KiB  
Article
Monitoring the Shelf Life of Hemp Seed Oil Stored at Two Temperatures in Different Materials via Near-Infrared (NIR) Spectroscopy
by Francesca Bonazza, Lucia Monti, Milena Povolo, Andrea Gasparini, Valeria Pelizzola and Giovanni Cabassi
Molecules 2024, 29(23), 5577; https://doi.org/10.3390/molecules29235577 - 26 Nov 2024
Cited by 2 | Viewed by 1622
Abstract
Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of [...] Read more.
Hempseed oil (HSO) is extremely rich in unsaturated fatty acids, especially linoleic (18:2 n-6) and α-linolenic (18:3 n-3) acids, which determine its high sensitivity to oxidative and photo-oxidative degradations that can lead to rancidity despite the presence of antioxidant compounds. The aim of this work was to evaluate which material/temperature/light solutions better preserve HSO quality during its shelf life and to test NIR as a rapid, non-destructive technique for monitoring oxidation phenomena. Futura 75 hemp seeds were cold-pressed; the oil was packed into 20 mL vials of four different materials (polypropylene, clear glass, amber glass, and amber glass coated with aluminum foil) and stored for 270 days at 25 °C under diffused light and at 10 °C in dark conditions., Peroxides and conjugated dienes and trienes were evaluated at intervals to monitor oil stability. Moreover, NIR spectra were measured in transmission, and the sample dataset was analyzed using ASCA to test the significance of the experimental factors: the model showed the significance of all factors and of all the simple interactions. Our results demonstrate that oil stored in amber glass vials with aluminum foils at refrigerated temperatures receive the highest protection from environmental conditions, mitigating oxidative changes, and that the NIR technique could be used to rapidly monitor HSO oxidation parameters. Full article
(This article belongs to the Special Issue Recent Advances in Cannabis and Hemp Research)
Show Figures

Figure 1

17 pages, 5685 KiB  
Article
Harnessing Enhanced Flame Retardancy in Rigid Polyurethane Composite Foams through Hemp Seed Oil-Derived Natural Fillers
by Mansi Ahir, Chandan Bodhak and Ram K. Gupta
Polymers 2024, 16(11), 1584; https://doi.org/10.3390/polym16111584 - 3 Jun 2024
Cited by 6 | Viewed by 1332
Abstract
Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites’ [...] Read more.
Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites’ performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

16 pages, 1908 KiB  
Article
Hemp Seed Oil Inhibits the Adipogenicity of the Differentiation-Induced Human Mesenchymal Stem Cells through Suppressing the Cannabinoid Type 1 (CB1)
by Albatul S. Almousa, Pandurangan Subash-Babu, Ibrahim O. Alanazi, Ali A. Alshatwi, Huda Alkhalaf, Eman Bahattab, Atheer Alsiyah and Mohammad Alzahrani
Molecules 2024, 29(7), 1568; https://doi.org/10.3390/molecules29071568 - 31 Mar 2024
Cited by 3 | Viewed by 2650
Abstract
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and [...] Read more.
Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O′ and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes. Full article
Show Figures

Graphical abstract

9 pages, 1560 KiB  
Article
Hemp Seed Oil Effects on Female Rats Fed a High-Fat Diet and Modulating Adiponectin, Leptin, and Lipid Profile
by Tasneem S. Abu Ghazal, Hadil S. Subih, Belal S. Obeidat and Mofleh S. Awawdeh
Agriculture 2023, 13(2), 449; https://doi.org/10.3390/agriculture13020449 - 14 Feb 2023
Cited by 3 | Viewed by 3346
Abstract
Background: The prevalence of obesity is increasing dramatically worldwide. Obesity injuries have been linked to the alteration of many health biomarkers in humans. Consuming a 2.5:1 ratio of omega-6 and omega-3 helps to restore standard health biomarkers. Hemp, the non-psychoactive variety of Cannabis [...] Read more.
Background: The prevalence of obesity is increasing dramatically worldwide. Obesity injuries have been linked to the alteration of many health biomarkers in humans. Consuming a 2.5:1 ratio of omega-6 and omega-3 helps to restore standard health biomarkers. Hemp, the non-psychoactive variety of Cannabis Sativa L., has a long history of being used as a source of food, fiber, and medicine. One of its attractive features is the favorable omega-6:omega-3 ratio found in its seed oil (HSO), making it a promising functional food for mitigating obesity-related injuries. Methods: A total of 84 female Wistar rats were randomly allocated into four groups. Two control groups (n = 21 each) were fed with a standard diet supplemented with 10% HSO. Two other equivalent groups consumed a high-fat diet, and one was supplemented with 10% HSO. Rats were euthanized from each group at 5, 10, or 15 weeks to measure body weight change, food intake, and several health biomarkers. Results: The results demonstrated that body weight gain and triglycerides were lower (p ≤ 0.05) for the control group supplemented with HSO compared with the other groups. Adiponectin concentration was lower (p ≤ 0.05) in both the control and high-fat treated groups. Other biomarkers were comparable among treatment diets. Conclusion: Our results suggest the usefulness of HSO supplementation for the overall health status. Full article
(This article belongs to the Special Issue Advances in Agricultural Techniques of Medicinal and Aromatic Plants)
Show Figures

Figure 1

15 pages, 2779 KiB  
Article
Sensory Wheel and Lexicon for the Description of Cold-Pressed Hemp Seed Oil
by Matilde Tura, Mara Mandrioli, Enrico Valli, Caterina Dinnella and Tullia Gallina Toschi
Foods 2023, 12(3), 661; https://doi.org/10.3390/foods12030661 - 3 Feb 2023
Cited by 9 | Viewed by 4092
Abstract
Cold-pressed hemp seed oil (CP-HSO) has become available on the market and is gaining popularity mainly for its appeal and nutritional profile. The sensory quality largely depends on seed quality and processing as well as oil storage conditions. Given the “native” nature of [...] Read more.
Cold-pressed hemp seed oil (CP-HSO) has become available on the market and is gaining popularity mainly for its appeal and nutritional profile. The sensory quality largely depends on seed quality and processing as well as oil storage conditions. Given the “native” nature of the product, obtained by cold-pressing, the development of a standardized methodology to evaluate and describe the sensory quality of HSOs is of the utmost importance. To this aim, 16 commercial HSOs were evaluated, covering the main differences in brands and sales channels. A trained panel developed a vocabulary to describe the HSO profile consisting of 44 attributes, and a practical sensory wheel was proposed to classify attributes in different clusters and according to sensory modality. A sensory profile sheet was developed including two color descriptors (yellow, green), seven main positive (sunflower/pumpkin seeds, nutty, toasted nutty, hay, sweet, bitter, and pungent), several secondary positive (herbs, coffee, tobacco, etc.), four main defects (rancid, paint, burnt, and fish), and other secondary negative descriptors (boiled vegetables, cucumber, etc.). Subsequently, specific training of the panelists was carried out, and a satisfactory performance level was reached. This study represents the first attempt to standardize the sensory quality and terminology of HSO. Full article
(This article belongs to the Special Issue Food Flavor Chemistry and Sensory Evaluation)
Show Figures

Graphical abstract

19 pages, 2681 KiB  
Article
Film Forming Systems for Delivery of Active Molecules into and across the Skin
by Elka Touitou, Hiba Natsheh and Jana Zailer
Pharmaceutics 2023, 15(2), 397; https://doi.org/10.3390/pharmaceutics15020397 - 24 Jan 2023
Cited by 7 | Viewed by 3617
Abstract
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the [...] Read more.
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the incorporated molecules. These delivery systems are composed of one or more phospholipids, a short-chain alcohol, a polymer and optionally water. In this work, we continue the investigation and characterization of Weblike carriers focusing on some factors affecting the delivery properties such as components concentration and mode of application on the skin. Upon non-occluded application on the skin, the systems dry rapidly, forming a web-like structured film. Lidocaine, Ibuprofen, FITC and Cannabidiol are molecules with various physico-chemical properties that were incorporated in the carrier. The systems were tested in a number of in vitro and in vivo experiments. Results of the in vitro permeation of Ibuprofen through porcine skin indicated two-fold delivery through the skin of Ibuprofen when applied from our Weblike system in comparison with a nanovesicular carrier, the ethosome. We also have investigated weblike systems containing hemp seed oil (HSO). This addition enhanced the film’s ability to deliver lipophilic molecules to the deeper skin layers, leading to an improved pharmacodynamic effect. In analgesic tests carried out in a pain mice model following one hour application of CBD in Weblike system with and without HSO, the number of writhing episodes was decreased from 29 in the untreated animals to 9.5 and 18.5 writhes, respectively. The results of our work open the way towards a further investigation of Weblike film forming systems containing drugs for improved dermal and transdermal treatment of various ailments. Full article
Show Figures

Figure 1

12 pages, 1220 KiB  
Article
Acyclic Diterpene Phytol from Hemp Seed Oil (Cannabis sativa L.) Exerts Anti-Inflammatory Activity on Primary Human Monocytes-Macrophages
by Carmen M. Claro-Cala, Elena Grao-Cruces, Rocio Toscano, Maria C. Millan-Linares, Sergio Montserrat-de la Paz and Maria E. Martin
Foods 2022, 11(15), 2366; https://doi.org/10.3390/foods11152366 - 7 Aug 2022
Cited by 21 | Viewed by 27568
Abstract
Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes and human macrophages [...] Read more.
Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes and human macrophages derived from circulating monocytes were used to evaluate both plasticity and anti-inflammatory effects of phytol from HSO at 10–100 mM using FACS analysis, ELISA, and RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO). Phytol was able to skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++ monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce the production of IL-1β, IL-6, and TNF-α, diminishing the inflammatory competence of mature human macrophages after lipopolysaccharide (LPS) treatment. These findings point out for the first time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages. In addition, our study may help to understand the mechanisms by which phytol from HSO contributes to the constant and progressive plasticity of the human monocyte-macrophage linage. Full article
Show Figures

Figure 1

10 pages, 1308 KiB  
Article
The Biological Activity of Tea Tree Oil and Hemp Seed Oil
by Marietta Lakatos, Samuel Obeng Apori, Julie Dunne and Furong Tian
Appl. Microbiol. 2022, 2(3), 534-543; https://doi.org/10.3390/applmicrobiol2030041 - 25 Jul 2022
Cited by 8 | Viewed by 5888
Abstract
The interest in hemp seed oil (HSO) and tea tree oil (TTO) in the medical and food industries is increasing. The current study compares their bioactivity to other plant oils, mainly focusing on hemp seed oils (HSOs) with various cannabidiol (CBD) contents. A [...] Read more.
The interest in hemp seed oil (HSO) and tea tree oil (TTO) in the medical and food industries is increasing. The current study compares their bioactivity to other plant oils, mainly focusing on hemp seed oils (HSOs) with various cannabidiol (CBD) contents. A DPPH assay was employed to evaluate the antioxidant activity. The antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis was evaluated using time–kill, minimum inhibition concentration (MIC), and Kirby–Bauer disk diffusion methods. Tea tree oil showed significantly higher antimicrobial activity against S. enteritidis compared to E. coli and S. aureus (p < 0.05). The antioxitant activity range (lowest to highest) was sesame < vetiver < rosehip < tea tree < organic hemp < pure hemp < 5% CBD < vitamin C. Tea tree oil and 5% CBD showed antioxidant activity at IC50 of 64.45 μg/mL and 11.21 μg/mL, respectively. The opposing antimicrobial and antioxidant results for TTO and HSO indicate that these activities arise from different components within the oil compositions. Full article
Show Figures

Figure 1

18 pages, 1321 KiB  
Review
Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review
by Klaudia Ostapczuk, Samuel Obeng Apori, Giovani Estrada and Furong Tian
Separations 2021, 8(10), 183; https://doi.org/10.3390/separations8100183 - 12 Oct 2021
Cited by 15 | Viewed by 6637
Abstract
The bioactive Hemp Seed Oil (HSO) is becoming very popular in the medical and research fields due to its antimicrobial properties against several diseases caused by bacteria and fungi. However, the effect of hemp-growing factors and extraction methods on the bioactivity of HSO [...] Read more.
The bioactive Hemp Seed Oil (HSO) is becoming very popular in the medical and research fields due to its antimicrobial properties against several diseases caused by bacteria and fungi. However, the effect of hemp-growing factors and extraction methods on the bioactivity of HSO does not receive adequate research attention. Therefore, this review aims to investigate the effect of growth factors and extraction methods on the antimicrobial activity of HSO. Articles were retrieved from Google Scholar and the Scopus database and screened against inclusion and exclusion criteria. The study revealed that HSO prefers warm climates and favorable humidity ranging from 20 to 39 °C and 79–100% per year, respectively, and rainfall of 324 mm daily. The multivariate linear regression shown excellent prediction (R2 = 0.94) with climates upon Zone of Growth Inhibition (ZGI) of Gram-positive bacteria. Temperature is the strongest predictor (p < 0.01) followed by humidity and rainfall (p < 0.05). Furthermore, well-drained loam soil rich in organic matter seems to stimulate the antimicrobial activity of HSO. The major constituents that influence HSO’s antimicrobial ability to Staphylococcus aureus were cannabidiol (CBD), β-caryophyllene, and limonene. The extraction methods showed less influence on the HSO bioactivity. HSO did not show significant antioxidant activity, but Hemp Seed Hull (HSH), Hemp Seed Flour (HSF), and Hydrolyzed Hemp Seed Protein (HPH), expressed promising DPPH scavenging ability. Full article
(This article belongs to the Special Issue Separations and Analysis of Proteins in Biological Samples)
Show Figures

Figure 1

13 pages, 699 KiB  
Article
Characterization of the Triacylglycerol Fraction of Italian and Extra-European Hemp Seed Oil
by Carmela Tringaniello, Lina Cossignani and Francesca Blasi
Foods 2021, 10(5), 916; https://doi.org/10.3390/foods10050916 - 22 Apr 2021
Cited by 13 | Viewed by 2710
Abstract
Hemp seed oil (HSO) has received considerable attention for its health properties, especially due to unsaturated fatty acid (UFA) content. In this work, the triacylglycerol (TAG) fraction of Italian and Extra-European HSO was characterized by applying an enzymatic approach, based on the use [...] Read more.
Hemp seed oil (HSO) has received considerable attention for its health properties, especially due to unsaturated fatty acid (UFA) content. In this work, the triacylglycerol (TAG) fraction of Italian and Extra-European HSO was characterized by applying an enzymatic approach, based on the use of pancreatic lipase and sn-1,2-diacylglycerol kinase. This procedure allows determination of the intrapositional FA% composition of TAG. The results of the stereospecific analysis are useful for deepening knowledge on HSO nutritional aspects. The high percentage of UFA (88.3–89.9%), in particular essential FA (74.4–85.9%), of HSO samples in sn-2 position is important for long-term health effects, but also to enhance the use of this oil as a functional ingredient in food, cosmetic and nutraceutical fields. Furthermore, the results of total and intrapositional FA % compositions, subjected to principal component analysis, were able to differentiate HSO Italian samples from Extra-European ones. Based on the obtained results, it can be stated that the stereospecific analysis represents a potent analytical tool providing the fingerprint of TAG fraction, useful to highlight possible chemical descriptors for HSO authenticity and traceability purposes. Full article
(This article belongs to the Special Issue Food Lipids: Analytical and Biotechnological Advances)
Show Figures

Graphical abstract

18 pages, 3848 KiB  
Article
Aesculus hippocastanum L. as a Stabilizer in Hemp Seed Oil Nanoemulsions for Potential Biomedical and Food Applications
by Maciej Jarzębski, Wojciech Smułek, Przemysław Siejak, Ryszard Rezler, Jarosław Pawlicz, Tomasz Trzeciak, Małgorzata Jarzębska, Oliwia Majchrzak, Ewa Kaczorek, Pardis Kazemian, Marta Ponieważ-Pawlicz and Farahnaz Fathordoobady
Int. J. Mol. Sci. 2021, 22(2), 887; https://doi.org/10.3390/ijms22020887 - 17 Jan 2021
Cited by 29 | Viewed by 4790
Abstract
Nanoemulsion systems receive a significant amount of interest nowadays due to their promising potential in biomedicine and food technology. Using a two-step process, we produced a series of nanoemulsion systems with different concentrations of hemp seed oil (HSO) stabilized with Aesculus hippocastanum L. [...] Read more.
Nanoemulsion systems receive a significant amount of interest nowadays due to their promising potential in biomedicine and food technology. Using a two-step process, we produced a series of nanoemulsion systems with different concentrations of hemp seed oil (HSO) stabilized with Aesculus hippocastanum L. extract (AHE). Water and commercially-available low-concentrated hyaluronic acid (HA) were used as the liquid phase. Stability tests, including an emulsifying index (EI), and droplet size distribution tests performed by dynamic light scattering (DLS) proved the beneficial impact of AHE on the emulsion’s stability. After 7 days of storage, the EI for the water-based system was found to be around 100%, unlike the HA systems. The highest stability was achieved by an emulsion containing 5% HSO and 2 g/L AHE in water, as well as the HA solution. In order to obtain the detailed characteristics of the emulsions, UV-Vis and FTIR spectra were recorded, and the viscosity of the samples was determined. Finally, a visible microscopic analysis was used for the homogeneity evaluation of the samples, and was compared with the DLS results of the water system emulsion, which showed a desirable stability. The presented results demonstrate the possible use of oil emulsions based on a plant extract rich in saponins, such as AHE. Furthermore, it was found that the anti-inflammatory properties of AHE provide opportunities for the development of new emulsion formulations with health benefits. Full article
Show Figures

Figure 1

21 pages, 4150 KiB  
Article
Cardiac and Metabolic Impact of Functional Foods with Antioxidant Properties Based on Whey Derived Proteins Enriched with Hemp Seed Oil
by Teresa Pasqua, Carmine Rocca, Francesca Romana Lupi, Noemi Baldino, Daniela Amelio, Ortensia Ilaria Parisi, Maria Concetta Granieri, Anna De Bartolo, Arturo Lauria, Marco Dattilo, Ida Daniela Perrotta, Francesco Puoci, Maria Carmela Cerra, Domenico Gabriele and Tommaso Angelone
Antioxidants 2020, 9(11), 1066; https://doi.org/10.3390/antiox9111066 - 30 Oct 2020
Cited by 18 | Viewed by 4740
Abstract
The impaired ability to feed properly, evident in oncologic, elderly, and dysphagic patients, may result in malnutrition and sarcopenia. Increasing the consumption of dietary proteins by functional foods and enriching their composition by adding beneficial nutrients may represent an adjuvant therapy. We aimed [...] Read more.
The impaired ability to feed properly, evident in oncologic, elderly, and dysphagic patients, may result in malnutrition and sarcopenia. Increasing the consumption of dietary proteins by functional foods and enriching their composition by adding beneficial nutrients may represent an adjuvant therapy. We aimed to evaluate the safety and the positive effects of a standard diet (SD) supplemented with whey-derived protein puddings (WDPP), with appropriate rheological properties, and hemp seed oil (HSO), rich in polyphenols. Rats were assigned to SD, WDPP, WDPP plus hemp seed oil (HSOP), and HSO supplemented diets for eight weeks. “Anthropometric”, metabolic, and biochemical variables, oxidative stress, tissue injury, liver histology, and cardiac susceptibility to ischemia/reperfusion were analyzed. All the supplementations did not induce significant changes in biochemical and metabolic variables, also in relation to glucose tolerance, and livers did not undergo morphological alteration and injury. An improvement of cardiac post-ischemic function in the Langendorff perfused heart model and a reduction of infarct size were observed in WDPP and HSOP groups, thanks to their antioxidant effects and the activation of Akt- and AMPK-dependent protective pathways. Data suggest that (i) functional foods enriched with WDPP and HSOP may be used to approach malnutrition and sarcopenia successfully under disabling conditions, also conferring cardioprotection, and that (ii) adequate rheological properties could positively impact dysphagia-related problems. Full article
Show Figures

Graphical abstract

Back to TopTop