Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = hemeoxygenase-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4644 KB  
Article
Cardioprotective Effects of Simvastatin in Doxorubicin-Induced Acute Cardiomyocyte Injury
by Roberta Vitale, Mariangela Mazzone, Maria Carmela Di Marcantonio, Stefania Marzocco, Gabriella Mincione and Ada Popolo
Int. J. Mol. Sci. 2025, 26(19), 9440; https://doi.org/10.3390/ijms26199440 - 26 Sep 2025
Cited by 1 | Viewed by 741
Abstract
Oxidative stress and mitochondrial dysfunction play a key role in the early stage of Doxorubicin (Doxo)-induced cardiotoxicity. Our study investigated the potential cardioprotective role of Simvastatin (Sim), widely known for its antioxidant properties, in an in vitro model of Doxo-induced acute cardiotoxicity. Human [...] Read more.
Oxidative stress and mitochondrial dysfunction play a key role in the early stage of Doxorubicin (Doxo)-induced cardiotoxicity. Our study investigated the potential cardioprotective role of Simvastatin (Sim), widely known for its antioxidant properties, in an in vitro model of Doxo-induced acute cardiotoxicity. Human Cardiomyocytes (HCMs) were treated with Sim (10 µM, 4 h) and then co-exposed to Doxo (1 µM) and Sim for 20 h. Our data showed that Sim co-treatment significantly (p < 0.05) reduced both cytosolic and mitochondrial Doxo-induced reactive oxygen species overproduction. In Sim co-treated cells, significant reductions in nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression (p < 0.01) and catalase (CAT), heme-oxygenase 1 (HO-1), and superoxide dismutase 2 (SOD2) levels (p < 0.05) compared to Doxo-treated cells were also demonstrated, suggesting a decreased need for compensatory antioxidant defense responses. Moreover, significant reductions in Doxo-induced mitochondrial calcium overload, mitochondrial membrane depolarization (p < 0.005), and apoptosis (p < 0.005) confirmed the protective effects of Sim co-treatment on cardiomyocytes. These data confirm that Sim could be a valuable therapeutic strategy for reducing Doxo-induced HCM damage, preventing the development of dilated cardiomyopathy and long-term heart damage, which are the main limitations of anthracycline use. Finally, real-time PCR analysis revealed that Sim co-treatment significantly reduced (p < 0.001) the Doxo-induced overexpression of MAP4K4, a mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) involved in oxidative stress-induced cell death, thus suggesting the involvement of other molecular mechanisms in Sim-mediated cardioprotection. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 2015 KB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 2013
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

23 pages, 2748 KB  
Article
Relationships Between H2S and OT/OTR Systems in Preeclampsia
by Tamara Merz, Sarah Ecker, Nicole Denoix, Oscar McCook, Stefanie Kranz, Ulrich Wachter, Edit Rottler, Thomas Papadopoulos, Christoph Fusch, Cosima Brucker, Jakob Triebel, Thomas Bertsch, Peter Radermacher and Christiane Waller
Antioxidants 2025, 14(7), 880; https://doi.org/10.3390/antiox14070880 - 18 Jul 2025
Viewed by 849
Abstract
Pre-eclampsia (PE) is a hypertensive pregnancy complication. Oxidative stress is hypothesized to contribute to the pathophysiology of PE. Both the hydrogen sulfide (H2S) and oxytocin (OT) systems might play a role in the pathophysiology of PE, like their antioxidant and hypotensive [...] Read more.
Pre-eclampsia (PE) is a hypertensive pregnancy complication. Oxidative stress is hypothesized to contribute to the pathophysiology of PE. Both the hydrogen sulfide (H2S) and oxytocin (OT) systems might play a role in the pathophysiology of PE, like their antioxidant and hypotensive effects. Thus, the role of the interaction of the OT and H2S systems in the context of PE was further elucidated in the present clinical case–control study “NU-HOPE” (Nürnberg-Ulm: The role of H2S and Oxytocin Receptor in Pre-Eclampsia; ethical approval by the Landesärztekammer Bayern, file number 19033, 29 August 2019), comparing uncomplicated pregnancies, early onset PE (ePE, onset < 34 weeks gestational age) and late onset PE (lPE, onset > 34 weeks gestational age). Routine clinical data, serum H2S and homocysteine levels, and tissue protein expression, as well as nitrotyrosine formation, were determined. The main findings were (i) unchanged plasma sulfide levels, (ii) significantly elevated homocysteine levels in ePE, but not lPE, (iii) significantly elevated expression of H2S enzymes and OT receptor in the placenta in lPE, and (iv) significantly elevated nitrotyrosine formation in the lPE myometrium. Taken together, these findings suggest a role for the interaction of the endogenous H2S- and OT/OTR systems in the pathophysiology of pre-eclampsia, possibly linked to impaired antioxidant protection. Full article
Show Figures

Figure 1

18 pages, 3152 KB  
Article
Luteolin Potentially Alleviates Methamphetamine Withdrawal-Induced Negative Emotions and Cognitive Deficits Through the AKT/FOXO1/HO-1 Signaling Pathway in the Prefrontal Cortex and Caudate Putamen
by Baoyao Gao, Ran An, Min Liang, Xinglin Wang, Jianhang Peng, Xingyao Chen, Zijun Liu, Tao Li, Xinshe Liu, Jianbo Zhang and Wei Han
Int. J. Mol. Sci. 2025, 26(12), 5739; https://doi.org/10.3390/ijms26125739 - 15 Jun 2025
Cited by 1 | Viewed by 1356
Abstract
Methamphetamine (METH) misuse-induced affective and cognitive dysfunctions cause severe global health and economic burdens. However, the mechanisms underlying METH withdrawal-induced negative emotions and cognitive deficits, as well as the treatment strategies for them, remain elusive. Previous findings suggest that METH use triggers neuroinflammation [...] Read more.
Methamphetamine (METH) misuse-induced affective and cognitive dysfunctions cause severe global health and economic burdens. However, the mechanisms underlying METH withdrawal-induced negative emotions and cognitive deficits, as well as the treatment strategies for them, remain elusive. Previous findings suggest that METH use triggers neuroinflammation and neuronal apoptosis, and protein kinase B (AKT), forkhead box protein 1 (FOXO1), and heme-oxygenase-1 (HO-1) are implicated in these processes. In the present study, we aimed to reveal the role and potential mechanisms of luteolin, a flavonoid phytochemical with anti-inflammatory and antioxidative properties, in METH withdrawal-induced negative emotions and cognitive deficits. We found that prolonged METH withdrawal led to an increase in neuronal activity and a decrease in the protein expression of phosphorylated AKT (p-AKT) and HO-1 in the prefrontal cortex (PFC) and caudate putamen (CPu). Luteolin pretreatment partially mitigated these METH withdrawal-induced negative emotions and cognitive deficits, and prevented the abnormal activation of PFC and CPu as well as the downregulation of AKT/HO-1 expression. Notably, we further observed that luteolin inhibited the METH-induced nuclear translocation of FOXO1. Our findings suggest that luteolin may alleviate METH withdrawal-induced affective and cognitive dysfunctions by reducing oxidative injury in the brain through the AKT/FOXO1/HO-1 pathway, highlighting its potential for treating drug addiction-related health issues. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

17 pages, 8875 KB  
Article
Agmatine Abrogates Tacrolimus-Induced Testicular Injury in Rats
by Naif Alharbi, Omnia Nour, Mirhan N. Makled and Manar Nader
Pharmaceutics 2025, 17(6), 703; https://doi.org/10.3390/pharmaceutics17060703 - 27 May 2025
Cited by 1 | Viewed by 1091
Abstract
Background/Objectives: Tacrolimus is an immunosuppressant drug widely used to prevent organ transplant rejection. Preclinical and clinical studies report that tacrolimus has destructive impacts on the male reproductive system owing to the induction of oxidative stress and inflammation. This study aimed at examining defensive [...] Read more.
Background/Objectives: Tacrolimus is an immunosuppressant drug widely used to prevent organ transplant rejection. Preclinical and clinical studies report that tacrolimus has destructive impacts on the male reproductive system owing to the induction of oxidative stress and inflammation. This study aimed at examining defensive impacts of agmatine against tacrolimus-induced testicular toxicity in rats. Methods: Male Wistar rats were randomly divided into six groups and treated based on the experimental design for 14 days. By the end of this study, blood samples were obtained to measure testosterone and luteinizing hormone. Also, both testes were removed for molecular analysis and histopathological examinations. Results: Agmatine administration increased serum levels of testosterone and luteinizing hormone and ameliorated all histopathological and toxicological changes induced by tacrolimus. Agmatine administration attenuated tacrolimus-induced oxidative stress as evidenced by the reduction of malondialdehyde content and inducible nitric oxide synthase expression and the elevation of reduced glutathione. This was parallel to the restoration of nuclear factor erythroid 2-related factor2 and hemeoxygenase-1 expression. Moreover, agmatine decreased the expressions of nuclear factor kappa B and interleukin-17. Agmatine also decreased the cell death revealed by decreased caspase-3 expression and increased expression of the antiapoptotic marker Bcl-2 in a dose-dependent manner. The antioxidant, anti-inflammatory, and antiapoptotic effects of agmatine were explained by increased expression of sirtuin-1. Conclusions: agmatine effectively attenuated testicular injuries induced by tacrolimus and enhanced spermatogenesis. This protective effect of agmatine might be mediated via the upregulation of sirtuin-1 expression that in turn restores oxidative status and regulates nuclear factor erythroid 2-related factor2/nuclear factor kappa B/Bcl-2 signaling. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

14 pages, 990 KB  
Article
Circulating Monocytes Contribute to Erythrocyte Clearance in Polycythemia Vera
by Marina D. Borges, Izabela F. Paes, Daniela P. Leonardo, Cristiane M. Souza, Dulcinéia M. Albuquerque, Carolina Lanaro, Katia B. B. Pagnano, Nicola Conran, Renata Sesti-Costa and Fernando F. Costa
Int. J. Mol. Sci. 2025, 26(11), 5133; https://doi.org/10.3390/ijms26115133 - 27 May 2025
Cited by 1 | Viewed by 1259
Abstract
Erythropoiesis is increased in polycythemia vera (PV), with proliferation of erythroid precursors, and macrophages from erythroblastic islands play a key role in this process. Circulating monocytes were shown to perform some of the macrophage’s functions in normal conditions, but their participation during stress [...] Read more.
Erythropoiesis is increased in polycythemia vera (PV), with proliferation of erythroid precursors, and macrophages from erythroblastic islands play a key role in this process. Circulating monocytes were shown to perform some of the macrophage’s functions in normal conditions, but their participation during stress erythropoiesis, as in PV, is yet to be determined. In this study, we evaluated the monocytes from the blood of healthy donors or PV patients regarding their phenotype, involvement in the clearance of erythroid cells, and their expression of iron-related molecules. We showed that circulating monocytes from PV patients contained red blood cell-derived material, which correlated with a reduction in Sirp-ɑ expression, indicating that they play a role in erythroid cell clearance in PV. Both PV monocytes and PV erythroid cells seem to influence the increase in erythrophagocytosis. The enhanced expression of heme-oxygenase-1 and ferroportin post-phagocytosis suggests their capability for heme degradation and externalization of residual iron. Moreover, PV monocytes presented higher expression of CD169, CD163, and VCAM-1, which are involved with erythroid adhesion, and they influenced in vitro erythroid cell line differentiation, suggesting that they may interfere with erythropoiesis in PV. Our findings highlight the similarities between PV monocytes and macrophages of erythroblastic islands. These insights contribute to a deeper understanding of erythrophagocytosis and erythropoiesis in the disease, offering new perspectives for advances in the field. Full article
Show Figures

Figure 1

20 pages, 2074 KB  
Article
Cannabidiol Mediates Beneficial Effects on the Microvasculature of Murine Hearts with Regard to Irradiation-Induced Inflammation and Early Signs of Fibrosis
by Lisa Bauer, Bayan Alkotub, Markus Ballmann, Khouloud Hachani, Mengyao Jin, Morteza Hasanzadeh Kafshgari, Gerhard Rammes, Alan Graham Pockley and Gabriele Multhoff
Radiation 2025, 5(2), 17; https://doi.org/10.3390/radiation5020017 - 21 May 2025
Viewed by 2244
Abstract
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a [...] Read more.
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a major driver of the development of RIHD, we investigated the potential of the anti-inflammatory agent cannabidiol (CBD) to attenuate irradiation-induced cardiovascular damage in vivo. Methods: Female C57BL/6 mice were given daily injections of CBD (i.p., 20 mg/kg body weight) for 4 weeks beginning either 2 weeks prior to 16 Gy irradiation of the heart or at the time of irradiation. Mice were sacrificed 30 min and 2, 4, and 10 weeks after irradiation to investigate the expression of inflammatory markers and stress proteins in primary cardiac endothelial cells (ECs). DNA double-strand breaks, immune cell infiltration, and signs of fibrosis were studied in explanted heart tissue. Results: We showed that the irradiation-induced upregulation of the inflammatory markers ICAM-1 and MCAM was only attenuated when treatment with CBD was started 2 weeks prior to irradiation but not when the CBD treatment was started concomitant with irradiation of the heart. The protective effect of CBD was associated with a decrease in irradiation-induced DNA damage and an increased expression of protective heat shock proteins (Hsp), such as Hsp32/Heme-oxygenase-1 (HO-1) and Hsp70, in the heart tissue. While the upregulation of the inflammatory markers ICAM-1 and MCAM, expression was prevented up to 10 weeks after irradiation by CBD pre-treatment, and the expression of VCAM-1, which started to increase 10 weeks after irradiation, was further upregulated in CBD pre-treated mice. Despite this finding, 10 weeks after heart irradiation, immune cell infiltration and fibrosis markers of the heart were significantly reduced in CBD pre-treated mice. Conclusion: CBD treatment before irradiation mediates beneficial effects on murine hearts of mice, resulting in a reduction of radiation-induced complications, such as vascular inflammation, immune cell infiltration, and fibrosis. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

17 pages, 2609 KB  
Article
Tranilast Reduces Intestinal Ischemia Reperfusion Injury in Rats Through the Upregulation of Heme-Oxygenase (HO)-1
by Emilio Canovai, Ricard Farré, Gert De Hertogh, Antoine Dubois, Tim Vanuytsel, Jacques Pirenne and Laurens J. Ceulemans
J. Clin. Med. 2025, 14(9), 3254; https://doi.org/10.3390/jcm14093254 - 7 May 2025
Cited by 4 | Viewed by 1432
Abstract
Background: Intestinal ischemia reperfusion injury (IRI) is a harmful process that occurs during intestinal infarction and intestinal transplantation (ITx). It is characterized by severe inflammation which disrupts the mucosal barrier, causing bacterial translocation and sepsis. Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid) (TL) is a synthetic compound [...] Read more.
Background: Intestinal ischemia reperfusion injury (IRI) is a harmful process that occurs during intestinal infarction and intestinal transplantation (ITx). It is characterized by severe inflammation which disrupts the mucosal barrier, causing bacterial translocation and sepsis. Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid) (TL) is a synthetic compound with powerful anti-inflammatory properties. Objective: To investigate the effect of pretreatment with TL in a validated rat model of intestinal IRI (60 min of ischemia). Methods: TL (650 mg/kg) was administered by oral gavage 24 and 2 h before the onset of ischemia. Experiment 1 examined 7-day survival in 3 study groups (sham, vehicle+IRI and TL+IRI, n = 10/group). In Experiment 2, the effects on the intestinal wall integrity and inflammation were studied after 60 min of reperfusion using 3 groups (sham, IRI and TL+IRI, n = 6/group). The following end-points were studied: L-lactate, intestinal fatty acid-binding protein (I-FABP), histology, intestinal permeability, endotoxin translocation, pro- and anti-inflammatory cytokines and heme oxygenase-1 (HO-1) levels. Experiment 3 examined the role of HO-1 upregulation in TL pretreatment, by blocking its expression using Zinc protoporphyrin (ZnPP) at 20 mg/kg vs. placebo (n = 6/group). Results: Intestinal IRI resulted in severe damage of the intestinal wall and a 10% 7-day survival. These alterations led to endotoxin translocation and upregulation of pro-inflammatory cytokines. TL pretreatment improved survival up to 50%, significantly reduced inflammation and protected the intestinal barrier. The HO-1 inhibitor ZnPP, abolished the protective effect of TL. Conclusions: TL pretreatment improves survival by protecting the intestinal barrier function, decreasing inflammation and endotoxin translocation, through upregulation of HO-1.This rat study of severe intestinal ischemia reperfusion injury demonstrates a novel role for Tranilast as a potential therapy. Administration of Tranilast led to a marked reduction in mortality, inflammation and intestinal permeability and damage. The study proved that Tranilast functions through upregulation of heme oxygenase-1. Full article
Show Figures

Figure 1

19 pages, 3230 KB  
Article
Unlocking the Neuroprotective Effect of Quercetin Against Cadmium-Induced Hippocampal Damage in Rats: PPARγ Activation as a Key Mechanism
by Doha M. Al-Nouri
Pharmaceuticals 2025, 18(5), 657; https://doi.org/10.3390/ph18050657 - 29 Apr 2025
Cited by 1 | Viewed by 1811
Abstract
Background: This study investigates the effects of cadmium chloride (CdCl2) on hippocampal peroxisome proliferator-activated receptor gamma (PPARγ) expression and examines whether PPARγ activation mediates the neuroprotective effects of quercetin (QUR). Methods: Sixty adult male rats were included in this study, separated [...] Read more.
Background: This study investigates the effects of cadmium chloride (CdCl2) on hippocampal peroxisome proliferator-activated receptor gamma (PPARγ) expression and examines whether PPARγ activation mediates the neuroprotective effects of quercetin (QUR). Methods: Sixty adult male rats were included in this study, separated into 12 rats per group as follows: control, CdCl2 (0.5 mg/kg), CdCl2 + PPARγ agonist (Pioglitazone, 10 mg/kg), CdCl2 + QUR (25 mg/kg), and CdCl2 + QUR + PPARγ antagonist (GW9662, 1 mg/kg). Treatments were administered orally for 30 days. At the end of the experiment, behavioral memory tests, hippocampal histology, markers of cholinergic function, neuroplasticity, oxidative stress, inflammation, and apoptosis, as well as transcription levels of some genes were carried out. Results: CdCl2 exposure significantly reduced hippocampal PPARγ mRNA and DNA binding potential and nuclear levels. Additionally, CdCl2 impaired spatial, short-term, and recognition memory, decreased granular cell density in the dentate gyrus (DG), and reduced levels of neuroprotective factors, including Nrf2, brain-derived neurotrophic factor (BDNF), acetylcholine (ACh), and several antioxidant enzymes including heme-oxygenase-1 (HO-1) and superoxide dismutase (SOD), as well as reduced glutathione (GSH). Conversely, CdCl2 elevated levels of oxidative stress, inflammation, and apoptosis markers such as interleukin-6 (IL-6), malondialdehyde (MDA), Bax, tumor necrosis factor-α (TNF-α), and cleaved caspase-3. QUR and Pioglitazone reversed these effects, restoring expression and PPARγ activation, improving memory, and modulating antioxidant and anti-inflammatory pathways. In contrast, blocking PPARγ with GW9662 negated the neuroprotective effects of QUR, exacerbating oxidative stress and inflammation by reversing all their beneficial effects. Conclusions: Activation of PPARγ by QUR or Pioglitazone offers a promising therapeutic strategy for mitigating CdCl2-induced neurotoxicity. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

17 pages, 2243 KB  
Article
Oxidative Stress Biomarkers in Laryngeal Squamous Cell Carcinoma and Their Clinical Implications: Preliminary Results
by Barbara Verro, Carmelo Saraniti, Diana Di Liberto, Giovanni Pratelli, Marianna Lauricella and Daniela Carlisi
Biomedicines 2025, 13(3), 667; https://doi.org/10.3390/biomedicines13030667 - 8 Mar 2025
Cited by 1 | Viewed by 1434
Abstract
Background/Objectives: Laryngeal squamous cell carcinoma represents one of the most common head and neck cancers with a five-year survival rate that, despite diagnostic and therapeutic advances, has not shown any significant improvement in recent decades. Oxidative stress, generated by an imbalance between [...] Read more.
Background/Objectives: Laryngeal squamous cell carcinoma represents one of the most common head and neck cancers with a five-year survival rate that, despite diagnostic and therapeutic advances, has not shown any significant improvement in recent decades. Oxidative stress, generated by an imbalance between reactive oxygen species and cellular antioxidant systems, is considered a central mechanism in the carcinogenesis of laryngeal squamous cell carcinoma, causing DNA damage and genomic alterations. Methods: This prospective observational paired case–control study focused on the evaluation of antioxidant proteins, such as superoxide dismutase, catalase, heme-oxygenase 1, vimentin, metallothionein, and nuclear factor erythroid 2-related factor 2, in cancer tissues from fifteen patients with laryngeal squamous cell carcinoma, using adjacent healthy tissues as controls. Results: The results show a statistically significant overexpression of all proteins analyzed in cancer tissues compared to controls, with relevant correlations between specific biomarkers and clinical characteristics, age, sex, smoking habits, and degree of tumor differentiation. Conclusions: These preliminary studies, while limited by sample size and the complexity of molecular regulation, indicate that the overexpression of antioxidant enzymes in laryngeal squamous cell carcinoma tissues, along with their correlations with key clinical parameters, underscores a context-dependent role of oxidative stress in tumor progression. A deeper understanding of oxidative stress mechanisms could contribute to advance personalized management strategies for laryngeal squamous cell carcinoma, potentially improving treatment outcomes and patient prognosis. Full article
(This article belongs to the Special Issue Novel Approaches towards Targeted Head and Neck Cancer Therapies)
Show Figures

Figure 1

18 pages, 3496 KB  
Article
Heme-Oxygenase 1 Mediated Activation of Cyp3A11 Protects Against Non-Steroidal Pain Analgesics Induced Acute Liver Damage in Sickle Cell Disease Mice
by Ravi Vats, Ramakrishna Ungalara, Rikesh K. Dubey, Prithu Sundd and Tirthadipa Pradhan-Sundd
Cells 2025, 14(3), 194; https://doi.org/10.3390/cells14030194 - 28 Jan 2025
Viewed by 1756
Abstract
Pain constitutes a significant comorbidity associated with sickle cell disease (SCD). Analgesics serve as the primary method for pain management; however, the long-term effects of these drugs on the liver of SCD patients remain not completely understood. Using real-time intravital imaging, we analyzed [...] Read more.
Pain constitutes a significant comorbidity associated with sickle cell disease (SCD). Analgesics serve as the primary method for pain management; however, the long-term effects of these drugs on the liver of SCD patients remain not completely understood. Using real-time intravital imaging, we analyzed the effect of non-steroidal analgesics (NSA) in the liver of control and SS (SCD) mice. Remarkably, we found completely opposing effects in the liver of control and SS mice post-NSA treatment. Whereas SS mice were able to better tolerate the NSA treatment acutely compared to their littermate controls, in the long term, these mice showed delayed resolution of liver injury and exacerbated fibrosis compared to control mice. Mechanistically, we found that SS mice were protected from cytotoxicity caused by NSA at baseline due to the significant activation of hepatic Kupffer cells, which produced heme-oxygenase 1 (HO-1). HO-1 promoted the activation of the cytoprotective enzyme Cyp3A11, which inhibited hepatic damage caused by NSA. However, in the long term, depletion of hepatic Kupffer cells led to reduced expression of HO-1, which blocked the activation of Cyp3A11, resulting in fibrosis and a delay in the resolution of liver injury and inflammation. These preclinical data provide a strong proof-of-concept for HO-1 as well as Cyp3A11 as cytoprotectors against NSA-induced liver damage in the Townes model of SCD and support further development of these compounds as potential novel therapies for end-organ damage in SCD. Full article
(This article belongs to the Special Issue Sickle Cell Disease: Pathogenesis, Diagnosis and Treatment)
Show Figures

Figure 1

24 pages, 7095 KB  
Article
Cannabidiol (CBD) Protects Lung Endothelial Cells from Irradiation-Induced Oxidative Stress and Inflammation In Vitro and In Vivo
by Lisa Bauer, Bayan Alkotub, Markus Ballmann, Morteza Hasanzadeh Kafshgari, Gerhard Rammes and Gabriele Multhoff
Cancers 2024, 16(21), 3589; https://doi.org/10.3390/cancers16213589 - 24 Oct 2024
Cited by 5 | Viewed by 2408
Abstract
Objective: Radiotherapy, which is commonly used for the local control of thoracic cancers, also induces chronic inflammatory responses in the microvasculature of surrounding normal tissues such as the lung and heart that contribute to fatal radiation-induced lung diseases (RILDs) such as pneumonitis and [...] Read more.
Objective: Radiotherapy, which is commonly used for the local control of thoracic cancers, also induces chronic inflammatory responses in the microvasculature of surrounding normal tissues such as the lung and heart that contribute to fatal radiation-induced lung diseases (RILDs) such as pneumonitis and fibrosis. In this study, we investigated the potential of cannabidiol (CBD) to attenuate the irradiation damage to the vasculature. Methods: We investigated the ability of CBD to protect a murine endothelial cell (EC) line (H5V) and primary lung ECs isolated from C57BL/6 mice from irradiation-induced damage in vitro and lung ECs (luECs) in vivo, by measuring the induction of oxidative stress, DNA damage, apoptosis (in vitro), and induction of inflammatory and pro-angiogenic markers (in vivo). Results: We demonstrated that a non-lethal dose of CBD reduces the irradiation-induced oxidative stress and early apoptosis of lung ECs by upregulating the expression of the cytoprotective mediator heme-oxygenase-1 (HO-1). The radiation-induced increased expression of inflammatory (ICAM-2, MCAM) and pro-angiogenic (VE-cadherin, Endoglin) markers was significantly reduced by a continuous daily treatment of C57BL/6 mice with CBD (i.p. 20 mg/kg body weight), 2 weeks before and 2 weeks after a partial irradiation of the lung (less than 20% of the lung volume) with 16 Gy. Conclusions: CBD has the potential to improve the clinical outcome of radiotherapy by reducing toxic side effects on the microvasculature of the lung. Full article
(This article belongs to the Special Issue Radiation Dose in Cancer Radiotherapy)
Show Figures

Figure 1

13 pages, 3957 KB  
Article
Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress
by Yujia Cao, Yee-Joo Tan and Dejian Huang
Int. J. Mol. Sci. 2024, 25(19), 10694; https://doi.org/10.3390/ijms251910694 - 4 Oct 2024
Cited by 5 | Viewed by 2370
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF [...] Read more.
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models. Full article
(This article belongs to the Special Issue Cellular Redox Mechanisms in Inflammation and Programmed Cell Death)
Show Figures

Figure 1

17 pages, 1503 KB  
Article
Comparative Efficacy of Low-Carbohydrate and Ketogenic Diets on Diabetic Retinopathy and Oxidative Stress in High-Fat Diet-Induced Diabetic Rats
by Monya T. Jawharji, Ghedeir M. Alshammari, Manal Abdulaziz Binobead, Nouf Mohammed Albanyan, Laila Naif Al-Harbi and Mohammed Abdo Yahya
Nutrients 2024, 16(18), 3074; https://doi.org/10.3390/nu16183074 - 12 Sep 2024
Cited by 6 | Viewed by 3180
Abstract
This study examined the effect of a low-carbohydrate diet (LCD) and a low-carbohydrate ketogenic diet (LCKD) on diabetic retinopathy in high-fat diet-induced diabetes mellitus in rats and studied the mechanisms of action. Rats were divided into four groups: the Control group, which was [...] Read more.
This study examined the effect of a low-carbohydrate diet (LCD) and a low-carbohydrate ketogenic diet (LCKD) on diabetic retinopathy in high-fat diet-induced diabetes mellitus in rats and studied the mechanisms of action. Rats were divided into four groups: the Control group, which was fed a normal diet for 16 weeks; the HFD group, which was fed a high-fat diet (HFD) for the first 8 weeks and then switched to a normal diet for 8 weeks; the HFD+LCD group, fed a HFD for 8 weeks followed by an LCD for 8 weeks, and the HFD+LCKD group, which was fed a HFD for 8 weeks followed by an LCKD for 8 more weeks. Both the LCD and the LCKD effectively reduced the final body and total fat weights and decreased fasting serum levels of glucose, insulin, hemoglobin A1 (HbA1C), triglycerides, cholesterol, and LDL-c. They also reduced the levels of malondialdehyde (MDA), tumor necrosis factor-α, vascular endothelial factor, caspapse-3, and bax. In the HFD rats, we found increased serum levels of β-Hydroxybutyrate and upregulated expression of Bcl2, glutathione, superoxide dismutase, and hemeoxygenase-1. Moreover, the LCD and LCKD significantly reduced mRNA levels of Kelch-like ECH-associated protein 1 (Keap1) and enhanced mRNA and nuclear concentrations of nuclear factor erythroid factor 2 (Nrf2). All these effects were associated with improved layers of the retina in the HFD − LCD and HFD + LCKD rats but not in HFD animals. The impact of the LCKD was always more profound on all measured parameters and on improving the structure of the retina compared to the LCD. In conclusion, the LCKD is superior to the LCD in preventing diabetic retinopathy in HFD-fed rats. Mechanistically, our results suggest that the hypoglycemic and hypolipidemic conditions and the Nrf2-dependent antioxidant and anti-inflammatory effects may be involved in the preventative effects of the LCD and LCKD. Full article
Show Figures

Figure 1

22 pages, 7451 KB  
Article
Computational Analysis and Experimental Data Exploring the Role of Hesperetin in Ameliorating ADHD and SIRT1/Nrf2/Keap1/OH-1 Signaling
by Hatem I. Mokhtar, Noha M. Abd El-Fadeal, Rehab M. El-Sayed, Ann Hegazy, Mohamed K. El-Kherbetawy, Ahmed G. Hamad, Mohamed H. ElSayed and Sawsan A. Zaitone
Int. J. Mol. Sci. 2024, 25(17), 9284; https://doi.org/10.3390/ijms25179284 - 27 Aug 2024
Cited by 6 | Viewed by 2865
Abstract
Attention deficit hyperactivity disorder (ADHD) manifests as poor attention, hyperactivity, as well as impulsive behaviors. Hesperetin (HSP) is a citrus flavanone with strong antioxidant and anti-inflammatory activities. The present study aimed to test hesperetin efficacy in alleviating experimental ADHD in mice and its [...] Read more.
Attention deficit hyperactivity disorder (ADHD) manifests as poor attention, hyperactivity, as well as impulsive behaviors. Hesperetin (HSP) is a citrus flavanone with strong antioxidant and anti-inflammatory activities. The present study aimed to test hesperetin efficacy in alleviating experimental ADHD in mice and its influence on hippocampal neuron integrity and sirtuin 1 (SIRT1) signaling. An in silico study was performed to test the related proteins. Groups of mice were assigned as control, ADHD model, ADHD/HSP (25 mg/kg), and ADHD/HSP (50 mg/kg). ADHD was induced by feeding with monosodium glutamate (0.4 g/kg, for 8 weeks) and assessed by measuring the motor and attentive behaviors (open filed test, Y-maze test, and marble burying test), histopathological examination of the whole brain tissues, and estimation of inflammatory markers. The in-silico results indicated the putative effects of hesperetin on ADHD by allowing the integration and analysis of large-scale genomic, transcriptomic, and proteomic data. The in vivo results showed that ADHD model mice displayed motor hyperactivity and poor attention in the behavioral tasks and shrank neurons at various hippocampal regions. Further, there was a decline in the mRNA expression and protein levels for SIRT1, the erythroid 2-related factor-2 (Nrf2), kelch like ECH associated protein 1 (Keap1) and hemeoxygenase-1 (OH-1) proteins. Treatment with HSP normalized the motor and attentive behaviors, prevented hippocampal neuron shrinkage, and upregulated SIRT1/Nrf2/Keap1/OH-1 proteins. Taken together, HSP mainly acts by its antioxidant potential. However, therapeutic interventions with hesperetin or a hesperetin-rich diet can be suggested as a complementary treatment in ADHD patients but cannot be suggested as an ADHD treatment per se as it is a heterogeneous and complex disease. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

Back to TopTop