Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = heavy ion beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2086 KiB  
Article
Radiation Hardness of Oxide Thin Films Prepared by Magnetron Sputtering Deposition
by Marko Škrabić, Marija Majer, Zdravko Siketić, Maja Mičetić, Željka Knežević and Marko Karlušić
Appl. Sci. 2025, 15(13), 7067; https://doi.org/10.3390/app15137067 - 23 Jun 2025
Viewed by 186
Abstract
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by [...] Read more.
Thin amorphous oxide films (a-SiO2, a-Al2O3, a-MgO) were prepared by magnetron sputtering deposition. Their response to high-energy heavy ion beams (23 MeV I, 18 MeV Cu, 2.5 MeV Cu) and gamma-ray (1.25 MeV) irradiation was studied by elastic recoil detection analysis and infrared spectroscopy. It was established that their high radiation hardness is due to a high level of disorder, already present in as-prepared samples, so the high-energy heavy ion irradiation cannot change their structure much. In the case of a-SiO2, this resulted in a completely different response to high-energy heavy ion irradiation found previously in thermally grown a-SiO2. In the case of a-MgO, only gamma-ray irradiation was found to induce significant changes. Full article
Show Figures

Figure 1

10 pages, 1554 KiB  
Article
Investigating the Secondary Thermal Neutron Intensity of Neutron Capture-Enhanced Proton Therapy
by Takahiro Shimo, Shintaro Shiba, Hiroyuki Watanabe, Masashi Yamanaka, Kazuki Matsumoto, Akihiro Yamano, Hisato Nagano and Kohichi Tokuuye
Appl. Sci. 2025, 15(12), 6833; https://doi.org/10.3390/app15126833 - 17 Jun 2025
Viewed by 345
Abstract
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 [...] Read more.
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 × 35 × 35 cm3 water phantom, and proton-beam energies ranging from 70.2 to 228.7 MeV were investigated. The MCS results were compared with neutron fluence measurements obtained from gold activation analysis, showing good agreement with a difference of 3.54%. The internal thermal neutron distribution generated by PBT was isotropic around the proton-beam axis, with the Bragg peak depth varying between 3.45 and 31.9 cm, while the thermal neutron peak depth ranged from 5.41 to 15.9 cm. Thermal neutron generation depended on proton-beam energy, irradiated particle count, and depth. Particularly, the peak of the thermal neutron fluence did not occur within the treatment target volume but in a location outside the target, closer to the source. This discrepancy between the Bragg peak and the thermal neutron fluence peak is a key finding of this study. These data are crucial for optimizing beam angles to maximize dose enhancement within the target during clinical applications of neutron capture-enhanced particle therapy. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

11 pages, 14103 KiB  
Article
Production Optimization of Exotic Hypernuclei via Heavy-Ion Beams at GSI-FAIR
by Samuel Escrig and Christophe Rappold
Particles 2025, 8(2), 54; https://doi.org/10.3390/particles8020054 - 1 May 2025
Viewed by 643
Abstract
Building on the successful demonstration of hypernuclear spectroscopy using heavy-ion beams, the HypHI Collaboration is shifting its focus to investigating proton- and neutron-rich hypernuclei. A crucial component of this research is the implementation of a fragment separator, which facilitates the production and separation [...] Read more.
Building on the successful demonstration of hypernuclear spectroscopy using heavy-ion beams, the HypHI Collaboration is shifting its focus to investigating proton- and neutron-rich hypernuclei. A crucial component of this research is the implementation of a fragment separator, which facilitates the production and separation of rare isotope beams and is vital for accessing hypernuclei far from the stability line. High-precision spectroscopy of these exotic hypernuclei is planned to be conducted at GSI first, which will be followed by experiments at the FAIR facility utilizing the FRS and Super-FRS fragment separators. A thorough systematic investigation paired with an optimization analysis was employed to establish the most favorable experimental setup for producing high-isospin hypernuclei. Theoretical models describing heavy-ion-induced reactions and hypernuclear synthesis guided this process, which was complemented by Monte Carlo simulations to obtain experimental efficiencies for the production and transmission of the exotic secondary beams. The outlined methodology offers insights into the anticipated yields of HeΛ6, CΛ9, and a range of both proton- and neutron-rich hypernuclei. Full article
Show Figures

Figure 1

14 pages, 3331 KiB  
Article
Portable Magnetic Field Mapping Measurement System Based on Large-Scale Dipole Magnets in HIAF
by Xiang Zhang, Zidi Wu, Li’an Jin, Jing Yang, Xianjin Ou, Dongsheng Ni, Yue Cheng, Lixia Zhao, Yujin Tong, Weigang Dong, Beimin Wu, Guohong Li and Qinggao Yao
Metrology 2025, 5(2), 22; https://doi.org/10.3390/metrology5020022 - 14 Apr 2025
Viewed by 653
Abstract
The High-Intensity Heavy-Ion Accelerator Facility (HIAF) is a significant national science and technology infrastructure project, constructed by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). It is designed to provide intense proton, heavy ion beams, and target-produced radioactive ion beams [...] Read more.
The High-Intensity Heavy-Ion Accelerator Facility (HIAF) is a significant national science and technology infrastructure project, constructed by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). It is designed to provide intense proton, heavy ion beams, and target-produced radioactive ion beams for nuclear physics and related research. Large-aperture, high-precision, room-temperature, and superconducting dipole magnets are extensively used to achieve high-intensity beams. However, for large-scale magnets (particularly superconducting magnets), the traditional Hall probe mapping measurement platform encounters several limitations: a long preparation time, high cost, low testing efficiency, and positional inaccuracies caused by repeated magnet disassembly. This paper presents a new magnetic field mapping measurement system incorporating ultrasonic motors operable in strong magnetic fields (≥7 T), enabling portable, highly efficient, and high-precision magnetic field measurements. After system integration and commissioning, the prototype dipole magnet for the high-precision spectrometer ring (SRing) was measured. The measurement system demonstrated superior accuracy and efficiency compared with traditional Hall probe mapping systems. On this basis, the magnetic field distribution and integral excitation curve of all 11 warm-iron superconducting dipole magnets and 3 anti-irradiation dipole magnets in the HIAF fragment separator (HFRS) were measured. Each magnet took less than 1 day to measure, and all magnetic field measurement results met the physical specifications. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

6 pages, 1677 KiB  
Proceeding Paper
Magneto-Optical Investigation of Surface Magnetization in Comparison with Bulk Magnetization
by Hermann Tetzlaff, Martin Wortmann and Andrea Ehrmann
Phys. Sci. Forum 2024, 10(1), 9; https://doi.org/10.3390/psf2024010009 - 4 Mar 2025
Viewed by 498
Abstract
Exchange-biased specimens were produced by molecular beam epitaxy (MBE) of ferromagnetic (FM) Co-on-CoO substrates after the substrates had been irradiated by heavy ions to induce defects in the antiferromagnet (AFM). Measurements were obtained at different temperatures for different sample orientations with respect to [...] Read more.
Exchange-biased specimens were produced by molecular beam epitaxy (MBE) of ferromagnetic (FM) Co-on-CoO substrates after the substrates had been irradiated by heavy ions to induce defects in the antiferromagnet (AFM). Measurements were obtained at different temperatures for different sample orientations with respect to the external magnetic field. While the EB was relatively small, measurements of the bulk magnetization at low temperatures revealed unusually shaped hysteresis loops. The surface magnetization, however, showed simple, nearly rectangular hysteresis loops. This study focuses on the advantage of complementary information on surface and bulk magnetization from optical and non-optical measurement methods. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Photonics)
Show Figures

Figure 1

44 pages, 5974 KiB  
Review
Acceleration of Heavy Ions by Ultrafast High-Peak-Power Lasers: Advances, Challenges, and Perspectives
by Jan Badziak and Jarosław Domański
Photonics 2025, 12(3), 184; https://doi.org/10.3390/photonics12030184 - 23 Feb 2025
Viewed by 1761
Abstract
Laser-driven ion acceleration is a new, rapidly developing field of research and one of the important applications of ultrafast high-peak-power lasers. In this acceleration method, extremely strong electric fields, induced by an ultrafast laser in the plasma generated by the laser–target interaction, enable [...] Read more.
Laser-driven ion acceleration is a new, rapidly developing field of research and one of the important applications of ultrafast high-peak-power lasers. In this acceleration method, extremely strong electric fields, induced by an ultrafast laser in the plasma generated by the laser–target interaction, enable the acceleration of ions to relativistic velocities on picosecond time scales and at sub-millimetre distances. This opens the prospect of constructing a fundamentally new type of high-energy ion accelerator—less complex, more compact, and cheaper than the ion accelerators operating today. This paper briefly discusses the basic mechanisms of heavy ion acceleration driven by an ultrafast high-peak-power laser and summarises the advances in experimental and numerical studies of laser-driven heavy ion acceleration. The main challenges facing this research and the prospects for the application of laser-accelerated heavy ion beams are outlined. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

8 pages, 490 KiB  
Article
Diagnostics of Spin-Polarized Ions at Storage Rings
by Anna Maiorova, Stephan Fritzsche, Andrey Surzhykov and Thomas Stöhlker
Atoms 2025, 13(2), 15; https://doi.org/10.3390/atoms13020015 - 4 Feb 2025
Viewed by 713
Abstract
Polarized heavy ions in storage rings are seen as a valuable tool for a wide range of research, from the study of spin effects in relativistic atomic collisions to the tests of the Standard Model. For forthcoming experiments, several important challenges need to [...] Read more.
Polarized heavy ions in storage rings are seen as a valuable tool for a wide range of research, from the study of spin effects in relativistic atomic collisions to the tests of the Standard Model. For forthcoming experiments, several important challenges need to be addressed to work efficiently with such ions. Apart from the production and preservation of ion polarization in storage rings, its measurement is an extremely important issue. In this contribution, we employ the radiative recombination (RR) of polarized electrons into the ground state of initially hydrogen-like, finally helium-like, ions as a probe process for beam diagnostics. Our theoretical study clearly demonstrates that the RR cross section, integrated over photon emission angles, is highly sensitive to both the degree and the direction of ion polarization. Since the (integrated) cross-section measurements are well established, the proposed method offers promising prospects for ion spin tomography at storage rings. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

17 pages, 481 KiB  
Article
Angular Distributions and Polarization of Fluorescence in an XUV Pump–XUV Probe Scheme
by Cristian Iorga and Viorica Stancalie
Atoms 2025, 13(1), 1; https://doi.org/10.3390/atoms13010001 - 24 Dec 2024
Cited by 1 | Viewed by 831
Abstract
This work provides theoretical calculations of fluorescence angular distribution and polarization within an XUV pump–XUV probe scheme designed for determining ultra-short lifetimes of highly charged heavy ions. The initial pumping leads to a non-zero alignment in the excited levels. After the probing stage, [...] Read more.
This work provides theoretical calculations of fluorescence angular distribution and polarization within an XUV pump–XUV probe scheme designed for determining ultra-short lifetimes of highly charged heavy ions. The initial pumping leads to a non-zero alignment in the excited levels. After the probing stage, the anisotropies in angular distribution and polarization of subsequent fluorescence are significantly enhanced due to the existence of a previous alignment. Furthermore, two-photon sequential excitation from a ground state with zero angular momentum to a level with angular momentum one by two aligned linearly polarized photon beams is strictly prohibited by the selection rules and may be used as a diagnostic tool to determine beam misalignment. The present approach is based on the density matrix and statistical tensor framework. We provide the analytical form for the alignment parameters caused by successive photoexcitation either with linearly polarized photon beams, or with unpolarized photons. The analytical results can generally be used to compute angular distribution asymmetry parameters and linear polarization of subsequent fluorescence for a large array of atomic systems used in pump–probe experiments. Full article
Show Figures

Figure 1

38 pages, 8036 KiB  
Review
Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities
by Zhuang Ge
Sensors 2024, 24(22), 7261; https://doi.org/10.3390/s24227261 - 13 Nov 2024
Cited by 1 | Viewed by 1834
Abstract
Timing and/or position-sensitive MCP detectors, which detect secondary electrons (SEs) emitted from a conversion foil during ion passage, are widely utilized in nuclear physics and nuclear astrophysics experiments. This review covers high-performance timing and/or position-sensitive MCP detectors that use SE emission for mass [...] Read more.
Timing and/or position-sensitive MCP detectors, which detect secondary electrons (SEs) emitted from a conversion foil during ion passage, are widely utilized in nuclear physics and nuclear astrophysics experiments. This review covers high-performance timing and/or position-sensitive MCP detectors that use SE emission for mass measurements of exotic nuclei at nuclear physics facilities, along with their applications in new measurement schemes. The design, principles, performance, and applications of these detectors with different arrangements of electromagnetic fields are summarized. To achieve high precision and accuracy in mass measurements of exotic nuclei using time-of-flight (TOF) and/or position (imaging) measurement methods, such as high-resolution beam-line magnetic-rigidity time-of-flight (Bρ-TOF) and in-ring isochronous mass spectrometry (IMS), foil-MCP detectors with high position and timing resolution have been introduced and simulated. Beyond TOF mass measurements, these new detector systems are also described for use in heavy ion beam trajectory monitoring and momentum measurements for both beam-line and in-ring applications. Additionally, the use of position-sensitive timing foil-MCP detectors for Penning trap mass spectrometers and multi-reflection time-of-flight (MR-TOF) mass spectrometers is proposed and discussed to improve efficiency and enhance precision. Full article
(This article belongs to the Special Issue Particle Detector R&D: Design, Characterization and Applications)
Show Figures

Figure 1

13 pages, 1699 KiB  
Article
Metallic Ca Aggregates Formed Along Ion Tracks and Optical Anisotropy in CaF2 Crystals Irradiated with Swift Heavy Ions
by Hiroshi Amekura, Norito Ishikawa, Nariaki Okubo, Feng Chen, Kazumasa Narumi, Atsuya Chiba, Yoshimi Hirano, Keisuke Yamada, Shunya Yamamoto and Yuichi Saitoh
Quantum Beam Sci. 2024, 8(4), 29; https://doi.org/10.3390/qubs8040029 - 7 Nov 2024
Viewed by 1341
Abstract
It is known that swift heavy ion (SHI) irradiation induces the shape elongation of metal nanoparticles (NPs) embedded in transparent insulators, which results in anisotropic optical absorption. Here, we report another type of the optical anisotropy induced in CaF2 crystals without including [...] Read more.
It is known that swift heavy ion (SHI) irradiation induces the shape elongation of metal nanoparticles (NPs) embedded in transparent insulators, which results in anisotropic optical absorption. Here, we report another type of the optical anisotropy induced in CaF2 crystals without including intentionally embedded metal NPs. The CaF2 samples were irradiated with 200 MeV Xe14+ ions with an incident angle of 45° from the surface normal. With the increasing fluence, an absorption band at ~550 nm, which is ascribed to Ca aggregates, increases both the intensity and the anisotropy. XTEM observation clarified the formation of the continuous line structures and the discontinuous NP chains parallel to the SHI beam. Numerical simulations of the optical absorption spectra suggested the NP chains but not the continuous line structures as the origin of the anisotropy. The optical anisotropy in CaF2 irradiated with SHIs is different from the shape elongation of NPs. Full article
(This article belongs to the Special Issue Modification of Materials by Using Energetic Ion/Electron Beams)
Show Figures

Figure 1

13 pages, 1089 KiB  
Review
Advances in Targeted Microbeam Irradiation Methods for Live Caenorhabditis elegans
by Michiyo Suzuki
Biology 2024, 13(11), 864; https://doi.org/10.3390/biology13110864 - 24 Oct 2024
Viewed by 1793
Abstract
Charged-particle microbeam irradiation devices, which can convert heavy-ion or proton beams into microbeams and irradiate individual animal cells and tissues, have been developed and used for bioirradiation in Japan, the United States, China, and France. Microbeam irradiation technology has been used to analyze [...] Read more.
Charged-particle microbeam irradiation devices, which can convert heavy-ion or proton beams into microbeams and irradiate individual animal cells and tissues, have been developed and used for bioirradiation in Japan, the United States, China, and France. Microbeam irradiation technology has been used to analyze the effects of irradiation on mammalian cancer cells, especially bystander effects. In 2006, individual-level microbeam irradiation of the nematode Caenorhabditis elegans was first realized using JAEA-Takasaki’s (now QST-TIAQS’s) TIARA collimated microbeam irradiation device. As of 2023, microbeam irradiation of C. elegans has been achieved at five sites worldwide (one in Japan, one in the United States, one in China, and two in France). This paper summarizes the global progress in the field of microbeam biology using C. elegans, while focusing on issues unique to microbeam irradiation of live C. elegans, such as the method of immobilizing C. elegans for microbeam experiments. Full article
(This article belongs to the Special Issue Microbeam Radiation Biology and Its State-of-the-Art Technology)
Show Figures

Figure 1

15 pages, 5740 KiB  
Article
Dynamic Deformation in Nuclear Graphite and Underlying Mechanisms
by Melonie Thomas, Hajin Oh, Ryan Schoell, Stephen House, Miguel Crespillo, Khalid Hattar, William Windes and Aman Haque
Materials 2024, 17(18), 4530; https://doi.org/10.3390/ma17184530 - 14 Sep 2024
Cited by 3 | Viewed by 1171
Abstract
Time-dependent deformation in nuclear graphite is influenced by the creation and migration of radiation-induced defects in the reactor environment. This study investigates the role of pre-existing defects such as point defect clusters and Mrozowski cracks in nuclear graphite IG-110. Separate specimens were irradiated [...] Read more.
Time-dependent deformation in nuclear graphite is influenced by the creation and migration of radiation-induced defects in the reactor environment. This study investigates the role of pre-existing defects such as point defect clusters and Mrozowski cracks in nuclear graphite IG-110. Separate specimens were irradiated with a 2.8 MeV Au2+ beam with a fluence of 4.38 × 1014 cm−2 and an 8 MeV C2+ beam with a fluence of 1.24 × 1016 cm−2. Microscopic specimens were either mechanically loaded inside a transmission electron microscope (TEM) or subjected to ex situ indentation-based creep loading. In situ TEM tests showed significant plasticity in regions highly localized around the Mrozowski cracks, resembling slip or ripplocation bands. Slip bands were also seen near regions without pre-existing defects but at very high stresses. Ex situ self-ion irradiation embrittled the specimens and decreased the creep displacement and rate, while heavy ion irradiation resulted in the opposite behavior. We hypothesize that the large-sized gold ions (compared to the carbon atoms) induced interplanar swelling as well as cross-plane channels for increased defect mobility. These findings illustrate the role of pre-existing defects in the dynamic relaxation of stresses during irradiation and the need for more studies into the radiation environment’s impact on the mechanical response of nuclear graphite. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

14 pages, 4625 KiB  
Article
Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration
by Lijie Zhang, Hongbin He, Shangpu Zhang, Yanling Xiong, Rui Pan and Wenlong Yang
Photonics 2024, 11(7), 631; https://doi.org/10.3390/photonics11070631 - 2 Jul 2024
Cited by 5 | Viewed by 1704
Abstract
A novel chitosan (CS) functionalized optical fiber sensor with a bullet-shaped hollow cavity was proposed in this work for the trace concentration of Pb2+ ion detection in the water environment. The sensor is an optical fiber Mach–Zehnder interferometer (MZI), which consists of [...] Read more.
A novel chitosan (CS) functionalized optical fiber sensor with a bullet-shaped hollow cavity was proposed in this work for the trace concentration of Pb2+ ion detection in the water environment. The sensor is an optical fiber Mach–Zehnder interferometer (MZI), which consists of a sequentially spliced bullet-shaped hollow-core fiber (HCF), thin-core fiber, and another piece of spliced bullet-shaped HCF. The hollow-core fiber is caused to collapse by adjusting the amount of discharge to form a tapered hollow cavity with asymmetric end faces. The bullet-like hollow cavities act as beam expanders and couplers for optical fiber sensors, which were symmetrically spliced at both ends of a section of thin core fiber. The simulation and experiments show that the bullet-like hollow-core tapered cavity excites more cladding modes and is more sensitive to variation in the external environment than the planar and spherical cavities. The ion-imprinted chitosan (IIP-CS) film was fabricated with Pb2+ ion as a template and uniformly coated on the surface for specific recognition of Pb2+. Experimental verification confirms that the developed sensor can achieve high-sensitivity Pb2+ ion detection, with a sensitivity of up to −12.68 pm/ppm and a minimum Pb2+ ion detection concentration of 5.44 ppb Meanwhile, the sensor shows excellent selectivity, repeatability, and stability in the ion detection process, which has huge potential in the direction of heavy metal ion detection in the future. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

26 pages, 11747 KiB  
Article
Pyrite-Goethite Alteration in Supergene Oxidation Processes in Till: Elemental Distribution and Evaluation of Goethite Usability as a Fingerprinting Tool for Vectoring Mineral Deposits
by Atte Taivalkoski, Jukka-Pekka Ranta, Pertti Sarala, Marko Moilanen, Paavo Nikkola and Tapio Soukka
Minerals 2024, 14(7), 668; https://doi.org/10.3390/min14070668 - 27 Jun 2024
Cited by 2 | Viewed by 1778
Abstract
In the formerly glaciated terrains in the northern hemisphere and countries such as Finland, till is the most common sediment covering the bedrock. Specifically, indicator or heavy mineral studies utilising till as a vector for mineral deposits undercover have been successful. The pyrite [...] Read more.
In the formerly glaciated terrains in the northern hemisphere and countries such as Finland, till is the most common sediment covering the bedrock. Specifically, indicator or heavy mineral studies utilising till as a vector for mineral deposits undercover have been successful. The pyrite trace-element composition from in situ mineral analyses has been shown to be an effective discriminator between different mineral deposit types, and this has led to research using heavy mineral pyrite in till to identify potential mineral deposits in a given area. However, pyrite is easily oxidised in till beds, and thus, alternative methods should be considered. Goethite pseudomorphs are more commonly found in the till sediments as remnants after pyrite oxidation. This study evaluates trace element compositions of goethitised pyrite recovered in the till beds from central Lapland in northern Finland. Intra-grain trace-elemental variations gathered using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) between the intact pyrite core and oxidised rim demonstrated complex dynamics and variations between different trace-element values. For example, Cu, V and Mn exhibited elevated trace-element values in the goethite rim compared to the pyrite core. However, elemental ratios such as Ni/As and Co/Ni remain stable between the pyrite core and oxidised rim. Therefore, these ratios have the potential to be used as a discriminating tool between the pyrite core and oxidised rim. In addition, nanoscale variabilities using focused ion beam (FIB) and transmission electron microscopy (TEM) were utilised to inspect possible nano inclusions within the studied heavy mineral grain. The FIB and TEM studies revealed a nanocrystalline pyrite nodule observation within the goethite rim. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

14 pages, 3576 KiB  
Article
Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses
by Kai Schulze, Ulrich Weber, Christoph Schuy, Marco Durante and Carlos Alberto Guzmán
Pharmaceutics 2024, 16(4), 465; https://doi.org/10.3390/pharmaceutics16040465 - 27 Mar 2024
Cited by 1 | Viewed by 2950
Abstract
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation [...] Read more.
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses. Full article
(This article belongs to the Special Issue Emerging Pharmaceutical Strategies against Infectious Diseases)
Show Figures

Figure 1

Back to TopTop