Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = heavy electric vehicles charging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17098 KiB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Viewed by 243
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

23 pages, 5228 KiB  
Article
From Conventional to Electrified Pavements: A Structural Modeling Approach for Spanish Roads
by Gustavo Boada-Parra, Ronny Romero, Federico Gulisano, Freddy Apaza-Apaza, Damaris Cubilla, Andrea Serpi, Rafael Jurado-Piña and Juan Gallego
Coatings 2025, 15(7), 801; https://doi.org/10.3390/coatings15070801 - 9 Jul 2025
Viewed by 377
Abstract
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% [...] Read more.
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% of global car sales by 2035. However, widespread adoption requires smart infrastructure capable of enabling dynamic in-motion charging. In this context, Electric Road Systems (ERSs), particularly those based on Wireless Power Transfer (WPT) technologies, offer a promising solution by transferring energy between road-embedded transmitters and vehicle-mounted receivers. This study assesses the structural response and service life of conventional and electrified asphalt pavement sections representative of the Spanish road network. Several standard pavement configurations were analyzed under heavy traffic (dual axles, 13 tons) using a hybrid approach combining mechanistic–empirical multilayer modeling and three-dimensional Finite Element Method (FEM) simulations. The electrified designs integrate prefabricated charging units (CUs) placed at a 9 cm depth, disrupting the structural continuity of the pavement. The results reveal stress concentrations at the CU–asphalt interface and service life reductions of up to 50% in semiflexible pavements. Semirigid sections performed better, with average reductions close to 40%. These findings are based on numerical simulations of standard Spanish sections and do not include experimental validation. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Graphical abstract

23 pages, 1806 KiB  
Article
A Framework for Optimal Sizing of Heavy-Duty Electric Vehicle Charging Stations Considering Uncertainty
by Rafi Zahedi, Rachel Sheinberg, Shashank Narayana Gowda, Kourosh SedghiSigarchi and Rajit Gadh
World Electr. Veh. J. 2025, 16(6), 318; https://doi.org/10.3390/wevj16060318 - 8 Jun 2025
Viewed by 680
Abstract
The adoption of heavy-duty electric vehicles (HDEVs) is key to achieving transportation decarbonization. A major component of this transition is the need for new supporting infrastructure: electric charging stations (CSs). HDEV CSs must be planned considering charging requirements, economic constraints, the rollout plan [...] Read more.
The adoption of heavy-duty electric vehicles (HDEVs) is key to achieving transportation decarbonization. A major component of this transition is the need for new supporting infrastructure: electric charging stations (CSs). HDEV CSs must be planned considering charging requirements, economic constraints, the rollout plan for HDEVs, and local utility grid conditions. Together, these considerations highly differentiate HDEV CS planning from light-duty CS planning. This paper addresses the challenges of HDEV CS planning by presenting a framework for determining the optimal sizing of multiple HDEV CSs using a multi-period expansion model. The framework uses historical data from depots and applies a mixed-approach optimization solver to determine the optimal sizes of two types of CSs: one that relies entirely on power generated by a PV system with local battery storage, and another that relies entirely on utility grid power supply. A two-layer uncertainty model is proposed to account for variations in PV power generation, HDEV arrival/departure times, and charger failures. The multi-period expansion strategy achieves up to a 78% reduction in total annual costs during the first deployment period, compared to fully expanded CSs. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

32 pages, 8767 KiB  
Article
A Multi-Agent, Laxity-Based Aggregation Strategy for Cost-Effective Electric Vehicle Charging and Local Transformer Overload Prevention
by Kristoffer Christensen, Bo Nørregaard Jørgensen and Zheng Grace Ma
Sustainability 2025, 17(9), 3847; https://doi.org/10.3390/su17093847 - 24 Apr 2025
Viewed by 617
Abstract
The rapid electrification of transportation, driven by stringent decarbonization targets and supportive policies, poses significant challenges for distribution system operators (DSOs). When numerous electric vehicles (EVs) charge concurrently, local transformers risk overloading—a problem that current tariff-based strategies do not adequately address. This paper [...] Read more.
The rapid electrification of transportation, driven by stringent decarbonization targets and supportive policies, poses significant challenges for distribution system operators (DSOs). When numerous electric vehicles (EVs) charge concurrently, local transformers risk overloading—a problem that current tariff-based strategies do not adequately address. This paper introduces an aggregator-based coordination mechanism that shifts EV charging from congested to underutilized periods using a rule-based scheduling algorithm. Unlike conventional methods that depend on complex real-time pricing signals or optimization-heavy solutions, the aggregator approach uses a simple yet effective “laxity” measure to prioritize charging flexibility. To assess technical and economic viability, a multi-agent simulation was developed to replicate residential user behavior and DSO constraints under the use of a 400 kVA low-voltage transformer. The results indicate that overloads are completely eliminated with minimal inconvenience to users, whose increased charging costs are offset by the aggregator at an annual total of under DKK 6000—significantly lower than the cost of infrastructure reinforcement. This study contributes by (i) quantifying the compensation needed to prevent large-scale overloads, (ii) presenting a replicable, computationally feasible, rule-based aggregator model for DSOs, and (iii) comparing aggregator solutions to costly transformer upgrades, underscoring the aggregator’s role as a viable tool for future distribution systems. Full article
Show Figures

Figure 1

35 pages, 17136 KiB  
Article
Spatio-Temporal Adaptive Voltage Coordination Control Strategy for Distribution Networks with High Photovoltaic Penetration
by Xunxun Chen, Xiaohong Zhang, Qingyuan Yan and Yanxue Li
Energies 2025, 18(8), 2093; https://doi.org/10.3390/en18082093 - 18 Apr 2025
Cited by 1 | Viewed by 456
Abstract
With the increasing penetration of distributed photovoltaics (PVs) in distribution networks (DNs), issues like voltage violations and fluctuations are becoming more prominent. This paper proposes a spatio-temporal adaptive voltage coordination control strategy involving multiple timescales and multi-device collaboration. Aiming at the heavy workload [...] Read more.
With the increasing penetration of distributed photovoltaics (PVs) in distribution networks (DNs), issues like voltage violations and fluctuations are becoming more prominent. This paper proposes a spatio-temporal adaptive voltage coordination control strategy involving multiple timescales and multi-device collaboration. Aiming at the heavy workload caused by the continuous sampling of real-time data in the whole domain, an intra-day innovative construction of intra-day minute-level optimization and real-time adaptive control double-layer control mode are introduced. Intra-day minute-level refinement of on-load tap changer (OLTC) and step voltage regulator (SVR) day-ahead scheduling plans to fully utilize OLTC and SVR voltage regulation capabilities and improve voltage quality is discussed. In real-time adaptive control, a regional autonomy mechanism based on the functional area voltage quality risk prognostication coefficient (VQRPC) is innovatively proposed, where each functional area intelligently selects the time period for real-time voltage regulation of distributed battery energy storage systems (DESSs) based on VQRPC value, in order to improve real-time voltage quality while reducing the data sampling workload. Aiming at the state of charge (SOC) management of DESS, a novel functional area DESS available capacity management mechanism is proposed to coordinate DESS output and improve SOC homogenization through dynamically updated power–capacity availability (PCA). And vine model threshold band (VMTB) and deviation optimization management (DOM) strategies based on functional area are innovatively proposed, where DOM optimizes DESS output through the VMTB to achieve voltage fluctuation suppression while optimizing DESS available capacity. Finally, the DESS and electric vehicle (EV) cooperative voltage regulation mechanism is constructed to optimize DESS capacity allocation, and the black-winged kite algorithm (BKA) is used to manage DESS output. The results of a simulation on a modified IEEE 33 system show that the proposed strategy reduces the voltage fluctuation rate of each functional area by an average of 36.49%, reduces the amount of data collection by an average of 68.31%, and increases the available capacity of DESS by 5.8%, under the premise of a 100% voltage qualification rate. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 3277 KiB  
Article
Electric Long-Haul Trucks and High-Power Charging: Modelling and Analysis of the Required Infrastructure in Germany
by Tobias Tietz, Tu-Anh Fay, Tilmann Schlenther and Dietmar Göhlich
World Electr. Veh. J. 2025, 16(2), 96; https://doi.org/10.3390/wevj16020096 - 12 Feb 2025
Cited by 3 | Viewed by 1961
Abstract
Heavy goods transportation is responsible for around 27% of CO2 emissions from road transport in the EU and for 5% of total CO2 emissions in the EU. The decarbonization of long-distance transport in particular remains a major challenge. The combination of [...] Read more.
Heavy goods transportation is responsible for around 27% of CO2 emissions from road transport in the EU and for 5% of total CO2 emissions in the EU. The decarbonization of long-distance transport in particular remains a major challenge. The combination of battery electric trucks (BETs) with on-route high-power charging (HPC) offers a promising solution. Planning and setting up the required infrastructure is a critical success factor here. We propose a methodology to evaluate the charging infrastructure needed to support the large-scale introduction of heavy-duty BETs in Germany, considering different levels of electrification, taking the European driving and rest time regulations into account. Our analysis employs MATSim, an activity-based multi-agent transport simulation, to assess potential bottlenecks in the charging infrastructure and to simulate the demand-based distribution of charging stations. The MATSim simulation is combined with an extensive pre-processing of transport-related data and a suitable post-processing. This approach allows for a detailed examination of the required charging infrastructure, considering the impacts of depot charging solutions and the dynamic nature of truck movements and charging needs. The results indicate a significant need to augment HPC with substantial low power overnight charging facilities and highlight the importance of strategic infrastructure development to accommodate the growing demand for chargers for BETs. By simulating various scenarios of electrification, we demonstrate the critical role of demand-oriented infrastructure planning in reducing emissions from the road freight sector until 2030. This study contributes to the ongoing discourse on sustainable transportation, offering insights into the infrastructure requirements and planning challenges associated with the transition to battery electric heavy-duty vehicles. Full article
Show Figures

Figure 1

17 pages, 2068 KiB  
Article
Requirements and Test Stand Development for ERS Pantographs
by Alexander Prinz, Kil Young Lee, Abhishek Gupta, Dietmar Göhlich and Sangyoung Park
World Electr. Veh. J. 2025, 16(2), 86; https://doi.org/10.3390/wevj16020086 - 8 Feb 2025
Viewed by 1069
Abstract
Electric road systems (ERSs) are a promising solution for electrifying heavy-duty freight transport by providing traction and charging power from the power lines installed along the road. Development of ERSs has been accelerated in the last decade, and several pilot projects have been [...] Read more.
Electric road systems (ERSs) are a promising solution for electrifying heavy-duty freight transport by providing traction and charging power from the power lines installed along the road. Development of ERSs has been accelerated in the last decade, and several pilot projects have been successfully implemented, proving the high level of maturity that the technology has achieved. One crucial step that could be initiated before a rollout is the standardization and certification of ERS infrastructure and system components. For instance, pantographs for overhead ERSs face unique challenges, in that the power transfer should be safe and reliable in the presence of dynamic longitudinal and lateral movements of the vehicle. To tackle this problem, we outline the requirements for overhead ERSs and ERS pantograph testing. Among the key requirements are the rising and lowering times, response to lateral maneuvers, such as lane changes, and high electrical current during stillstand. We introduce our developed test stands capable of testing various aspects of an ERS pantograph. The lateral test stand was developed to test basic functionalities and simulate lateral movements. A second test stand was implemented, to test high currents and the subsequent temperature development. Furthermore, a digital test stand used for planning, design, and modeling is introduced. Full article
Show Figures

Figure 1

15 pages, 702 KiB  
Article
Planning for Medium- and Heavy-Duty Electric Vehicle Charging Infrastructure in Distribution Networks to Support Long-Range Electric Trucks
by Joshua Then, Ashish P. Agalgaonkar and Kashem M. Muttaqi
Energies 2025, 18(4), 785; https://doi.org/10.3390/en18040785 - 8 Feb 2025
Cited by 1 | Viewed by 1053
Abstract
Electrification of the transport sector introduces operational issues in the electricity distribution network, such as excessive voltage deviation, substation overloading, and adverse power quality impacts on other network loads. These concerns are expected to grow as electrification expands to incorporate heavy vehicles such [...] Read more.
Electrification of the transport sector introduces operational issues in the electricity distribution network, such as excessive voltage deviation, substation overloading, and adverse power quality impacts on other network loads. These concerns are expected to grow as electrification expands to incorporate heavy vehicles such as trucks and buses due to their greater energy requirements and higher charging loads. Two strategies are proposed to support medium- and heavy-duty chargers which address their high power demand and mitigate power quality disturbances and the overloading of substations. The first is a dedicated feeder connected at the secondary of the substation directly to the charging station which aims to reduce the impact of high load on other customers. The second is the addition of a dedicated substation that solely provides power for charging stations in major corridors, alleviating stress on existing zone substations. Hosting capacity is measured using a voltage deviation index, describing the deviation in line voltage, which should experience a sag of no more than 6% of the nominal voltage, and a substation charging capacity index, describing the available capacity of each zone substation as a ratio of its total power capacity. Verification of the proposed strategies was performed on an MV-LV distribution network representative of an industrial Australian town with heavy-vehicle charging. Results showed that the network could handle ten 250 kW chargers, which was tripled to 35 with a dedicated feeder. The dedicated feeder alternatively allowed up to 10 megawatt-scale chargers, which was again tripled when a dedicated substation was introduced. Full article
(This article belongs to the Special Issue Advances in Electrical Power System Quality)
Show Figures

Figure 1

32 pages, 5065 KiB  
Article
Decarbonization of Long-Haul Heavy-Duty Truck Transport: Technologies, Life Cycle Emissions, and Costs
by Anne Magdalene Syré and Dietmar Göhlich
World Electr. Veh. J. 2025, 16(2), 76; https://doi.org/10.3390/wevj16020076 - 5 Feb 2025
Cited by 4 | Viewed by 2940
Abstract
Decarbonizing long-haul, heavy-duty transport in Europe focuses on battery-electric trucks with high-power chargers or electric road systems and fuel-cell-electric vehicles with hydrogen refueling stations. We present a comparative life cycle assessment and total cost of ownership analysis of these technologies for 20% of [...] Read more.
Decarbonizing long-haul, heavy-duty transport in Europe focuses on battery-electric trucks with high-power chargers or electric road systems and fuel-cell-electric vehicles with hydrogen refueling stations. We present a comparative life cycle assessment and total cost of ownership analysis of these technologies for 20% of Germany’s heavy-duty, long-haul transport alongside internal combustion engine vehicles. The results show that fuel cell vehicles with on-site hydrogen have the highest life cycle emissions (65 Mt CO2e), followed by internal combustion engine vehicles (55 Mt CO2e). Battery-electric vehicles using electric road systems achieve the lowest emissions (21 Mt CO2e) and the lowest costs (EUR 45 billion). In contrast, fuel cell vehicles with on-site hydrogen have the highest costs (EUR 69 billion). Operational costs dominate total expenses, making them a compelling target for subsidies. The choice between battery and fuel cell technologies depends on the ratio of vehicles to infrastructure, transport performance, and range. Fuel cell trucks are better suited for remote areas due to their longer range, while integrating electric road systems with high-power charging could offer synergies. Recent advancements in battery and fuel cell durability further highlight the potential of both technologies in heavy-duty transport. This study provides insights for policymakers and industry stakeholders in the shift towards sustainable transport. The greenhouse gas emission savings from adopting battery-electric trucks are 54% in our high-power charging scenario and 62% in the electric road system scenario in comparison to the reference scenario with diesel trucks. Full article
Show Figures

Figure 1

22 pages, 7318 KiB  
Article
One-Dimensional Electro-Thermal Modelling of Battery Pack Cooling System for Heavy-Duty Truck Application
by Mateusz Maciocha, Thomas Short, Udayraj Thorat, Farhad Salek, Harvey Thompson and Meisam Babaie
Batteries 2025, 11(2), 55; https://doi.org/10.3390/batteries11020055 - 31 Jan 2025
Cited by 1 | Viewed by 2023
Abstract
The transport sector is responsible for nearly a quarter of global CO2 emissions annually, underscoring the urgent need for cleaner, more sustainable alternatives such as electric vehicles (EVs). However, the electrification of heavy goods vehicles (HGVs) has been slow due to the [...] Read more.
The transport sector is responsible for nearly a quarter of global CO2 emissions annually, underscoring the urgent need for cleaner, more sustainable alternatives such as electric vehicles (EVs). However, the electrification of heavy goods vehicles (HGVs) has been slow due to the substantial power and battery capacity required to match the large payloads and extended operational ranges. This study addresses the research gap in battery pack design for commercial HGVs by investigating the electrical and thermal behaviour of a novel battery pack configuration using an electro-thermal model based on the equivalent circuit model (ECM). Through computationally efficient 1D modelling, this study evaluates critical factors such as cycle ageing, state of charge (SoC), and their impact on the battery’s range, initially estimated at 285 km. The findings of this study suggest that optimal cooling system parameters, including a flow rate of 18 LPM (litres per minute) and actively controlling the inlet temperature within ±7.8 °C, significantly enhance thermal performance and stability. This comprehensive electro-thermal assessment and the advanced cooling strategy set this work apart from previous studies centred on smaller EV applications. The findings provide a foundation for future research into battery thermal management system (BTMS) design and optimised charging strategies, both of which are essential for accelerating the industrial deployment of electrified HGVs. Full article
Show Figures

Figure 1

19 pages, 4115 KiB  
Article
Techno-Economic Design Analysis of Electric Vehicle Charging Stations Powered by Photovoltaic Technology on the Highways of Saudi Arabia
by Yassir Alhazmi
Energies 2025, 18(2), 315; https://doi.org/10.3390/en18020315 - 13 Jan 2025
Cited by 2 | Viewed by 3037
Abstract
The globalization of electric vehicle development and production is a significant goal. The availability of charging stations helps to encourage the global transition to electric vehicles, which may lead to a decrease in traditional fuel consumption. Nevertheless, the rise in the number of [...] Read more.
The globalization of electric vehicle development and production is a significant goal. The availability of charging stations helps to encourage the global transition to electric vehicles, which may lead to a decrease in traditional fuel consumption. Nevertheless, the rise in the number of electric vehicles is accompanied by sustainability issues, such as managing the grid’s electrical demand, building more charging stations, and providing electricity from renewable resources in an efficient and sustainable manner, especially in Saudi Arabia. This work focused on three challenges regarding the installation of fast charging stations (FCSs) for electric vehicles (EVs) on highways. The first challenge is choosing optimal locations on highways to address the range of anxiety of EV drivers. The second challenge is to fuel these FCSs using renewable resources, such as photovoltaic (PV) panels, to make FCSs sustainable. The last challenge is to design FCSs by considering both highway driving behavior and the available renewable energy resources in order to cover charging demand. All of these challenges should be considered while planning the EV charging infrastructure of Saudi highways from both technical and economic perspectives. Thus, using the HOMER® Grid software (version 1.10.1 June 2023), locations on Saudi Arabian highways were selected based on the renewable resources of several roads that support a large number of vehicles traveling on them. These roads were the Makkah to Riyadh, Makkah to Abha, Riyadh to Dammam, Riyadh to NEOM, and Jeddah to NEOM roads. Electric vehicle charging stations with a capacity of 200 kW, 300 kW, and 500 kW were designed on these roads based on their natural renewable resources, which is PV energy. These roads are the most important roads in the Kingdom and witness heavy traffic. An economic study of these stations was carried out in addition to considering their efficiency. This study revealed that the 500 kW station is ideal for charging electric vehicles, with an annual energy production of 3,212,000 kWh. The 300 kW station had better efficiency but higher capital expenses. The 200 kW station could charge 6100 vehicles annually. The three stations on the Makkah to Riyadh, Makkah to Abha, and Riyadh to Dammam roads can charge 65,758 vehicles annually. The total cost of the project was USD 2,786,621, with the 300 kW plant having the highest initial investment, which can be potentially justified due to its higher power output. This study provides a comprehensive overview of the project costs and the potential returns of using solar power plants for charging electric vehicles. Full article
Show Figures

Figure 1

24 pages, 3565 KiB  
Article
Two-Stage Energy Storage Allocation Considering Voltage Management and Loss Reduction Requirements in Unbalanced Distribution Networks
by Hu Cao, Lingling Ma, Guoying Liu, Zhijian Liu and Hang Dong
Energies 2024, 17(24), 6325; https://doi.org/10.3390/en17246325 - 15 Dec 2024
Cited by 1 | Viewed by 1409
Abstract
The authors propose a two-stage sequential configuration method for energy storage systems to solve the problems of the heavy load, low voltage, and increased network loss caused by the large number of electric vehicle (EV) charging piles and distributed photovoltaic (PV) access in [...] Read more.
The authors propose a two-stage sequential configuration method for energy storage systems to solve the problems of the heavy load, low voltage, and increased network loss caused by the large number of electric vehicle (EV) charging piles and distributed photovoltaic (PV) access in urban, old and unbalanced distribution networks. At the stage of selecting the location of energy storage, a comprehensive power flow sensitivity variance (CPFSV) is defined to determine the location of the energy storage. At the energy storage capacity configuration stage, the energy storage capacity is optimized by considering the benefits of peak shaving and valley filling, energy storage costs, and distribution network voltage deviations. Finally, simulations are conducted using a modified IEEE-33-node system, and the results obtained using the improved beluga whale optimization algorithm show that the peak-to-valley difference of the system after the addition of energy storage decreased by 43.7% and 51.1% compared to the original system and the system with EV and PV resources added, respectively. The maximum CPFSV of the system decreased by 52% and 75.1%, respectively. In addition, the engineering value of this method is verified through a real-machine system with 199 nodes in a district of Kunming. Therefore, the energy storage configuration method proposed in this article can provide a reference for solving the outstanding problems caused by the large-scale access of EVs and PVs to the distribution network. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 23189 KiB  
Article
Analysis of the Effect of Motor Waste Heat Recovery on the Temperature and Driving Range of Electric Heavy Truck Batteries
by Zenghai Song, Shuhao Li, Yan Wang, Liguo Li, Jianfeng Hua, Languang Lu, Yalun Li, Hewu Wang, Xuegang Shang and Ruiping Li
Batteries 2024, 10(9), 328; https://doi.org/10.3390/batteries10090328 - 15 Sep 2024
Viewed by 1608
Abstract
In some scenarios, electric heavy-duty trucks with battery swapping mode (ETBSm) are more cost-effective than battery charging mode. The viability of battery swapping stations is contingent upon the operational requirements and range capabilities of the ETBSm. Low temperatures have the effect of reducing [...] Read more.
In some scenarios, electric heavy-duty trucks with battery swapping mode (ETBSm) are more cost-effective than battery charging mode. The viability of battery swapping stations is contingent upon the operational requirements and range capabilities of the ETBSm. Low temperatures have the effect of reducing the range of the ETBSm, thereby creating difficulties for battery swapping. This article proposes the use of motor waste heat recovery (MWHR) to heat batteries, which would improve range. A number of subsystem models have been established, including the ETBSm, battery, motor, and thermal management system (TMS). The calibration of battery temperature and motor efficiency is achieved with a model error of less than 5%. Comparison of performance, such as temperature, energy consumption, and range, when using only positive temperature coefficient (PTC) heating and when using both PTC heating and motor waste heat. The results indicate a 15% increase in the rate of rise in battery temperature and a 10.64 kW·h reduction in energy consumption under Chinese heavy-duty vehicle commercial vehicle test cycle (CHTC) conditions. Then, the motor waste heat percentage, energy consumption, and range are analyzed at different ambient temperatures. At an ambient temperature of −20 °C, −10 °C, and 0 °C, the percentage of the motor waste heat is 32.1%, 35%, and 40.5%; when 75% of the state of charge (SOC) is consumed, the range is improved by 6.55%, 4.37%, and 4.49%. Additionally, the effect of the PTC heater on temperature characteristics and power consumption is investigated by changing the target temperature of the coolant at the battery inlet. In accordance with the stipulated conditions of an ambient temperature of −20 °C and a target coolant temperature of 40 °C at the battery inlet, the simulation results indicated a battery temperature rise rate of 0.85 °C/min, accompanied by a PTC power consumption of 15.6 kW·h. This study demonstrates that as the ambient temperature increases, the utilization of motor waste heat becomes more effective in reducing PTC heating power consumption. At the lowest ambient temperature tested, the greatest improvement in driving range is observed. It is important to note that while an increase in the target heating temperature of the PTC helps to raise the battery temperature more rapidly, this is accompanied by a higher energy consumption. This article provides a reference for the ETBSm with MWHR. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

19 pages, 15534 KiB  
Article
Research on Gate Charge Degradation of Multi-Chip IGBT Modules in Power Supply for Unmanned Aerial Vehicles
by Yuheng Li, Zhiquan Zhou, Jinlong Wang, Lina Wang and Chenxu Wang
Electronics 2024, 13(18), 3664; https://doi.org/10.3390/electronics13183664 - 14 Sep 2024
Viewed by 1020
Abstract
In recent years, with the burgeoning application of high voltage in various industrial sectors, the deployment of unmanned equipment, such as industrial heavy-load Unmanned Aerial Vehicles (UAVs), incorporating high-capacity Insulated-Gate Bipolar Transistors (IGBTs), has become increasingly prevalent. The demand for high-voltage IGBT modules [...] Read more.
In recent years, with the burgeoning application of high voltage in various industrial sectors, the deployment of unmanned equipment, such as industrial heavy-load Unmanned Aerial Vehicles (UAVs), incorporating high-capacity Insulated-Gate Bipolar Transistors (IGBTs), has become increasingly prevalent. The demand for high-voltage IGBT modules in UAV is continuously growing; therefore, exploring methods to predict fault precursor parameters of multi-chip IGBT modules is crucial for the operational health management of unmanned equipment like UAVs. This paper analyzes the gate charge degradation in multi-chip IGBT modules after thermal cycling, which can be used to evaluate the operational state of these modules. Furthermore, to delve into the electrical response of a gate drive circuit caused by local damage within the IGBT module, an RLC model incorporating parasitic parameters of the gate drive circuit is established, and a sensitivity analysis of the peak current in the gate charge circuit is provided. Additionally, in the experimental circuit, an open sample of an IGBT module with partial bond wires lifted off is used to simulate actual faults. The analysis and experimental results indicate that the peak current of the gate charge is closely related to L and C. The significant deviation in the gate current, influenced by the partial bond wires lift-off, can provide a basis for the development of predictive methods for IGBT modules. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

32 pages, 11896 KiB  
Article
Dual Active Bridge Converter with Interleaved and Parallel Operation for Electric Vehicle Charging
by Burak Muhammetoglu and Mohsin Jamil
Energies 2024, 17(17), 4258; https://doi.org/10.3390/en17174258 - 26 Aug 2024
Cited by 5 | Viewed by 3798
Abstract
This paper presents the design and optimization of a bidirectional Dual Active Bridge (DAB) converter for electric vehicle battery charging applications, encompassing both heavy and light electric vehicles. The core of this study is a 5.6 kW DAB converter that can seamlessly transition [...] Read more.
This paper presents the design and optimization of a bidirectional Dual Active Bridge (DAB) converter for electric vehicle battery charging applications, encompassing both heavy and light electric vehicles. The core of this study is a 5.6 kW DAB converter that can seamlessly transition between 3.7 kW and 11.2 kW power outputs to accommodate different vehicle requirements without the need for circuit component changes. This flexibility is achieved through the novel integration of interleaved and parallel operation capabilities, allowing for efficient operation across a broad power range. Key innovations include the design of a high-frequency transformer with dual secondary outputs to facilitate power transfer at high currents up to 30 A, an optimized thermal design, and minimized stress on the circuit board. The use of next-generation power semiconductors and low-loss magnetic circuit elements has resulted in an optimized single-stage bidirectional converter design that showcases enhanced efficiency and competitiveness in the field. Furthermore, the converter’s design enables easy reconfiguration to meet the desired power output, vehicle type, and application needs, making it adaptable for future applications such as Vehicle-to-Grid (V2G) systems. The combination of these features—versatility in power output, efficient high-current transfer, innovative use of power semiconductors, and adaptability for future technologies—positions this DAB converter as a significant advancement in electric vehicle charging technology, offering a scalable solution to meet the evolving demands of electric mobility and renewable energy integration. Full article
Show Figures

Figure 1

Back to TopTop