Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (921)

Search Parameters:
Keywords = heating, ventilating, and air conditioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5033 KiB  
Article
Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
by Shuo Zhang, Didong Chen and Xiangyu Li
Sustainability 2025, 17(15), 7093; https://doi.org/10.3390/su17157093 - 5 Aug 2025
Abstract
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February [...] Read more.
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February 2022. Of the approximately 40–50 nurseries contacted, only three agreed to participate. Results show that HEPA purifiers substantially reduced indoor particulate matter (PM2.5), with the greatest effect observed during the heating season when windows remained closed for longer periods. Seasonal and behavioral analysis indicated more frequent and longer window opening in the non-heating season (windows were open 41.5% of the time on average, compared to 34.2% during the heating season) driven by both ventilation needs and heightened COVID-19 concerns. Predictive modeling identified indoor temperature as the main driver of window opening, while carbon dioxide (CO2) had a limited effect. In addition, window opening often increased indoor PM2.5 under prevailing outdoor air quality conditions, with mean concentrations rising from 2.73 µg/m3 (closed) to 3.45 µg/m3 (open), thus reducing the apparent benefit of air purifiers. These findings underscore the complex interplay between mechanical purification and occupant-controlled ventilation, highlighting the need to adapt indoor air quality (IAQ) strategies to both seasonal and behavioral factors in educational settings. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

24 pages, 4314 KiB  
Article
Hyperparameter Optimization of Neural Networks Using Grid Search for Predicting HVAC Heating Coil Performance
by Yosef Jaber, Pasidu Dharmasena, Adam Nassif and Nabil Nassif
Buildings 2025, 15(15), 2753; https://doi.org/10.3390/buildings15152753 - 5 Aug 2025
Viewed by 200
Abstract
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive [...] Read more.
Heating, Ventilation, and Air Conditioning (HVAC) systems represent a significant portion of global energy use, yet they are often operated without optimized control strategies. This study explores the application of deep learning to accurately model heating system behavior as a foundation for predictive control and energy-efficient HVAC operation. Experimental data were collected under controlled laboratory conditions, and 288 unique hyperparameter configurations were developed. Each configuration was tested three times, resulting in a total of 864 artificial neural network models. Five key hyperparameters were varied systematically: number of epochs, network size, network shape, learning rate, and optimizer. The best-performing model achieved a mean squared error of 0.469 and featured 17 hidden layers, a left-triangle architecture trained for 500 epochs with a learning rate of 5 × 10−5, and Adam as the optimizer. The results highlighted the importance of hyperparameter tuning in improving model accuracy. Future research should extend the analysis to incorporate cooling operation and real-world building operation data for broader applicability. Full article
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 191
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 626
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Performance Analysis of Multi-Source Heat Pumps: A Regression-Based Approach to Energy Performance Estimation
by Reza Alijani and Fabrizio Leonforte
Sustainability 2025, 17(15), 6804; https://doi.org/10.3390/su17156804 - 26 Jul 2025
Viewed by 313
Abstract
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for [...] Read more.
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for early-stage system evaluation. This study addresses that gap by developing regression-based models to estimate the performance of various heat pump configurations, including air-source, ground-source, and dual-source systems. A simplified performance estimation model was created, capable of delivering results with accuracy levels comparable to TRNSYS simulation outputs, making it a valuable and accessible tool for system evaluation. The analysis was conducted across nine climatic zones in Italy, considering key environmental factors such as air temperature, ground temperature, and solar irradiance. Among the tested configurations, hybrid systems like Solar-Assisted Ground-Source Heat Pumps (SAGSHP) achieved the highest performance, with SCOP values up to 4.68 in Palermo and SEER values up to 5.33 in Milan. Regression analysis confirmed strong predictive accuracy (R2 = 0.80–0.95) and statistical significance (p < 0.05), emphasizing the models’ reliability across different configurations and climatic conditions. By offering easy-to-use regression formulas, this study enables engineers and policymakers to estimate heat pump performance without relying on complex simulations. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
Show Figures

Figure 1

17 pages, 1742 KiB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 322
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 3182 KiB  
Article
Application of Indoor Greenhouses in the Production of Thermal Energy in Circular Buildings
by Eusébio Conceição, João Gomes, Maria Inês Conceição, Margarida Conceição, Maria Manuela Lúcio and Hazim Awbi
Energies 2025, 18(15), 3962; https://doi.org/10.3390/en18153962 - 24 Jul 2025
Viewed by 297
Abstract
The production of thermal energy in buildings using internal greenhouses makes it possible to obtain substantial gains in energy consumption and, at the same time, contribute to improving occupants’ thermal comfort (TC) levels. This article proposes a study on the producing and transporting [...] Read more.
The production of thermal energy in buildings using internal greenhouses makes it possible to obtain substantial gains in energy consumption and, at the same time, contribute to improving occupants’ thermal comfort (TC) levels. This article proposes a study on the producing and transporting of renewable thermal energy in a circular auditorium equipped with an enveloping semi-circular greenhouse. The numerical study is based on software that simulates the building geometry and the building thermal response (BTR) numerical model and assesses the TC level and indoor air quality (IAQ) provided to occupants in spaces ventilated by the proposed system. The building considered in this study is a circular auditorium constructed from three semi-circular auditoriums supplied with internal semi-circular greenhouses. Each of the semi-circular auditoriums faces south, northeast, and northwest, respectively. The semi-circular auditoriums are occupied by 80 people each: the one facing south throughout the day, while the one facing northeast is only occupied in the morning, and the one facing northwest is only occupied in the afternoon. The south-facing semi-circular greenhouse is used by itself to heat all three semi-circular auditoriums. The other two semi-circular greenhouses are only used to heat the interior space of the greenhouse. It was considered that the building is located in a Mediterranean-type climate and subject to the typical characteristics of clear winter days. The results allow us to verify that the proposed heating system, in which the heat provided to the occupied spaces is generated only in the semi-circular greenhouse facing south, can guarantee acceptable TC conditions for the occupants throughout the occupancy cycle. Full article
Show Figures

Figure 1

25 pages, 2512 KiB  
Review
Drenched Pages: A Primer on Wet Books
by Islam El Jaddaoui, Kayo Denda, Hassan Ghazal and Joan W. Bennett
Biology 2025, 14(8), 911; https://doi.org/10.3390/biology14080911 - 22 Jul 2025
Viewed by 228
Abstract
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result [...] Read more.
Molds readily grow on wet books, documents, and other library materials where they ruin them chemically, mechanically, and aesthetically. Poor maintenance of libraries, failures of Heating, Ventilation, and Air Conditioning (HVAC) systems, roof leaks, and storm damage leading to flooding can all result in accelerated fungal growth. Moreover, when fungal spores are present at high concentrations in the air, they can be linked to severe respiratory conditions and possibly to other adverse health effects in humans. Climate change and the accompanying storms and floods are making the dual potential of fungi to biodegrade library holdings and harm human health more common. This essay is intended for microbiologists without much background in mycology who are called in to help librarians who are dealing with mold outbreaks in libraries. Our goal is to demystify aspects of fungal taxonomy, morphology, and nomenclature while also recommending guidelines for minimizing mold contamination in library collections. Full article
22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 399
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 671
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

17 pages, 271 KiB  
Review
A Literature Review on the Use of Weather Data for Building Thermal Simulations
by Zhengen Ren
Energies 2025, 18(14), 3653; https://doi.org/10.3390/en18143653 - 10 Jul 2025
Viewed by 306
Abstract
Thermal simulations of buildings play a critical role in optimizing energy efficiency, thermal comfort, and heating, ventilation and air conditioning (HVAC) systems design. Accurate weather data is essential for reliable simulations, as local weather and climate have a significant impact on energy requirements [...] Read more.
Thermal simulations of buildings play a critical role in optimizing energy efficiency, thermal comfort, and heating, ventilation and air conditioning (HVAC) systems design. Accurate weather data is essential for reliable simulations, as local weather and climate have a significant impact on energy requirements for space heating and cooling and thermal comfort. This study conducted a literature review regarding the sources, types, and uncertainties of weather data used for thermal simulations of buildings, including typical meteorological years (TMYs) and extreme weather files under current and future climates. Additionally, this paper evaluates methods for weather data processing, including interpolation, downscaling, and synthetic generation, to improve simulation accuracy. Finally, approaches are proposed for constructing weather files for the future and extreme conditions under a changing climate. This review aims to provide a guide for researchers and practitioners to enhance the reliability of thermal modeling through informed construction, selection, and application of weather data. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
37 pages, 3802 KiB  
Review
Energy Efficiency Optimization of Air Conditioning Systems Towards Low-Carbon Cleanrooms: Review and Future Perspectives
by Xinran Zeng, Chunhui Li, Xiaoying Li, Chennan Mao, Zhengwei Li and Zhenhai Li
Energies 2025, 18(13), 3538; https://doi.org/10.3390/en18133538 - 4 Jul 2025
Viewed by 733
Abstract
The advancement of high-tech industries, notably in semiconductor manufacturing, pharmaceuticals, and precision instrumentation, has imposed stringent requirements on cleanroom environments, where strict control of airborne particulates, microbial presence, temperature, and humidity is essential. However, these controlled environments incur significant energy consumption, with air [...] Read more.
The advancement of high-tech industries, notably in semiconductor manufacturing, pharmaceuticals, and precision instrumentation, has imposed stringent requirements on cleanroom environments, where strict control of airborne particulates, microbial presence, temperature, and humidity is essential. However, these controlled environments incur significant energy consumption, with air conditioning systems accounting for 40–60% of total usage due to high air circulation rates, intensive treatment demands, and system resistance. In light of global carbon reduction goals and escalating energy costs, improving the energy efficiency of cleanroom heating, ventilation, and air conditioning (HVAC) systems has become a critical research priority. Recent efforts have focused on optimizing airflow distribution, integrating heat recovery technologies, and adopting low-resistance filtration to reduce energy demand while maintaining stringent environmental standards. Concurrently, artificial intelligence (AI) methods, such as machine learning, deep learning, and adaptive control, are being employed to enable intelligent, energy-efficient system operations. This review systematically examines current energy-saving technologies and strategies in cleanroom HVAC systems, assesses their real-world performance, and highlights emerging trends. The objective is to provide a scientific basis for the green design, operation, and retrofit of cleanrooms, thereby supporting the industry’s transition toward low-carbon, sustainable development. Full article
Show Figures

Figure 1

26 pages, 9395 KiB  
Article
Study on Piping Layout Optimization for Chiller-Plant Rooms Using an Improved A* Algorithm and Building Information Modeling: A Case Study of a Shopping Mall in Qingdao
by Xiaoliang Ma, Hongshe Cui, Yan Zhang and Xinyao Wang
Buildings 2025, 15(13), 2275; https://doi.org/10.3390/buildings15132275 - 28 Jun 2025
Viewed by 275
Abstract
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an [...] Read more.
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an enhanced A* search to produce collision-free, low-resistance pipelines while simultaneously guiding component selection. The algorithm embeds protective buffer zones around equipment, reserves maintenance corridors through an attention-based cost term, and prioritizes 135° elbows to cut local losses. Generated paths are exported as Industry Foundation Classes (IFC) objects for validation in a BIM digital twin, where hydraulic feedback drives iterative reselection of high-efficiency devices—including magnetic-bearing chillers, cartridge filters and tilted-disc valves—until global pressure drop and life-cycle cost are minimized. In a full-scale shopping-mall retrofit, the method significantly reduces pipeline resistance and operating costs, confirming its effectiveness and replicability for sustainable chiller-plant design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

33 pages, 582 KiB  
Review
An Overview of State-of-the-Art Research on Smart Building Systems
by S. M. Mahfuz Alam and Mohd. Hasan Ali
Electronics 2025, 14(13), 2602; https://doi.org/10.3390/electronics14132602 - 27 Jun 2025
Viewed by 518
Abstract
Smart buildings require an energy management system that can meet inhabitants’ demands with a reduced amount of energy consumed by the heating ventilation and air-conditioning system (HVAC), as well as the lighting and shading systems. This work provides a detailed review of available [...] Read more.
Smart buildings require an energy management system that can meet inhabitants’ demands with a reduced amount of energy consumed by the heating ventilation and air-conditioning system (HVAC), as well as the lighting and shading systems. This work provides a detailed review of available methods proposed in the literature for effective control of automated systems such as HVAC, lighting, shading, etc. Moreover, effective forecasting of renewable energy generations and loads, scheduling of loads, and efficient operations of thermal and electric energy storage are crucial elements for energy management systems for ensuring reliability and stability. In this work, these aspects of energy management systems, that have been popular over the last ten years, are analyzed. In addition, the development of internet-of-things (IoT)-based sensors widens the artificial intelligence (AI) and machine learning applications in smart buildings. However, this system can be vulnerable against cyber-attacks. The state of the art of AI and machine learning applications along with cyber security issues and solutions for smart building systems are discussed. Finally, some recommendations for future research trends and directions on smart building systems are provided. This work will provide a basic guideline and will also be very useful to researchers in the area of smart building systems in the future. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

25 pages, 11397 KiB  
Article
Impact of Airflow Disturbance from Human Motion on Contaminant Control in Cleanroom Environments: A CFD-Based Analysis
by Abiyeva Guldana, Sayat Niyetbay, Arman Zhanguzhinov, Gulbanu Kassabekova, Dilyara Jartayeva, Kulyash Alimova, Gulnaz Zhakapbayeva and Khalkhabay Bostandyk
Buildings 2025, 15(13), 2264; https://doi.org/10.3390/buildings15132264 - 27 Jun 2025
Viewed by 410
Abstract
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of [...] Read more.
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of evolving threats, such as COVID-19. This study focuses on enhancing the energy efficiency and performance of air conditioning and ventilation systems for cleanrooms, where air recirculation is not permissible. A novel energy-efficient direct-flow air treatment scheme is proposed, integrating a heat pump system with adjustable thermal output. A computational fluid dynamics CFD model of a clean operating room was developed to assess the impact of inlet air velocity on aerosol particle removal and airflow stabilization time. The model also considers the effect of personnel movement. The results supported optimized air distribution, reducing microbial contamination risks, with less than 10 CFU/m3, and improved thermal performance. The proposed system was evaluated for energy and cost efficiency compared to conventional setups. Findings can inform the design and operation of cleanroom ventilation in surgical environments and other high-tech applications. This research contributes to improving indoor air quality and reducing infection risks while enhancing sustainability in healthcare infrastructure. Full article
Show Figures

Figure 1

Back to TopTop