Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,571)

Search Parameters:
Keywords = heat-transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1488 KiB  
Review
Advances in Computational Fluid Dynamics of Mechanical Processes in Food Engineering: Mixing, Extrusion, Drying, and Process Optimization
by Arkadiusz Szpicer, Weronika Bińkowska, Adrian Stelmasiak, Iwona Wojtasik-Kalinowska, Anna Czajkowska, Sylwia Mierzejewska, Zdzisław Domiszewski, Tomasz Rydzkowski, Joanna Piepiórka-Stepuk and Andrzej Półtorak
Appl. Sci. 2025, 15(15), 8752; https://doi.org/10.3390/app15158752 (registering DOI) - 7 Aug 2025
Abstract
Mechanical processes such as mixing, extrusion, and drying are key operations in food engineering, with a significant impact on product quality and process efficiency. The increasing complexity of food materials—due to non-Newtonian properties, multiphase structures, and thermal–mechanical interactions—requires advanced modeling approaches for process [...] Read more.
Mechanical processes such as mixing, extrusion, and drying are key operations in food engineering, with a significant impact on product quality and process efficiency. The increasing complexity of food materials—due to non-Newtonian properties, multiphase structures, and thermal–mechanical interactions—requires advanced modeling approaches for process analysis and optimization. Computational Fluid Dynamics (CFD) has become a vital tool in this context. This review presents recent progress in the use of CFD for simulating key mechanical operations in food processing. Applications include the analysis of fluid flow, heat and mass transfer, and mechanical stresses, supporting improvements in mixing uniformity, energy efficiency during drying, and optimization of extrusion components (e.g., shaping dies). The potential for integrating CFD with complementary models for system-wide optimization is also discussed, including challenges related to scale-up and product consistency. Current limitations are outlined, and future research directions are proposed. Full article
Show Figures

Figure 1

22 pages, 4651 KiB  
Review
Potential Issues and Optimization Solutions for High-Compression-Ratio Utilization in Hybrid-Dedicated Gasoline Engines
by Qiuyu Liu, Baitan Ma, Zhiqiang Zhang, Chunyun Fu and Zhe Kang
Energies 2025, 18(15), 4204; https://doi.org/10.3390/en18154204 (registering DOI) - 7 Aug 2025
Abstract
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical [...] Read more.
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical constraints, including intensified knock propensity, increased heat transfer (HTR) losses, reduced combustion stability, augmented dissociation losses, and cold-start misfire risks. The feasibility and necessity of CR enhancement in hybrid systems were comprehensively evaluated based on these factors, with fundamental mechanisms of the detrimental effects elucidated. To address these challenges, optimized countermeasures were synthesized: knock suppression via high-octane fuels, EGR technology, lean combustion, and in-cylinder water injection; heat transfer reduction through thermal barrier coatings and independent CR/expansion-ratio control; misfire risk monitoring using ion current or cylinder pressure sensors. These approaches provide viable pathways to overcome high-CR limitations and optimize engine performance. Nevertheless, current research remains confined to isolated solutions, warranting future focus on integrated optimization mechanisms investigating synergistic interactions of multiple strategies under high-CR conditions. Full article
Show Figures

Figure 1

36 pages, 2683 KiB  
Systematic Review
Physics-Informed Surrogate Modelling in Fire Safety Engineering: A Systematic Review
by Ramin Yarmohammadian, Florian Put and Ruben Van Coile
Appl. Sci. 2025, 15(15), 8740; https://doi.org/10.3390/app15158740 - 7 Aug 2025
Abstract
Surrogate modelling is increasingly used in engineering to improve computational efficiency in complex simulations. However, traditional data-driven surrogate models often face limitations in generalizability, physical consistency, and extrapolation—issues that are especially critical in safety-sensitive fields such as fire safety engineering (FSE). To address [...] Read more.
Surrogate modelling is increasingly used in engineering to improve computational efficiency in complex simulations. However, traditional data-driven surrogate models often face limitations in generalizability, physical consistency, and extrapolation—issues that are especially critical in safety-sensitive fields such as fire safety engineering (FSE). To address these concerns, physics-informed surrogate modelling (PISM) integrates physical laws into machine learning models, enhancing their accuracy, robustness, and interpretability. This systematic review synthesises existing applications of PISM in FSE, classifies the strategies used to embed physical knowledge, and outlines key research challenges. A comprehensive search was conducted across Google Scholar, ResearchGate, ScienceDirect, and arXiv up to May 2025, supported by backward and forward snowballing. Studies were screened against predefined criteria, and relevant data were analysed through narrative synthesis. A total of 100 studies were included, covering five core FSE domains: fire dynamics, wildfire behaviour, structural fire engineering, material response, and heat transfer. Four main strategies for embedding physics into machine learning were identified: feature engineering techniques (FETs), loss-constrained techniques (LCTs), architecture-constrained techniques (ACTs), and offline-constrained techniques (OCTs). While LCT and ACT offer strict enforcement of physical laws, hybrid approaches combining multiple strategies often produce better results. A stepwise framework is proposed to guide the development of PISM in FSE, aiming to balance computational efficiency with physical realism. Common challenges include handling nonlinear behaviour, improving data efficiency, quantifying uncertainty, and supporting multi-physics integration. Still, PISM shows strong potential to improve the reliability and transparency of machine learning in fire safety applications. Full article
Show Figures

Figure 1

9 pages, 4174 KiB  
Proceeding Paper
Advanced Design and Analysis of Engine Fins to Improve Heat Transfer Rate
by Pritam Kumar Das, Mohammed Zubbairuddin, Jitendra Patra and Santosh Kumar Dash
Eng. Proc. 2025, 93(1), 23; https://doi.org/10.3390/engproc2025093023 (registering DOI) - 7 Aug 2025
Abstract
Fin analysis is crucial to improve the rate of heat transfer. The main objective of this research is to investigate various fin designs in order to enhance the heat transfer efficiency of cooling fins through modifications in the geometry of the cylinder fins. [...] Read more.
Fin analysis is crucial to improve the rate of heat transfer. The main objective of this research is to investigate various fin designs in order to enhance the heat transfer efficiency of cooling fins through modifications in the geometry of the cylinder fins. The investigation of thermal analysis of the cylinder through variation in material, geometry, number, and size of the fins is carried out. Different materials are considered to design the fins, including cast iron, aluminum alloy 6061, and copper. The design of the engine, featuring various fins, is modeled with CATIA, and analysis is performed with ANSYS 2023 R2. The findings indicate that for the modified design-2, the total heat flux is more for aluminum alloy 6061 compared to the other two materials. Additionally, the use of aluminum alloy 6061 results in lower weight, making it a better choice compared to cast iron and copper. Full article
Show Figures

Figure 1

26 pages, 1794 KiB  
Review
Activating and Enhancing the Energy Flexibility Provided by a Pipe-Embedded Building Envelope: A Review
by Xiaochen Yang, Yanqing Li, Xiaoqiong Li, Khaled A. Metwally and Yan Ding
Buildings 2025, 15(15), 2793; https://doi.org/10.3390/buildings15152793 - 7 Aug 2025
Abstract
Building thermal mass offers a cost-effective solution to enhance the integration of energy supply and demand in dynamic energy systems. Thermally activated building systems (TABS), incorporating embedded heat tubes, shows strong potential for energy flexibility. However, the significant thermal inertia of TABS also [...] Read more.
Building thermal mass offers a cost-effective solution to enhance the integration of energy supply and demand in dynamic energy systems. Thermally activated building systems (TABS), incorporating embedded heat tubes, shows strong potential for energy flexibility. However, the significant thermal inertia of TABS also imposes challenges to precise load shift and indoor climate control. This review synthesizes key research on the effective demand-side management of TABS from multiple perspectives. It examines and compares various TABS configurations, including floor, ceiling, and wall systems. Differences in heat transfer performance between heating and cooling result in distinct application preferences for each type. The integration of advanced materials, such as phase change materials (PCM), can further enhance energy flexibility. TABS flexibility is primarily activated through adjustments to indoor operative temperature, with relevant influencing factors and regulatory constraints analyzed and discussed. Key aspects of optimizing building energy flexibility, including simulation methods and control strategies for TABS, are reviewed from both theoretical and practical perspectives. The energy and economic performance of TABS under various control strategies is analyzed in detail. This review provides insights to support the optimal design and operation of TABS within dynamic energy systems and to enhance the energy flexibility of building envelopes. Full article
Show Figures

Figure 1

22 pages, 3475 KiB  
Article
Validation of Subway Environmental Simulation (SES) for Longitudinal Ventilation: A Comparison with Memorial Tunnel Experimental Data
by Manuel J. Barros-Daza
Fire 2025, 8(8), 314; https://doi.org/10.3390/fire8080314 - 7 Aug 2025
Abstract
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow [...] Read more.
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow and thermal conditions during fire events, but its accuracy in real-world applications requires validation. This study compares SES predictions with experimental data from the Memorial Tunnel fire ventilation tests to evaluate its performance in simulating the effects of jet fans on longitudinal ventilation. The analysis focuses on SES’s ability to predict flow rate and temperature distributions. Results showed reasonable agreement between SES-predicted airflows and temperatures. However, SES tended to underpredict temperatures upstream and near the fire source, indicating a limitation in simulating thermal behavior close to the fire. These findings suggest that SES can be a reliable tool for tunnel ventilation design if certain safety margins, based on the error values identified in this study, are considered. Nonetheless, further improvements are necessary to enhance its accuracy, particularly in modeling heat transfer dynamics and the impact of fire-induced temperature changes. Future work should focus on conducting additional full-scale test validations and model refinements to improve SES’s predictive capabilities for fire safety planning. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

25 pages, 2458 KiB  
Article
Numerical Analysis of Heat Transfer in a Double-Pipe Heat Exchanger for an LPG Fuel Supply System
by Seongwoo Lee, Younghun Kim, Ancheol Choi and Sungwoong Choi
Energies 2025, 18(15), 4179; https://doi.org/10.3390/en18154179 - 6 Aug 2025
Abstract
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in [...] Read more.
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in LPG fuel supply systems. This study investigates the heat transfer performance of a glycol–steam double-pipe heat exchanger (DPHE) within an LPG fuel supply system under varying operating conditions. A computational model and methodology were developed and validated by comparing the numerical results with experimental data obtained from commissioning tests. Additionally, the effects of turbulence models and parametric variations were evaluated by analyzing the glycol–water mixing ratio and flow direction—both of which are critical operational parameters for DPHE systems. Numerical validation against the commissioning data showed a deviation of ±2% under parallel-flow conditions, confirming the reliability of the proposed model. With respect to the glycol–water mixing ratio and flow configuration, thermal conductance (UA) decreased by approximately 11% in parallel flow and 13% in counter flow for every 20% increase in glycol concentration. Furthermore, parallel flow exhibited approximately 0.6% higher outlet temperatures than counter flow, indicating superior heat transfer efficiency under parallel-flow conditions. Finally, the heat transfer behavior of the DPHE was further examined by considering the effects of geometric characteristics, pipe material, and fluid properties. This study offers significant contributions to the engineering design of double-pipe heat exchanger systems for LPG fuel supply applications. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

21 pages, 3336 KiB  
Article
A Computerized Analysis of Flow Parameters for a Twin-Screw Compressor Using SolidWorks Flow Simulation
by Ildiko Brinas, Florin Dumitru Popescu, Andrei Andras, Sorin Mihai Radu and Laura Cojanu
Computation 2025, 13(8), 189; https://doi.org/10.3390/computation13080189 - 6 Aug 2025
Abstract
Twin-screw compressors (TSCs) are widely used in various industries. Their performance is influenced by several parameters, such as rotor profiles, clearance gaps, operating speed, and thermal effects. Traditionally, optimizing these parameters relied on experimental methods, which are costly and time-consuming. However, advancements in [...] Read more.
Twin-screw compressors (TSCs) are widely used in various industries. Their performance is influenced by several parameters, such as rotor profiles, clearance gaps, operating speed, and thermal effects. Traditionally, optimizing these parameters relied on experimental methods, which are costly and time-consuming. However, advancements in computational tools, such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA), have revolutionized compressor analysis. This study presents a CFD analysis of a specific model of a TSC in a 5 male/6 female lobe configuration using the SolidWorks Flow Simulation environment—an approach not traditionally applied to such positive displacement machines. The results visually present internal flow trajectories, fluid velocities, pressure distributions, temperature gradients, and leakage behaviors with high spatial and temporal resolution. Additionally, torque fluctuations and isosurface visualizations revealed insights into mechanical loads and flow behavior. The proposed method allows for relatively easy adaptation to different TSC configurations and can also be a useful tool for engineering and educational purposes. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
14 pages, 5840 KiB  
Article
Paint Removal Performance and Sub-Surface Microstructural Evolution of Ti6Al4V Alloy Using Different Process Parameters of Continuous Laser Cleaning
by Haoye Zeng, Biwen Li, Liangbin Hu, Yun Zhang, Ruiqing Li, Chaochao Zhou and Pinghu Chen
Coatings 2025, 15(8), 916; https://doi.org/10.3390/coatings15080916 - 6 Aug 2025
Abstract
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave [...] Read more.
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave laser was used to remove the 120 μm coating on the surface of Ti6Al4V alloy. The influence of laser power (100 W to 200 W) and scanning speed (520 mm/min to 610 mm/min) on the paint removal effect was explored based on paint removal rate, surface roughness, microstructural evolution, and the hardness’ change in the direction of heat transfer. The results reveal that optimal paint removal parameters are achieved at a laser power of 100 W with a scanning speed of 550 mm/min. The surface roughness of the sample after paint removal (55 nm) is similar to that of the original substrate (56 nm). Through EBSD analysis, the influence of laser thermal accumulation on the microstructure of the substrate is relatively small. The average hardness of the cross-section after cleaning was 347 HV, which was only 3.41% higher than that of the original substrate. This confirms that parameter-controlled laser cleaning can effectively remove ~120 μm thick paint layers without inflicting damage on the substrate. Full article
Show Figures

Figure 1

21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

13 pages, 3691 KiB  
Article
Analysis of Kinetic Effects of Nanofibrillated Cellulose on MMA Polymerization via Temperature Monitoring
by David Victoria-Valenzuela, Ana Beatriz Morales-Cepeda and Sergio Alejandro De La Garza-Tenorio
Processes 2025, 13(8), 2476; https://doi.org/10.3390/pr13082476 - 5 Aug 2025
Abstract
This study investigates the influence of cellulose nanofibrils (CNFs) on the polymerization kinetics of methyl methacrylate (MMA) during in situ suspension polymerization at 70 °C (343.15 K). Four CNF concentrations were evaluated and compared to a reference system without CNFs. Polymerizations were carried [...] Read more.
This study investigates the influence of cellulose nanofibrils (CNFs) on the polymerization kinetics of methyl methacrylate (MMA) during in situ suspension polymerization at 70 °C (343.15 K). Four CNF concentrations were evaluated and compared to a reference system without CNFs. Polymerizations were carried out in a thermostatted flask immersed in an ethylene glycol bath and covered to ensure thermal stability. The temperature profiles of both the reaction medium and the surrounding bath were continuously recorded, allowing for the calculation of heat flow, polymerization rate (Rp), and monomer conversion. The incorporation of CNFs led to a significant increase in Rp and faster MMA conversion. This effect was attributed to the presence of nanocellulose within the polymerizing medium, which restricted diffusion and contributed to the onset of the phenomenon of autoacceleration. Additionally, CNFs promoted a higher total heat release, underscoring the need for thermal control during scale-up. The resulting material qualifies as a biocomposite, as biobased nanofibrils became integrated into the polymer matrix. These findings demonstrate that CNFs act as effective kinetic promoters in MMA polymerizations and may serve as functional additives to enhance both reaction performance and sustainability. However, safety considerations remain critical when transferring this approach to industrial processes. Full article
(This article belongs to the Special Issue Biopolymer Processing, Utilization and Applications)
Show Figures

Figure 1

27 pages, 4509 KiB  
Article
Numerical Simulation and Analysis of Performance of Switchable Film-Insulated Photovoltaic–Thermal–Passive Cooling Module for Different Design Parameters
by Cong Jiao, Zeyu Li, Tiancheng Ju, Zihan Xu, Zhiqun Xu and Bin Sun
Processes 2025, 13(8), 2471; https://doi.org/10.3390/pr13082471 - 5 Aug 2025
Viewed by 145
Abstract
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. [...] Read more.
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. In our previous work, we proposed a switchable film-insulated photovoltaic–thermal–passive cooling (PVT-PC) module to address the structural incompatibility between diurnal and nocturnal modes. However, the performance of the proposed module strongly depends on two key design parameters: the structural height and the vacuum level of the air cushion. In this study, a numerical model of the proposed module is developed to examine the impact of design and meteorological parameters on its all-day performance. The results show that diurnal performance remains stable across different structural heights, while nocturnal passive cooling power shows strong dependence on vacuum level and structural height, achieving up to 103.73 W/m2 at 10 mm height and 1500 Pa vacuum, which is comparable to unglazed PVT modules. Convective heat transfer enhancement, induced by changes in air cushion shape, is identified as the primary contributor to improved nocturnal cooling performance. Wind speed has minimal impact on electrical output but significantly enhances thermal efficiency and nocturnal convective cooling power, with a passive cooling power increase of up to 31.61%. In contrast, higher sky temperatures degrade nocturnal cooling performance due to diminished radiative exchange, despite improving diurnal thermal efficiency. These findings provide fundamental insights for optimizing the structural design and operational strategies of PVT-PC systems under varying environmental conditions. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

22 pages, 2103 KiB  
Article
Air-STORM: Informed Decision Making to Improve the Success of Solar-Powered Air Quality Samplers in Challenging Environments
by Kyan Kuo Shlipak, Julian Probsdorfer and Christian L’Orange
Sensors 2025, 25(15), 4798; https://doi.org/10.3390/s25154798 - 4 Aug 2025
Viewed by 122
Abstract
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to [...] Read more.
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to extreme temperatures and insufficient solar energy. Proper planning can help overcome these challenges. Air Sampler Solar and Thermal Optimization for Reliable Monitoring (Air-STORM) is an open-source tool that uses meteorological and solar radiation data to identify temperature and solar charging risks for air pollution monitors based on the target deployment area. The model was validated experimentally, and its utility was demonstrated through illustrative case studies. Air-STORM simulations can be customized for specific locations, seasons, and monitor configurations. This capability enables the early detection of potential sampling risks and provides opportunities to optimize monitor design, proactively mitigate temperature and power failures, and increase the likelihood of successful sample collection. Ultimately, improving sampling success will help increase the availability of high-quality outdoor air pollution data necessary to reduce global air pollution exposure. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
Heat Exchange and Flow Resistance in a Heat Exchanger Based on a Minimal Surface of the Gyroid Type—Results of Experimental Studies
by Krzysztof Dutkowski, Marcin Kruzel and Marcin Walczak
Energies 2025, 18(15), 4134; https://doi.org/10.3390/en18154134 - 4 Aug 2025
Viewed by 112
Abstract
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest [...] Read more.
The gyroid minimal surface is one type of triply periodic minimal surface (TPMS). TPMS is a minimal surface replicated in the three main directions of the Cartesian coordinate system. The minimal surface is a surface stretched between two objects, known as the smallest possible area (e.g., a soap bubble with a saddle shape stretched between two parallel circles). The complicated shape of the TPMS makes its production possible only by additive methods (3D printing). This article presents the results of experimental studies on heat transfer and flow resistance in a heat exchanger made of stainless steel. The heat exchange surface, a TPMS gyroid, separates two working media: hot and cold water. The water flow rate was varied in the range from 8 kg/h to 25 kg/h (Re = 246–1171). The water temperature at the inlet to the exchanger was maintained at a constant level of 8.8 ± 0.3 °C and 49.5 ± 0.5 °C for cold and hot water, respectively. The effect of water flow rate on the change in its temperature, the heat output of the exchanger, the average heat transfer coefficient, pressure drop, and overall resistance factor was presented. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 3755 KiB  
Article
Thermal and Expansion Analysis of the Lebanese Flatbread Baking Process Using a High-Temperature Tunnel Oven
by Yves Mansour, Pierre Rahmé, Nemr El Hajj and Olivier Rouaud
Appl. Sci. 2025, 15(15), 8611; https://doi.org/10.3390/app15158611 - 4 Aug 2025
Viewed by 173
Abstract
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this [...] Read more.
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this work presents the first experimental investigation of the traditional Lebanese flatbread baking process under realistic industrial conditions, specifically using a high-temperature tunnel oven with direct flame heating, extremely short baking times (~10–12 s), and peak temperatures reaching ~650 °C, which are essential to achieving the characteristic pocket formation and texture of Lebanese bread. This experimental study characterizes the baking kinetics of traditional Lebanese flatbread, recording mass loss pre- and post-baking, thermal profiles, and dough expansion through real-time temperature measurements and video recordings, providing insights into the dough’s thermal response and expansion behavior under high-temperature conditions. A custom-designed instrumented oven with a steel conveyor and a direct flame burner was employed. The dough, prepared following a traditional recipe, was analyzed during the baking process using K-type thermocouples and visual monitoring. Results revealed that Lebanese bread undergoes significant water loss due to high baking temperatures (~650 °C), leading to rapid crust formation and pocket development. Empirical equations modeling the relationship between baking time, temperature, and expansion were developed with high predictive accuracy. Additionally, an energy analysis revealed that the total energy required to bake Lebanese bread is approximately 667 kJ/kg, with an overall thermal efficiency of only 21%, dropping to 16% when preheating is included. According to previous CFD (Computational Fluid Dynamics) simulations, most heat loss in similar tunnel ovens occurs via the chimney (50%) and oven walls (29%). These findings contribute to understanding the broader thermophysical principles that can be applied to the development of more efficient baking processes for various types of bread. The empirical models developed in this study can be applied to automating and refining the industrial production of Lebanese flatbread, ensuring consistent product quality across different baking environments. Future studies will extend this work to alternative oven designs and dough formulations. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

Back to TopTop