Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = heat transfer to the filler wire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7759 KiB  
Article
Numerical Analysis of Thermal and Flow Behaviors with Weld Microstructures During Laser Welding with Filler Wire for 2195 Al-Li Alloys
by Dejun Liu, Qihang Xv, Gan Tian, Ling Zhao, Xinzhi Yang and Maochuan Li
Metals 2025, 15(4), 348; https://doi.org/10.3390/met15040348 - 23 Mar 2025
Viewed by 492
Abstract
This study investigates the effects of heat transfer and molten pool flow behavior on the final structure of laser filler wire welds, aiming to improve weld quality. Laser filler wire welding experiments and numerical simulations were performed on 2195 Al-Li alloy workpieces with [...] Read more.
This study investigates the effects of heat transfer and molten pool flow behavior on the final structure of laser filler wire welds, aiming to improve weld quality. Laser filler wire welding experiments and numerical simulations were performed on 2195 Al-Li alloy workpieces with varying welding parameters. Numerical simulation of the heat transfer and flow in the molten pool was carried out using the CFD method, and the moving filler wire was introduced from the computational boundary by secondary development. Simulation results indicated that reducing welding speed and increasing wire feeding rate enhanced the cooling rate of the weld. Additionally, energy absorbed by the filler wire contributed between 6% and 16% of the total energy input during the liquid bridge transition. Comparing experimental and simulation data revealed that the cooling rate significantly affected the weld’s micro-structure and hardness. Notably, the formation of the equiaxed grain zone (EQZ) was crucial for weld performance. Excessive cooling rates hindered EQZ formation, reducing flow in this critical region. These findings offer valuable insights for optimizing welding parameters to enhance weld quality and performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

20 pages, 10591 KiB  
Article
Study and Characterisation of Bimetallic Structure (316LSI and S275JR) Made by Hybrid CMT WAAM Process
by Alejandro Pereira, Antonio Alonso, Primo Hernández, Javier Martínez, David Alvarez and Michal Wieczorowski
Materials 2024, 17(22), 5422; https://doi.org/10.3390/ma17225422 - 6 Nov 2024
Viewed by 1424
Abstract
The main objective of this research is to conduct an experimental investigation of the bimetallic material formed by 316LSI stainless steel and S275JR structural steel, produced via hybrid wire arc additive manufacturing technology with cool metal transfer welding and machining, and with the [...] Read more.
The main objective of this research is to conduct an experimental investigation of the bimetallic material formed by 316LSI stainless steel and S275JR structural steel, produced via hybrid wire arc additive manufacturing technology with cool metal transfer welding and machining, and with the objective of being able to reduce the industrial cost of certain requirements for one of the materials. A methodological investigation has been carried out starting with welding beads of 316LSI on S275JR plates, followed by overlapping five beads and conducting final experiments with several vertical layers, with or without intermediate face milling. The results achieved optimal bead conditions for wire speeds of 4 m/min and 5 m/min at a travel speed of 400 mm/min. Overlap experiments show that the best deposition results are obtained with an overlap equal to or greater than 28%. Cooling time does not significantly influence the final geometry of the coatings. Regarding metallographic analysis, the filler material presents an austenitic columnar structure. In the base material, a bainitic structure with inferred grain refinement was detected in the heat-affected zone. An increase in hardness is observed in the heat-affected zone. In the results obtained from the tensile tests of the bimetallic material, an increase in mechanical strength and yield strength is observed in the tested specimens. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

16 pages, 6335 KiB  
Article
Research on the Microstructure and Properties of Al Alloy/Steel CMT Welding-Brazing Joints with Al–Si Flux-Cored Welding Wires
by Haodong Liu, Juan Pu, Mingfang Wu, Chao Zhang, Jiawei Rao, Weimin Long and Yuanxun Shen
Coatings 2023, 13(9), 1590; https://doi.org/10.3390/coatings13091590 - 12 Sep 2023
Cited by 8 | Viewed by 1781
Abstract
Al alloy/steel composite structures combine the advantage of a lightweight Al alloy and high-strength steel and are widely used in new energy vehicles, solar photovoltaic, and other fields. The main problems with the connection of an Al alloy and steel are poor weld [...] Read more.
Al alloy/steel composite structures combine the advantage of a lightweight Al alloy and high-strength steel and are widely used in new energy vehicles, solar photovoltaic, and other fields. The main problems with the connection of an Al alloy and steel are poor weld formation and difficulty in controlling the thickness of the intermetallic compounds (IMCs) at the interface of the Al alloy and steel, which deteriorates the mechanical properties and corrosion resistance of the Al alloy/steel joints. Therefore, experiments on Al alloy/steel CMT (cold metal transfer, CMT) welding brazing were conducted by using AlSi5 and AlSi12 flux-cored welding wires as filler metals. The macro morphology, microstructure composition, tensile strength, and corrosion resistance of the Al alloy/steel joints were then analyzed. The mechanism of the Noclock flux on the wettability and spreadability of the Al–Si welding wire to a low-carbon steel surface was discussed and the formation behavior of the IMCs at the interface layer of the Al alloy/steel joints was clarified. The results showed that the NH4F and NH4AlF4 of the Noclock flux induced and accelerated the removal of oxide films on the surface of the Al alloy and Al–Si welding wire at a high temperature. It promoted the wettability and spreadability of the Al–Si welding wire, which resulted in the improvement of the Al alloy/steel joint formation. Under the CMT arc heat source, the Al–Si welding wire melted, and then a chemical metallurgical reaction occurred among the Al, Si, and Fe elements. The τ5-Al7.2Fe1.8Si phase formed preferentially near the Al alloy fusion zone while the θ-Fe (Al, Si)3 phase formed near the steel side. Actually, the interface reaction layer was composed of a double-layer compound including the τ5-Al7.2Fe1.8Si phase and θ-Fe (Al, Si)3 phase. Additionally, the IMC thickness of the Al alloy/steel joint with the AlSi12 flux-cored welding wire was 3.01 μm, which was less than that with the AlSi5 flux-cored welding wire, so its tensile strength was less but its corrosion resistance was superior. The main reason for the corrosion resistance of Al alloy/steel joints was the presence of a large amount of Al2O3, FeO, and Fe2O3 in the passive film. Full article
Show Figures

Figure 1

28 pages, 11957 KiB  
Article
A Comparison of a Transparent Thermal Insulation System Filled with Refrigerants and a Pig-Fat Based PCM
by Agustín Torres Rodríguez, David Morillón Gálvez, Iván García Kerdan and Rodolfo Silva Casarín
Energies 2023, 16(9), 3630; https://doi.org/10.3390/en16093630 - 23 Apr 2023
Cited by 2 | Viewed by 2081
Abstract
In this research sustainable refrigerants are tested as filler gases in Transparent Thermal Insulation (TTI) for the first time. These are compared with pig fat, a readily available material with good thermal inertia that is proposed as an organic phase change material (PCM). [...] Read more.
In this research sustainable refrigerants are tested as filler gases in Transparent Thermal Insulation (TTI) for the first time. These are compared with pig fat, a readily available material with good thermal inertia that is proposed as an organic phase change material (PCM). The aim of this paper is to compare the thermal behaviour of a Hybrid Air Conditioning System (HACS) with TTI filled with R134a, R1233zd and a pig-fat-based PCM. Numerical simulations using the OPAQUE 3 program and two online platforms are used to evaluate the possible application of TTI and PCM as passive systems. Additionally, three TTI models are used to simulate the heat transfer processes of TTI, PCM and R134a. The velocity of the flow in the air gap is also analysed numerically in both laminar and turbulent states. For the assessment, infrared thermographic imagery is used to measure the temperatures in the HACS, giving values of 46.17 °C by day and 38.05 °C at night. The results show that the heat loss and heat gain in the combination TTI filled with refrigerants and pig-fat-based PCM are between 2.22 and 1.51 W/m2. In addition, the HACS was able to keep a small box warm during the night. The flow in the air gap of the HACS can be controlled by installing Ni-Ti wire actuators with a cooling temperature of 23 °C and a heating temperature of 70 °C. The Ni-Ti wire actuators can open and close the dampers at 23 °C and 51 °C, respectively. By installing a 5-watt solar-power fan, the velocity of the flow in the air gap in the HACS can be increased, thus improving the efficiency of the system. In all the experiments, the pig fat proved to be suitable for use in building applications as a non-flammable organic material. Full article
Show Figures

Figure 1

17 pages, 7581 KiB  
Article
Influence of Filler Metal on Electrochemical Characteristics of a Laser-Welded CoCrMoW Alloy Used in Prosthodontics
by Lukasz Reimann, Zbigniew Brytan and Grzegorz Jania
Materials 2022, 15(16), 5721; https://doi.org/10.3390/ma15165721 - 19 Aug 2022
Cited by 5 | Viewed by 2181
Abstract
This paper sought to determine corrosion resistance changes in the artificial saliva of a CoCrMoW-based alloy used for dental prostheses under Nd:YAG laser welding with CoCr alloy and stainless steel wire filler metals. The paper presents the corrosion characteristics of such joints, including [...] Read more.
This paper sought to determine corrosion resistance changes in the artificial saliva of a CoCrMoW-based alloy used for dental prostheses under Nd:YAG laser welding with CoCr alloy and stainless steel wire filler metals. The paper presents the corrosion characteristics of such joints, including the next stage of porcelain-fused-to-metal (PFM) firing. Corrosion tests were performed by electrochemical methods registering anodic polarization curves and electrochemical impedance spectroscopy (EIS). The microstructures were assessed by scanning microscopy (SEM) and chemical composition analysis (EDS) at the connection and heat-affected zones. Welding CoCrMoW alloy with and without a filler material increased the open circuit potential of the samples by 40–100 mV compared to unwelded base alloy. At the same time, a potentiodynamic test showed a polarization resistance Rpol reduction in welded samples, both for CoCr and stainless steel wires, as compared to the base CoCrMoW material. On the other hand, when comparing the current density and polarization resistance between materials welded with two different filler metals, better results were obtained for samples welded with stainless steel wire. The polarization resistance Rpol for the base alloy was 402 kΩ·cm2, for the CoCr wire weld it was 436 kΩ·cm2, and the value was 452 kΩ·cm2 for stainless steel wire welds. Comparing polarization resistance Rpol from the Tafel analysis and the total charge transfer resistance from Rp(EIS) from EIS, the CoCrMoW alloy welded with a stainless steel wire after heat treatment equaled or even slightly exceeded the corrosion resistance of the base alloy and alloy welded with dedicated CoCr wire after heat treatment. These results indicated the possibility of using stainless steel wire for the laser welding of CoCrMoW alloys dental prostheses, including the next stage of PFM, without sacrificing the corrosion resistance of such connections, and this was confirmed by most electrochemical parameters. Full article
(This article belongs to the Special Issue Corrosion Resistance of Alloy and Coating Materials)
Show Figures

Figure 1

19 pages, 8297 KiB  
Article
Modeling of Melt Flow and Heat Transfer in Stationary Gas Tungsten Arc Welding with Vertical and Tilted Torches
by Shahid Parvez, Md Irfanul Haque Siddiqui, Masood Ashraf Ali and Dan Dobrotă
Materials 2021, 14(22), 6845; https://doi.org/10.3390/ma14226845 - 12 Nov 2021
Cited by 2 | Viewed by 2336
Abstract
A 3D numerical simulation was conducted to study the transient development of temperature distribution in stationary gas tungsten arc welding with filler wire. Heat transfer to the filler wire and the workpiece was investigated with vertical (90°) and titled (70°) torches. Heat flux, [...] Read more.
A 3D numerical simulation was conducted to study the transient development of temperature distribution in stationary gas tungsten arc welding with filler wire. Heat transfer to the filler wire and the workpiece was investigated with vertical (90°) and titled (70°) torches. Heat flux, current flux, and gas drag force were calculated from the steady-state simulation of the arc. The temperature in the filler wire was determined at three different time intervals: 0.12 s, 0.24 s, and 0.36 s. The filler wire was assumed not to deform during this short time, and was therefore simulated as solid. The temperature in the workpiece was calculated at the same intervals using heat flux, current flux, gas drag force, Marangoni convection, and buoyancy. It should be noted that heat transfer to the filler wire was faster with the titled torch compared to the vertical torch. Heat flux to the workpiece was asymmetrical with both the vertical and tilted torches when the filler wire was fully inserted into the arc. It was found that the overall trends of temperature contours for both the arc and the workpiece were in good agreement. It was also observed that more heat was transferred to the filler wire with the 70° torch compared with the 90° torch. The melted volume of the filler wire (volume above 1750 °K) was 12 mm3 with the 70° torch, compared to 9.2 mm3 with the 90° torch. Full article
Show Figures

Figure 1

25 pages, 11815 KiB  
Article
Thermophysical Properties of Electric Arc Plasma and the Wire Melting Effect with Lanthanum and Sulfur Fluorides Addition in Wire Arc Additive Manufacturing
by Sergey G. Parshin and Peter Mayr
Metals 2021, 11(11), 1756; https://doi.org/10.3390/met11111756 - 1 Nov 2021
Cited by 3 | Viewed by 3053
Abstract
Achieving a higher quality in wire arc additive manufacturing (WAAM) is a result of the development of welding metallurgy, the development of filler wires, and the control of the thermophysical properties of the electric arc. In this paper, the authors developed composite wires [...] Read more.
Achieving a higher quality in wire arc additive manufacturing (WAAM) is a result of the development of welding metallurgy, the development of filler wires, and the control of the thermophysical properties of the electric arc. In this paper, the authors developed composite wires for WAAM with a Ni-LaF3, Ni-LaB6 coating. The addition of LaF3, LaB6, and SF6 increases specific heat, thermal conductivity, enthalpy, and degree of plasma ionization, which leads to the increase in the transfer of heat from the arc plasma to the wire and to the change in the balance of forces during wire melting. The increase in the Lorentz electromagnetic force and the decrease in the surface tension force made it possible to reduce the droplet diameter and the number of short circuits during wire melting. The change in the thermophysical properties of the plasma and droplet transfer with the addition of LaF3, LaB6, and SF6 made it possible to increase the welding current, penetration depth, accuracy of the geometric dimensions of products in WAAM, reduce the wall thickness of products, and refine the microstructure of the weld metal using G3Si1, 316L, AlMg5Mn1Ti, and CuCr0.7 wires. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing of Metals)
Show Figures

Figure 1

11 pages, 12682 KiB  
Article
Analysis and Characterization of the Weld Pool and Bead Geometry of Inconel 625 Super-TIG Welds
by Jung Hyun Park, Muralimohan Cheepu and Sang Myung Cho
Metals 2020, 10(3), 365; https://doi.org/10.3390/met10030365 - 11 Mar 2020
Cited by 19 | Viewed by 4715
Abstract
The welding market is changing globally, becoming eco-friendly, robotized and automated. The tungsten inert gas welding (TIG) process is indispensable in industries that require high-quality welds with the absence of spatter and fumes. However, the production rate of TIG welding is very low, [...] Read more.
The welding market is changing globally, becoming eco-friendly, robotized and automated. The tungsten inert gas welding (TIG) process is indispensable in industries that require high-quality welds with the absence of spatter and fumes. However, the production rate of TIG welding is very low, which limits its many applications. The present study introduces a novel TIG welding method called super-TIG welding. Super-TIG welding is able to produce a high production rate of welds compared to other fusion welding methods. In super-TIG welding, the novel C-type filler is used, which is different from the conventional TIG welding of circular wire. The relations of the heat input ratio in super-TIG welding to weld pool length and weld bead geometry were measured using the Inconel 625 C-filler. Two types of deposition techniques were used for a bead-on-plate welds, such as stringer beads and oscillation beads. The weld pool and bead geometry measurements are found to be different between stringer beads and oscillation bead techniques. The length of the molten pool and bead size were higher for oscillation beads over the stringer beads. These changes were associated with the difference in heat transfer contact area and bead height. Full article
Show Figures

Figure 1

11 pages, 36971 KiB  
Article
Laser-CMT Hybrid Welding-Brazing of Al/Steel Butt Joint: Weld Formation, Intermetallic Compounds, and Mechanical Properties
by Yuxin Chen, Zhibin Yang, Chunyuan Shi, Zhibin Xin and Zitong Zeng
Materials 2019, 12(22), 3651; https://doi.org/10.3390/ma12223651 - 6 Nov 2019
Cited by 9 | Viewed by 3363
Abstract
6A01-T5 aluminum alloy and SUS301L-DLT austenitic stainless steel sheets were welded by a laser-cold metal transfer (CMT) hybrid welding-brazing method with ER5183 filler wire. We researched the weld forming, intermetallic compounds, and mechanical character, which are influenced by laser power, wire feeding speed, [...] Read more.
6A01-T5 aluminum alloy and SUS301L-DLT austenitic stainless steel sheets were welded by a laser-cold metal transfer (CMT) hybrid welding-brazing method with ER5183 filler wire. We researched the weld forming, intermetallic compounds, and mechanical character, which are influenced by laser power, wire feeding speed, and welding speed. Well-formed joints with uniformly distributed interface layers were obtained under certain parameters. The spreading and wetting distance on the steel upper surface increased initially and then decreased as the laser power increased, and increased progressively as the wire feeding speed increased or welding speed decreased. There were both Fe2Al5 and Fe4Al13 in the interfacial intermetallic compounds (IMCs) layer. The thickness was controlled to within 2.0–6.9 µm. The thickness of the IMCs layer increased as the heat input increased; however, the increasing rate decreased gradually. The tensile strength of the joints was not only completely dependent on the thickness of the IMCs, but also on the spreading and wetting distance on the steel surface. The highest tensile strength could reach up to 188.7 MPa, which is about 77.1% of that of the base aluminum alloy. The tensile sample fracture occurred at the IMCs layer, and regional metallurgical bonding happened in the interface layer. Full article
Show Figures

Figure 1

10 pages, 3927 KiB  
Article
Influence of Preheating Temperature on Cold Metal Transfer (CMT) Welding–Brazing of Aluminium Alloy/Galvanized Steel
by Youqiong Qin, Xi He and Wenxiang Jiang
Appl. Sci. 2018, 8(9), 1659; https://doi.org/10.3390/app8091659 - 14 Sep 2018
Cited by 12 | Viewed by 4955
Abstract
Bead-on-plate cold metal transfer (CMT) brazing and overlap CMT welding–brazing of 7075 aluminium alloy and galvanized steel at different preheating temperatures were studied. The results indicated that AlSi5 filler wire had good wettability to galvanized steel. The preheating treatment can promote the spreadability [...] Read more.
Bead-on-plate cold metal transfer (CMT) brazing and overlap CMT welding–brazing of 7075 aluminium alloy and galvanized steel at different preheating temperatures were studied. The results indicated that AlSi5 filler wire had good wettability to galvanized steel. The preheating treatment can promote the spreadability of liquid AlSi5. For the overlap CMT welding–brazed joint, the microstructure of the joint was divided into four zones, namely, the interfacial layer, weld metal zone, zinc-rich zone, and heat affected zone (HAZ). The load force of the joints without preheating and 100 °C preheating temperature was 8580 N and 9730 N, respectively. Both of the joints were fractured in the fusion line with a ductile fracture. Further increasing the preheating temperature to 200 °C would decrease the load force of the joint, which fractured in the interfacial layer with a brittle fracture. Full article
(This article belongs to the Special Issue Selected Papers from the NMJ2018)
Show Figures

Figure 1

Back to TopTop