Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = heat exchanger network (HEN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2504 KiB  
Review
Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems
by Stanislav Boldyryev, Oleksandr S. Ivashchuk, Goran Krajačić and Volodymyr M. Atamanyuk
Energies 2025, 18(14), 3685; https://doi.org/10.3390/en18143685 - 12 Jul 2025
Viewed by 368
Abstract
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process [...] Read more.
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations. Full article
Show Figures

Figure 1

11 pages, 1432 KiB  
Article
Energy-Saving Design of Urea Method for Hydrazine Hydrate Process
by Zhihao Wang, Xiaojing Wang, Haibin Wu, Shengting Li and Yongjie Xu
Processes 2025, 13(5), 1585; https://doi.org/10.3390/pr13051585 - 20 May 2025
Viewed by 607
Abstract
The conventional urea-based process for hydrazine hydrate production faces challenges including low product yield and high energy consumption. To overcome these limitations, we propose an innovative integrated approach combining jet reactor technology with membrane separation, further enhanced through heat network optimization. Through process [...] Read more.
The conventional urea-based process for hydrazine hydrate production faces challenges including low product yield and high energy consumption. To overcome these limitations, we propose an innovative integrated approach combining jet reactor technology with membrane separation, further enhanced through heat network optimization. Through process simulation and sensitivity analysis, the following optimal distillation parameters were identified: nine theoretical stages, feed entry at the fifth stage, a reflux ratio of 0.6, and a distillate flow rate of 354 kg/h. Systematic optimization of the heat exchanger network (HEN) using pinch technology achieved substantial energy savings, reducing hot utility consumption by 66.8% (to 1317 MJ/h) and cold utility usage by 62.7% (to 1503 MJ/h). The redesigned HEN prioritized temperature-cascaded heat recovery, enabling 67% energy recuperation from exothermic reaction streams. Operational costs decreased by 12%, underscoring the economic viability of coupling process intensification with thermal integration. This work establishes a sustainable framework for hydrazine hydrate synthesis, balancing industrial feasibility with reduced environmental impact in chemical manufacturing. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 6455 KiB  
Article
Process Improvement and Economic and Environmental Evaluation of Bio-Hydrogenated Diesel Production from Refined Bleached Deodorized Palm Oil
by Amata Anantpinijwatna, Lida Simasatitkul, Kanokporn Yooyen, Suksun Amornraksa, Suttichai Assabumrungrat and Karittha Im-orb
Processes 2025, 13(1), 75; https://doi.org/10.3390/pr13010075 - 1 Jan 2025
Cited by 1 | Viewed by 1807
Abstract
The co-production of BHD with other renewable fuels (i.e., using a novel process involving carbon dioxide utilization to achieve the global sustainability goal) is presented. The three configurations of BHD production from refined bleached deodorized palm oil (RBDPO), including (1) the conventional BHD [...] Read more.
The co-production of BHD with other renewable fuels (i.e., using a novel process involving carbon dioxide utilization to achieve the global sustainability goal) is presented. The three configurations of BHD production from refined bleached deodorized palm oil (RBDPO), including (1) the conventional BHD process with hydrogen recovery (BHD process), (2) the BHD process coupled with the Fischer–Tropsch process (BHD-FT process), and (3) the BHD process coupled with the bio-jet fuel and methanol processes (BHD-BIOJET-MEOH process) are investigated using the process model developed in Aspen Plus. The effect of the operating parameters is studied, and the condition of each process offering the highest BHD yield is proposed. Then, the pinch analysis and heat exchanger network (HEN) design of each proposed process are performed to find the highest energy-efficient configuration. The economic and environmental analysis is later performed to investigate the sustainability performance of each configuration. The conventional BHD process requires less hydrogen and consumes less energy than the others. The BHD-BIOJET-MEOH process is the most economically feasible, offering the highest net present value (NPV) of USD 7.93 million and the shortest payback period of 3 years and 1 month. However, it offers the highest carbon footprint of 0.820 kgCO2 eq./kg of BHD, and it presented the highest potential environmental impact (PEI) in all categories. Full article
(This article belongs to the Special Issue Process Systems Engineering for Environmental Protection)
Show Figures

Figure 1

27 pages, 3503 KiB  
Article
Thermodynamic Model-Based Synthesis of Heat-Integrated Work Exchanger Networks
by Aida Amini-Rankouhi, Abdurrafay Siddiqui and Yinlun Huang
Processes 2024, 12(10), 2293; https://doi.org/10.3390/pr12102293 - 19 Oct 2024
Viewed by 1099
Abstract
Heat integration has been widely and successfully practiced for recovering thermal energy in process plants for decades. It is usually implemented through synthesizing heat exchanger networks (HENs). It is recognized that mechanical energy, another form of energy that involves pressure-driven transport of compressible [...] Read more.
Heat integration has been widely and successfully practiced for recovering thermal energy in process plants for decades. It is usually implemented through synthesizing heat exchanger networks (HENs). It is recognized that mechanical energy, another form of energy that involves pressure-driven transport of compressible fluids, can be recovered through synthesizing work exchanger networks (WENs). One type of WEN employs piston-type work exchangers, which demonstrates techno-economic attractiveness. A thermodynamic-model-based energy recovery targeting method was developed to predict the maximum amount of mechanical energy feasibly recoverable by piston-type work exchangers prior to WEN configuration generation. In this work, a heat-integrated WEN synthesis methodology embedded by the thermodynamic model is introduced, by which the maximum mechanical energy, together with thermal energy, can be cost-effectively recovered. The methodology is systematic and general, and its efficacy is demonstrated through two case studies that highlight how the proposed methodology leads to designs simpler than those reported by other researchers while also having a lower total annualized cost (TAC). Full article
Show Figures

Figure 1

23 pages, 2681 KiB  
Article
Simultaneous Integration of the Methanol-to-Olefin Separation Process and Heat Exchanger Network Based on Bi-Level Optimization
by Xiaohong Han, Ning Li, Yibo She, Jianli Feng, Heng Liu, Guilian Liu and Zaoxiao Zhang
Processes 2024, 12(5), 897; https://doi.org/10.3390/pr12050897 - 28 Apr 2024
Viewed by 1495
Abstract
The separation section of the methanol-to-olefin (MTO) process is energy-intensive, and the optimization and heat integration can enhance energy efficiency and reduce costs. A bi-level optimization model framework is proposed to optimize the separation process and simultaneously integrate the heat exchanger network (HEN). [...] Read more.
The separation section of the methanol-to-olefin (MTO) process is energy-intensive, and the optimization and heat integration can enhance energy efficiency and reduce costs. A bi-level optimization model framework is proposed to optimize the separation process and simultaneously integrate the heat exchanger network (HEN). The upper level employs a data-driven BP neural network proxy model instead of the mechanism model for the separation process, while the lower level adopts a stage-wise superstructure for the HEN without stream splits. The interaction between the two systems is realized effectively through information exchange. A bi-level particle swarm algorithm is employed to optimize complex problems and determine the optimal operational parameters for the distillation system and HEN. Compared with the typical sequential synthesis method, the optimization by the proposed approach reduces the total annual cost by 1.4293×106 USD/y, accounting for 4.76%. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

35 pages, 979 KiB  
Article
Simultaneous Optimization of Work and Heat Exchange Networks
by Nidret Ibrić, Chao Fu and Truls Gundersen
Energies 2024, 17(7), 1753; https://doi.org/10.3390/en17071753 - 6 Apr 2024
Cited by 3 | Viewed by 1428
Abstract
This paper introduces a simultaneous optimization approach to synthesizing work and heat exchange networks (WHENs). The proposed work and heat integration (WHI) superstructure enables different thermodynamic paths of pressure and temperature-changing streams. The superstructure is connected to a heat exchanger network (HEN) superstructure, [...] Read more.
This paper introduces a simultaneous optimization approach to synthesizing work and heat exchange networks (WHENs). The proposed work and heat integration (WHI) superstructure enables different thermodynamic paths of pressure and temperature-changing streams. The superstructure is connected to a heat exchanger network (HEN) superstructure, enabling the heat integration of hot and cold streams identified within the WHI superstructure. A two-step solution strategy is proposed, consisting of initialization and design steps. In the first step, a thermodynamic path model based on the WHI superstructure is combined with a model for simultaneous optimization and heat integration. This nonlinear programming (NLP) model aims to minimize operating expenditures and provide an initial solution for the second optimization step. In addition, hot and cold streams are identified, enabling additional model reduction. In the second step of the proposed solution approach, a thermodynamic path model is combined with the modified HEN model to minimize the network’s total annualized cost (TAC). The proposed mixed integer nonlinear programming (MINLP) model is validated by several examples, exploring the impact of the equipment costing and annualization factor on the optimal network design. The results from these case studies clearly indicate that the new synthesis approach proposed in this paper produces solutions that are consistently similar to or better than the designs presented in the literature using other methodologies. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

19 pages, 3629 KiB  
Article
A Flexible Heat Exchanger Network Synthesis Method Adapted to Multi-Operation Conditions
by Sibei Ji, Li Zhou, Bozhou Dang, Xu Ji and Yagu Dang
Processes 2023, 11(9), 2734; https://doi.org/10.3390/pr11092734 - 13 Sep 2023
Cited by 2 | Viewed by 1631
Abstract
This paper presents a flexible HEN (heat exchanger network) synthesis methodology for designing a multiperiod HEN with streams involving phase changes. The methodology is based on an MINLP (mixed integer nonlinear programming) model, identification of critical points, and flexibility index analysis considering phase [...] Read more.
This paper presents a flexible HEN (heat exchanger network) synthesis methodology for designing a multiperiod HEN with streams involving phase changes. The methodology is based on an MINLP (mixed integer nonlinear programming) model, identification of critical points, and flexibility index analysis considering phase changes. A nominal multiperiod HEN topology is constructed in the first step. Then each process operating condition’s critical points and flexibility index are calculated to verify the feasibility of the designed HEN under multiple operating conditions. To verify the validity of the method, the proposed methodology will be applied to a case study on an ammonia synthesis process heat transfer network design based on renewable energy. The results show that the method can obtain a flexible heat transfer network that is cost-effective and adaptable to multi-condition production for green ammonia synthesis. Full article
Show Figures

Figure 1

24 pages, 3661 KiB  
Article
A Tabu-Matching Heuristic Algorithm Based on Temperature Feasibility for Efficient Synthesis of Heat Exchanger Networks
by Xiaohuang Huang, Hao Shen, Wenhao Yue, Huanhuan Duan and Guomin Cui
Processes 2023, 11(9), 2713; https://doi.org/10.3390/pr11092713 - 11 Sep 2023
Viewed by 1428
Abstract
The non-structural model of heat exchanger networks (HENs) offers a wide solution space for optimization due to the random matching of hot and cold streams. However, this stochastic matching can sometimes result in infeasible structures, leading to inefficient optimization. To address this issue, [...] Read more.
The non-structural model of heat exchanger networks (HENs) offers a wide solution space for optimization due to the random matching of hot and cold streams. However, this stochastic matching can sometimes result in infeasible structures, leading to inefficient optimization. To address this issue, a tabu matching based on a heuristic algorithm for HENs is proposed. The proposed tabu-matching method involves three main steps: First, the critical temperature levels—high, medium, and low-temperature intervals—are determined based on the inlet and outlet temperatures of streams. Second, the number of nodes is set according to the temperature intervals. Third, the nodes of streams are flexibly matched within the tabu rules: the low-temperature interval of hot streams with the high-temperature interval of cold streams; the streams crossing cannot be matched. The results revealed that by incorporating the tabu rules and adjusting the number of nodes, the ratio of the feasible zone in the whole solution domain increases, and the calculation efficiency is enhanced. To evaluate the effectiveness of the method, three benchmark problems were studied. The obtained total annual costs (TACs) of these case studies exhibited a decrease of USD 4290/yr (case 1), USD 1435/yr (case 2), and USD 11,232/yr (case 3) compared to the best published results. The results demonstrate that the proposed tabu-matching heuristic algorithm is effective and robust. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

22 pages, 2374 KiB  
Article
A Systematic Heat Recovery Approach for Designing Integrated Heating, Cooling, and Ventilation Systems for Greenhouses
by Mohsen Ghaderi, Christopher Reddick and Mikhail Sorin
Energies 2023, 16(14), 5493; https://doi.org/10.3390/en16145493 - 20 Jul 2023
Cited by 15 | Viewed by 3373
Abstract
Ventilation heat loss is one of the most important factors contributing to energy performance of greenhouses. This paper suggests a systematic method based on dynamic pinch analysis (PA) to design an integrated heating, cooling, and ventilation system that uses ventilation waste heat in [...] Read more.
Ventilation heat loss is one of the most important factors contributing to energy performance of greenhouses. This paper suggests a systematic method based on dynamic pinch analysis (PA) to design an integrated heating, cooling, and ventilation system that uses ventilation waste heat in a cost-effective and energy efficient way. A heat recovery system including an air handling unit, borehole thermal storage, and a heat pump is proposed to investigate all heat integration scenarios for an entire year. In the first step, the heat integration scenarios are reduced to a few typical days using a clustering technique. Then, a generic methodology for designing a heat exchanger network (HEN) for a dynamic system, ensuring both direct and indirect heat recovery, is presented and a set of HENs are designed according to the conditions of typical days. Afterwards, the best HEN design is selected among all design alternatives using a techno-economic analysis. The whole procedure is applied to a commercial greenhouse and the best HEN configuration and required equipment sizes are calculated. It is shown that the best-performing design for the greenhouse under study produces primary energy savings of 57%, resulting in the shortest payback period of 9.5 years among all design alternatives. Full article
Show Figures

Figure 1

20 pages, 7905 KiB  
Article
Matrix Non-Structural Model and Its Application in Heat Exchanger Network without Stream Split
by Dinghao Li, Jingde Wang, Wei Sun and Nan Zhang
Processes 2023, 11(6), 1843; https://doi.org/10.3390/pr11061843 - 19 Jun 2023
Cited by 1 | Viewed by 1304
Abstract
Heat integration by a heat exchanger network (HEN) is an important topic in chemical process system synthesis. From the perspective of optimization, the simultaneous synthesis of HEN belongs to a mixed-integer and nonlinear programming problem. Both the stage-wise superstructure (SWS) model and the [...] Read more.
Heat integration by a heat exchanger network (HEN) is an important topic in chemical process system synthesis. From the perspective of optimization, the simultaneous synthesis of HEN belongs to a mixed-integer and nonlinear programming problem. Both the stage-wise superstructure (SWS) model and the chessboard model are the most widely adopted and belong to structural models, in which a framework is assumed for stream matching, and the global optimal solution outside its feasible domain may be defined by the framework. A node-wise non-structural model (NW-NSM) is proposed to find more universal stream matching options, but it requires a mass of structural variables and extra multiple correction strategies. The aim of this paper is to develop a novel matrix non-structural model (M-NSM) for HEN without stream splits from the perspectives of global optimization methods and superstructure models. In the proposed M-NSM, the heat exchanger position order is quantized by matrix elements at each stream, and a HEN structure is initialized by the random generation of matrix elements. An approach for solving HEN problems based on a matrix real-coded genetic algorithm is employed in this model. The results show that M-NSM provides more flexibility to expand the search region for feasible solutions with higher efficiency than previous models. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 3562 KiB  
Article
Pinch-Based General Targeting Method for Predicting the Optimal Capital Cost of Heat Exchanger Network
by Dianliang Fu, Qixuan Li, Yan Li, Yanhua Lai, Lin Lu, Zhen Dong and Mingxin Lyu
Processes 2023, 11(3), 923; https://doi.org/10.3390/pr11030923 - 17 Mar 2023
Cited by 4 | Viewed by 2728
Abstract
Pinch analysis is vital in optimizing heat exchanger networks (HENs). Targeting methods are used when determining cost effectiveness with pinch analysis. However, the existing targeting methods for the capital cost of HEN are not suitable for wide application scenarios. Therefore, we developed a [...] Read more.
Pinch analysis is vital in optimizing heat exchanger networks (HENs). Targeting methods are used when determining cost effectiveness with pinch analysis. However, the existing targeting methods for the capital cost of HEN are not suitable for wide application scenarios. Therefore, we developed a high-accuracy general capital-cost-targeting method. It is built on a final structure that was evolved from the spaghetti structure of HEN through four loop elimination stages. This structure helps to reduce the prediction deviation of the method. To achieve high adaptability while establishing this method, we considered the different heat exchanger cost categories, different cost laws for one stream pair, and area limitations of heat exchangers that may be encountered in practice. In addition, allowing streams to use individual temperature difference contributions enhances the method’s predictive capacity. The potential defects of the method found in numerical experiments and case studies were corrected with improvement measures. As a result, the accuracy and stability of the targeting method were further enhanced, with absolute target deviations generally within 10% and often within 5%. This study provides a benchmark for the optimal capital cost of HEN, allowing for a better economic effect when applying pinch analysis. Full article
(This article belongs to the Special Issue Design and Optimization of Clean Energy Systems)
Show Figures

Figure 1

14 pages, 3257 KiB  
Article
Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO2 Emissions
by Subin Jung, Hyojin Jung and Yuchan Ahn
Energies 2022, 15(24), 9538; https://doi.org/10.3390/en15249538 - 15 Dec 2022
Cited by 7 | Viewed by 3776
Abstract
In the petroleum industry, naphtha cracking centers (NCC), which produce ethylene, propylene, propane, and mixed-C4, are known to consume a large amount of energy and release a significant amount of carbon dioxide (CO2). This necessitates economic and environmental assessments with the [...] Read more.
In the petroleum industry, naphtha cracking centers (NCC), which produce ethylene, propylene, propane, and mixed-C4, are known to consume a large amount of energy and release a significant amount of carbon dioxide (CO2). This necessitates economic and environmental assessments with the aim of achieving a reduction in energy use in order to ensure efficiency in terms of cost and environmental impact. Herein, a heat exchanger network (HEN) is considered with the aim of determining its optimal operating strategy. In addition, the trade-off between reduction in utility costs (i.e., profit) and the installation cost of the heat exchanger (i.e., loss) is evaluated in terms of economic efficiency. Finally, an environmental impact assessment is performed with respect to the source of fuel consumed for steam generation. The HEN’s energy consumption in the three configurations analyzed herein was found to be reduced by 3%, 6%, and 8%. When considering variations in the fuel used for steam generation, the changes in the payback period caused differences in the results for the most economical configuration. On the basis of this study, it was possible to design the use of waste heat in the pinch network and the network configuration for the installation of additional heat exchangers in an economically feasible manner, while analyses of various fuel source were used to determine favorable conditions with respect to environmental impact. Full article
Show Figures

Figure 1

20 pages, 2849 KiB  
Article
Energy Savings in the Heat Exchanger Network of an Oil Refinery Pre-Heat Train Unit Using a Path’s Combination at Different HRAT Values
by Abdelbagi Osman and Mousab Salaheldeen Mirghani
Processes 2022, 10(12), 2541; https://doi.org/10.3390/pr10122541 - 29 Nov 2022
Cited by 2 | Viewed by 3093
Abstract
Conservation of energy usage is essential in chemical process plants due to the expanded energy users and demands alongside the carry-on hike of energy prices. This study analyzed the performance of energy savings in a heat exchanger network (HEN). It is based on [...] Read more.
Conservation of energy usage is essential in chemical process plants due to the expanded energy users and demands alongside the carry-on hike of energy prices. This study analyzed the performance of energy savings in a heat exchanger network (HEN). It is based on decreasing utility usage while increasing process-to-process heat exchange in HEN using a path combination approach at different heat recovery approach temperatures (HRATs). The approach generates different combined path options for heat shifting from utilities to exchangers in a HEN. In terms of cost targeting, the optimal HRAT in a HEN is determined for each path’s combination option. The study focused on the HEN of crude oil preheat trains. Shifting heat load between utilities implies adding and subtracting loads to and from exchangers in a HEN. Therefore, a minor retrofit to compensate for the heat transfer area is required for some HEN exchangers. The optimum HRAT corresponding to the lowest total cost was determined for each option and ranged between 8 °C and 14 °C. Moreover, two out of five options in HEN with low capital investment and a short payback period were found to be promising. Full article
(This article belongs to the Special Issue The Role of Renewable Energy Systems in the Modern Societies)
Show Figures

Figure 1

21 pages, 4006 KiB  
Article
Multi-Objective Optimal Design and Operation of Heat Exchanger Networks with Controllability Consideration
by Siwen Gu, Xiuna Zhuang, Chenying Li, Shuai Zhang, Jiaan Wang and Yu Zhuang
Sustainability 2022, 14(22), 15128; https://doi.org/10.3390/su142215128 - 15 Nov 2022
Cited by 2 | Viewed by 1733
Abstract
Controllability reflects the ease that a process can be controlled in practical operating environment. However, an unclear influence between the HEN synthesis and the control structure selection has been not investigated for the work of controllability of heat exchanger network (HEN). To address [...] Read more.
Controllability reflects the ease that a process can be controlled in practical operating environment. However, an unclear influence between the HEN synthesis and the control structure selection has been not investigated for the work of controllability of heat exchanger network (HEN). To address this challenge, this paper proposes a multi-objective optimization method by considering both the quantitative measures of economic and controllability, i.e., minimizing the total annual cost (TAC) and the relative gain array number (RGAn). This method is developed using a HEN synthesis procedure where a model-based superstructure is employed to involve the set of the network configuration alternatives and all the potential control structures. The effects of minimum approach temperature (ΔTmin) on the multi-objective optimization problem are investigated to distinguish the consistent and opposite variations of TAC and RGAn. The consistent change enables us to solve the single objective optimization problem for economical HEN design as well as for taking controllability into account. The opposite change prompts the Pareto front of the two objectives in order to develop a trade-off strategy. Results indicate that this method helps in the determination of the relationship-based nature between network configuration and control structure to yield a HEN design with economic and controllability considerations. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

21 pages, 3432 KiB  
Article
Pinch Analysis for Heat Integration of Pulverized Coke Chemical Looping Gasification Coupled with Coke-Oven Gas to Methanol and Ammonia
by Yaxian Zhao, Yingjie Zhao, Yi Huang, Jiancheng Wang, Weiren Bao, Liping Chang, Lijuan Shi and Qun Yi
Processes 2022, 10(9), 1879; https://doi.org/10.3390/pr10091879 - 16 Sep 2022
Cited by 8 | Viewed by 3766
Abstract
Methanol and ammonia are important chemical materials in the chemical industry. During the production of methanol and ammonia, a large amount of waste heat is released. The waste heat can be used to save energy and reduce CO2 emissions. In this study, [...] Read more.
Methanol and ammonia are important chemical materials in the chemical industry. During the production of methanol and ammonia, a large amount of waste heat is released. The waste heat can be used to save energy and reduce CO2 emissions. In this study, pinch analysis is used to design the heat exchanger network (HEN) of pulverized coke (PC) chemical looping gasification coupled with coke-oven gas (COG) to methanol and ammonia (PCCLHG-CGTMA). The heat integration process is accomplished in two ways, as mentioned below. (1) The HENs in each of the three heat exchange units are designed individually; (2) the HENs of the three heat exchange units are treated as a whole and designed simultaneously. Compared to the HEN designed individually, when the HENs are designed as a whole, a total of 112.12 MW of hot and cold utilities are saved. In the HENs designed as a whole, the reduction in operating cost is sufficient to offset the increase in capital cost; the total annual cost (TAC) is reduced by 10.9%. These results reveal that the HENs designed as a whole have more scope for energy saving, which can be a reference for new HEN design and modification to realize more heat recovery and lower investment. Full article
Show Figures

Graphical abstract

Back to TopTop