Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (146)

Search Parameters:
Keywords = heat emitter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7708 KiB  
Review
A Review of Heat Transfer and Numerical Modeling for Scrap Melting in Steelmaking Converters
by Mohammed B. A. Hassan, Florian Charruault, Bapin Rout, Frank N. H. Schrama, Johannes A. M. Kuipers and Yongxiang Yang
Metals 2025, 15(8), 866; https://doi.org/10.3390/met15080866 (registering DOI) - 1 Aug 2025
Viewed by 241
Abstract
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. [...] Read more.
Steel is an important product in many engineering sectors; however, steelmaking remains one of the largest CO2 emitters. Therefore, new governmental policies drive the steelmaking industry toward a cleaner and more sustainable operation such as the gas-based direct reduction–electric arc furnace process. To become carbon neutral, utilizing more scrap is one of the feasible solutions to achieve this goal. Addressing knowledge gaps regarding scrap heterogeneity (size, shape, and composition) is essential to evaluate the effects of increased scrap ratios in basic oxygen furnace (BOF) operations. This review systematically examines heat and mass transfer correlations relevant to scrap melting in BOF steelmaking, with a focus on low Prandtl number fluids (thick thermal boundary layer) and dense particulate systems. Notably, a majority of these correlations are designed for fluids with high Prandtl numbers. Even for the ones tailored for low Prandtl, they lack the introduction of the porosity effect which alters the melting behavior in such high temperature systems. The review is divided into two parts. First, it surveys heat transfer correlations for single elements (rods, spheres, and prisms) under natural and forced convection, emphasizing their role in predicting melting rates and estimating maximum shell size. Second, it introduces three numerical modeling approaches, highlighting that the computational fluid dynamics–discrete element method (CFD–DEM) offers flexibility in modeling diverse scrap geometries and contact interactions while being computationally less demanding than particle-resolved direct numerical simulation (PR-DNS). Nevertheless, the review identifies a critical gap: no current CFD–DEM framework simultaneously captures shell formation (particle growth) and non-isotropic scrap melting (particle shrinkage), underscoring the need for improved multiphase models to enhance BOF operation. Full article
Show Figures

Graphical abstract

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 191
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

22 pages, 1199 KiB  
Article
Assessment of Health Risks Associated with PM10 and PM2.5 Air Pollution in the City of Zvolen and Comparison with Selected Cities in the Slovak Republic
by Patrick Ivan, Marián Schwarz and Miriama Mikušová
Environments 2025, 12(7), 212; https://doi.org/10.3390/environments12070212 - 20 Jun 2025
Viewed by 819
Abstract
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with [...] Read more.
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with increased incidence of respiratory and cardiovascular diseases, asthma attacks, and heart attacks, as well as chronic illnesses and premature mortality. The most vulnerable groups include children, the elderly, and individuals with pre-existing health conditions. This study focuses on the analysis of health risks associated with PM10 and PM2.5 air pollution in the city of Zvolen, which serves as a representative case due to its urban structure, traffic load, and industrial activity. The aim is to assess the current state of air quality, identify the main sources of pollution, and evaluate the health impacts of particulate matter on the local population. The results will be compared with selected Slovak cities—Banská Bystrica and Ružomberok—to understand regional differences in exposure and its health consequences. The results revealed consistently elevated concentrations of particulate matter (PM) across all analyzed cities, frequently exceeding the guideline values recommended by the World Health Organization (WHO), although remaining below the thresholds set by current national legislation. The lowest average concentrations were recorded in the city of Zvolen (PM10: 20 μg/m3; PM2.5: 15 μg/m3). These lower values may be attributed to the location of the reference monitoring station operated by the Slovak Hydrometeorological Institute (SHMÚ), situated on J. Alexy Street in the southern part of the city—south of Zvolen’s primary industrial emitter, Kronospan. Due to predominantly southerly wind patterns, PM particles are transported northward, potentially leading to higher pollution loads in the northern areas of the city, which are currently not being monitored. We analyzed trends in PM10 and PM2.5 concentrations and their relationship with hospitalization data for respiratory diseases. The results indicate a clear correlation between the concentration of suspended particulate matter and the number of hospital admissions due to respiratory illnesses. Our findings thus confirm the significant adverse effects of particulate air pollution on population health and highlight the urgent need for systematic monitoring and effective measures to reduce emissions, particularly in urban areas. Full article
Show Figures

Figure 1

10 pages, 2683 KiB  
Article
Effects of Synthesis Process on the Properties of La1−xSrxMnO3 Materials for Thermal Control Coatings
by Fang Jia, Xin Zhang, Xiaoliang Lu, Haoran Peng, Tianjie Shi, Kang Yuan, Xiaoxiao Pang and Rifei Han
Coatings 2025, 15(6), 724; https://doi.org/10.3390/coatings15060724 - 17 Jun 2025
Viewed by 702
Abstract
Lanthanum strontium manganate (La1−xSrxMnO3) is considered a highly promising material for the development of intelligent thermal control coatings due to its exceptional properties. Recent studies on this material have primarily utilized solid-state synthesis as the main preparation [...] Read more.
Lanthanum strontium manganate (La1−xSrxMnO3) is considered a highly promising material for the development of intelligent thermal control coatings due to its exceptional properties. Recent studies on this material have primarily utilized solid-state synthesis as the main preparation method. Research efforts have predominantly focused on investigating the effects of material composition, heat treatment processes, and other factors on the properties of the synthesized material. There has been a limited amount of research investigating the influence of chemical precipitation process parameters on the properties of the synthesized La1−xSrxMnO3 material. In this study, the intelligent thermal control coating material La0.8Sr0.2MnO3 was synthesized using the chemical precipitation method. The effects of varying precipitant concentrations on the properties of the synthesized material were investigated. When the precipitant concentration is 12 wt.% or 15 wt.%, the synthesized powder agglomerates predominantly form three-dimensional blocky structures after sintering. At lower concentrations such as 6 wt.% and 9 wt.%, the powder agglomerates predominantly form two-dimensional sheet-like structures after sintering. At precipitant concentrations of 6 wt.% and 9 wt.%, the strontium content in the synthesized powder becomes significantly lower than the designed theoretical value. When the precipitant concentration is relatively high, localized manganese aggregation occurs in the synthesized lanthanum strontium manganate material. The temperature dependence of the emittance test result indicates that the emissivity variation of La0.8Sr0.2MnO3 material synthesized using 12 wt.% ammonia solution as precipitant reaches 0.428 from 173 K to 373 K, demonstrating excellent emissivity modulation performance. Full article
Show Figures

Figure 1

20 pages, 1482 KiB  
Article
Research on Person Pose Estimation Based on Parameter Inverted Pyramid and High-Dimensional Feature Enhancement
by Guofeng Ma and Qianyi Zhang
Symmetry 2025, 17(6), 941; https://doi.org/10.3390/sym17060941 - 13 Jun 2025
Viewed by 715
Abstract
Heating, Ventilation and Air Conditioning (HVAC) systems are significant carbon emitters in buildings, and precise regulation is crucial for achieving carbon neutrality. Computer vision-based occupant behavior prediction provides vital data for demand-driven control strategies. Real-time multi-person pose estimation faces challenges in balancing speed [...] Read more.
Heating, Ventilation and Air Conditioning (HVAC) systems are significant carbon emitters in buildings, and precise regulation is crucial for achieving carbon neutrality. Computer vision-based occupant behavior prediction provides vital data for demand-driven control strategies. Real-time multi-person pose estimation faces challenges in balancing speed and accuracy, especially in complex environments. Traditional top-down methods become computationally expensive as the number of people increases, while bottom-up methods struggle with key point mismatches in dense crowds. This paper introduces the Efficient-RTMO model, which leverages the Parameter Inverted Image Pyramid (PIIP) with hierarchical multi-scale symmetry for lightweight processing of high-resolution images and a deeper network for low-resolution images. This approach reduces computational complexity, particularly in dense crowd scenarios, and incorporates a dynamic sparse connectivity mechanism via the star-shaped dynamic feed-forward network (StarFFN). By optimizing the symmetry structure, it improves inference efficiency and ensures effective feature fusion. Experimental results on the COCO dataset show that Efficient-RTMO outperforms the baseline RTMO model, achieving more than 2× speed improvement and a 0.3 AP increase. Ablation studies confirm that PIIP and StarFFN enhance robustness against occlusions and scale variations, demonstrating their synergistic effectiveness. Full article
Show Figures

Figure 1

12 pages, 1949 KiB  
Article
Phonon Structure Engineering for Intrinsically Spectrally Selective Emitters by Anion Groups
by Rui Zhang, Enhui Huang, Wenying Zhong and Bo Xu
Photonics 2025, 12(6), 597; https://doi.org/10.3390/photonics12060597 - 11 Jun 2025
Viewed by 808
Abstract
Spectrally selective emitters (SSEs) have attracted considerable attention, because of radiative cooling, which could dissipate the heat from earth to outer space through the atmospheric window without any energy input. Intrinsically inorganic SSEs have significant advantages to other SSEs, such as the low [...] Read more.
Spectrally selective emitters (SSEs) have attracted considerable attention, because of radiative cooling, which could dissipate the heat from earth to outer space through the atmospheric window without any energy input. Intrinsically inorganic SSEs have significant advantages to other SSEs, such as the low fabrication cost due to the extremely simple structures and long life span under solar exposure. However, few inorganic materials can act as intrinsic SSEs due to the limited emissions in the atmospheric window. Here, we propose a strategy to design intrinsic SSEs by complementing the IR-active phonons in atmospheric window with anion groups. Accordingly, we demonstrate borates containing both [BO3]3− and [BO4]5− units can exhibit high emissivity within the whole atmospheric window, because the IR-active phonons of [BO3]3− units usually locate around 8 and 13 μm, while those of [BO4]5− units distribute in 9~11 μm. Furthermore, K3B6O10Cl and BaAlBO4 are selected as two examples to display their near-unity emissivity (>95%) within the whole atmospheric window experimentally. These results not only offer a new strategy for the design of intrinsic SSEs, but also endow wide band-gap borates containing both [BO3]3− and [BO4]5− units with great potential applications for radiative cooling. Full article
(This article belongs to the Special Issue Infrared Optoelectronic Materials and Devices)
Show Figures

Figure 1

15 pages, 1829 KiB  
Article
A Low-Carbon Smart Campus Created by the Strategic Usage of Space—A Case Study of Korea University
by Da Yeon Park and Mi Jeong Kim
Buildings 2025, 15(12), 1972; https://doi.org/10.3390/buildings15121972 - 6 Jun 2025
Viewed by 587
Abstract
In the context of the building sector, university campus buildings play a crucial role in promoting a green economic transition toward carbon neutrality, as universities are among the largest emitters of greenhouse gases. This research proposed a strategy for the operation and management [...] Read more.
In the context of the building sector, university campus buildings play a crucial role in promoting a green economic transition toward carbon neutrality, as universities are among the largest emitters of greenhouse gases. This research proposed a strategy for the operation and management of university campuses that focused on reducing energy consumption by optimizing the utilization of building spaces. To gather empirical data, a case study was conducted to examine the energy consumption of campus buildings based on their characteristics at Korea University. The results indicated that effective space utilization, achieved through the efforts of stakeholders, led to a reduction in heating and cooling energy consumption. To achieve this, the study classified university buildings by considering both physical variables and human-centered factors that affect energy consumption, analyzed space usage behavior, and compared heating and cooling energy consumption across buildings. This study expands current knowledge because its approach differs from previous research, which has generally focused on using simulation tools to analyze factors associated with the physical aspects of buildings—such as the energy performance of a building envelope or the energy-efficiency of facility systems. Full article
Show Figures

Figure 1

12 pages, 3381 KiB  
Article
An Optical Fiber Ultrasonic Emitter Based on the Thermal Cavitation Effect
by Wenhui Kang, Dongxin Xu, Dongliang Xie, Jianqiang Sheng, Menghao Wu, Qiang Zhao and Yi Qu
Coatings 2025, 15(4), 391; https://doi.org/10.3390/coatings15040391 - 26 Mar 2025
Viewed by 399
Abstract
In this study, we have developed an optical fiber ultrasound emitter based on the thermal cavitation effect. A tube filled with a highly absorptive liquid is sealed at the end of an optical fiber pigtail. A continuous-wave laser is transmitted through the fiber, [...] Read more.
In this study, we have developed an optical fiber ultrasound emitter based on the thermal cavitation effect. A tube filled with a highly absorptive liquid is sealed at the end of an optical fiber pigtail. A continuous-wave laser is transmitted through the fiber, heating the highly absorptive copper salt solution near the fiber end face to its spinodal limit. Using a single-mode fiber, we achieved ultrasound pulses with an amplitude of 330 kPa and a repetition rate of 4 kHz in the frequency range of 5–17 MHz, and a bandwidth of 12 MHz was obtained by using a low laser heating power of 52 mW at a wavelength of 974 nm. This optical fiber ultrasound emitter features a simple fabrication process, low cost, and low optical power consumption. Its flexible design allows for easy integration into medical devices with small dimensions and makes it suitable for non-destructive testing in confined spaces. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

12 pages, 4320 KiB  
Article
Two-Dimensional Fin-Shaped Carbon Nanotube Field Emission Structure with High Current Density Capability
by Xiaoyu Qin, Yulong Ding, Jun Jiang, Junzhong Liang, Yanlin Ke, Juncong She, Yu Zhang and Shaozhi Deng
Electronics 2025, 14(7), 1268; https://doi.org/10.3390/electronics14071268 - 24 Mar 2025
Viewed by 500
Abstract
A vacuum electron device requires a high-performance electron source that provides high current and current density. A carbon nanotube (CNT) field emission cold cathode is the optimal choice. To achieve its higher emission current capacity, its macroscale and microscale structures should be combined. [...] Read more.
A vacuum electron device requires a high-performance electron source that provides high current and current density. A carbon nanotube (CNT) field emission cold cathode is the optimal choice. To achieve its higher emission current capacity, its macroscale and microscale structures should be combined. Here, a two-dimensional fin-shaped CNT field emission structure is proposed, integrating a macroscale CNT fin with billions of nanoscale nanotubes. The fin contributes two-dimensional heat dissipation paths, and the nanotubes provide a high field enhancement factor, both of which enhance the high-current field emission characteristics. A model combining macro- and microstructures was simulated to optimize the structure and fin-shaped array parameters. The calculation of the field enhancement factor of the compound structure is proposed. It was also determined that the fin-shaped array configuration can be densely arranged without field screen effects, thereby enhancing the emission area efficiency. The fin-shaped CNT emitter and array emitters with different parameters were fabricated by laser ablation, which demonstrated superior field emission characteristics. A 16.55 mA pulsing emission current, 1103.33 A/cm2 current density, and 6.13% current fluctuation were achieved in a single fin-shaped CNT emitter. An 87.29 mA pulsing emission current, 0.349 A/cm2 current density, and 1.9% current fluctuation were achieved in a fin-shaped CNT array. The results demonstrate that the high-current field emission electron source can be realized in a well-designed emission structure that bridges the nanoscale emitter and macroscale structure. Full article
(This article belongs to the Special Issue Vacuum Electronics: From Micro to Nano)
Show Figures

Figure 1

18 pages, 5794 KiB  
Article
A Novel Capacitive Model of Radiators for Building Dynamic Simulations
by Francesco Calise, Francesco Liberato Cappiello, Luca Cimmino, Massimo Dentice d’Accadia and Maria Vicidomini
Thermo 2025, 5(1), 9; https://doi.org/10.3390/thermo5010009 - 11 Mar 2025
Viewed by 1370
Abstract
This study addresses the critical challenge of performing a detailed calculation of energy savings in buildings by implementing suitable actions aiming at reducing greenhouse gas emissions. Given the high energy consumption of buildings’ space heating systems, optimizing their performance is crucial for reducing [...] Read more.
This study addresses the critical challenge of performing a detailed calculation of energy savings in buildings by implementing suitable actions aiming at reducing greenhouse gas emissions. Given the high energy consumption of buildings’ space heating systems, optimizing their performance is crucial for reducing their overall primary energy demand. Unfortunately, the calculations of such savings are often based on extremely simplified methods, neglecting the dynamics of the emitters installed inside the buildings. These approximations may lead to relevant errors in the estimation of the possible energy savings. In this framework, the present study presents a novel 0-dimensional capacitive model of a radiator, the most common emitter used in residential buildings. The final scope of this paper is to integrate such a novel model within the TRNSYS 18simulation environment, performing a 1-year simulation of the overall building-space heating system. The radiator model is developed in MATLAB 2024b and it carefully considers the impact of surface area, inlet temperature, and flow rate on the radiator performance. Moreover, the dynamic heat transfer rate of the capacitive radiator is compared with the one returned by the built-in non-capacitive model available in TRNSYS, showing that neglecting the capacitive effect of radiators leads to an incorrect estimation of the heating consumption. During the winter season, with a heating system turned on from 8 a.m. to 4 p.m. and from 6 p.m. to 8 p.m., the thermal energy is underestimated by roughly 20% with the commonly used non-capacitive model. Full article
(This article belongs to the Special Issue Innovative Technologies to Optimize Building Energy Performance)
Show Figures

Figure 1

15 pages, 3397 KiB  
Article
A Compact Model with Self-Heating Effect Applying to the SCR Device for ESD Protection
by Hongkun Wang, Hailian Liang and Junliang Liu
Electronics 2025, 14(5), 843; https://doi.org/10.3390/electronics14050843 - 21 Feb 2025
Viewed by 534
Abstract
This work develops a novel compact Silicon-Controlled Rectifier (SCR) model incorporating self-heating effects, extending the conventional Ebers–Moll (E–M) framework for Bipolar Junction Transistors (BJTs) by comprehensively integrating parasitic effects. The temperature dependence of critical device parameters, including junction capacitances, emitter resistances, and saturation [...] Read more.
This work develops a novel compact Silicon-Controlled Rectifier (SCR) model incorporating self-heating effects, extending the conventional Ebers–Moll (E–M) framework for Bipolar Junction Transistors (BJTs) by comprehensively integrating parasitic effects. The temperature dependence of critical device parameters, including junction capacitances, emitter resistances, and saturation currents, is systematically characterized to accurately predict the device’s electrical behavior under Electrostatic Discharge (ESD) stress. Furthermore, a self-heating modeling approach is introduced based on the SCR layout characteristics. The impact of self-heating on SCR transient response was verified by comparing simulation results with measurements from SCR devices fabricated in a 0.18 µm Bipolar-CMOS-DMOS (BCD) process. Comparative analysis demonstrates superior accuracy over existing models. The proposed SCR model includes a complete definition of parameters and electrical relationships, ensuring compatibility with various Electronic Design Automation (EDA) platforms. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

25 pages, 8162 KiB  
Article
Parametric Analysis of the Factors Impacting the Spatial Distribution of Particles in a Bus Environment
by Zeinab Bahman Zadeh, Bryan E. Cummings and L. James Lo
Sustainability 2025, 17(3), 1051; https://doi.org/10.3390/su17031051 - 27 Jan 2025
Viewed by 1104
Abstract
This study presents a parametric analysis of the factors impacting particle distribution within a bus environment using computational fluid dynamics (CFD) simulations, with a primary focus on the relative concentration (RC) of particles. The Novel Relative Concentration (RC) metric, which measures the deviation [...] Read more.
This study presents a parametric analysis of the factors impacting particle distribution within a bus environment using computational fluid dynamics (CFD) simulations, with a primary focus on the relative concentration (RC) of particles. The Novel Relative Concentration (RC) metric, which measures the deviation from a return concentration, was used to assess the effects of ventilation rates, the number and spatial arrangement of particle emitters, and thermal conditions. Our investigation reveals that increasing air changes per hour (ACHs) from 5.74 h−1 to 28.66 h−1 reduces the overall particle concentration by approximately 45%, but localized high concentration zones persist, with maximum RC values observed at 1.57. Scenarios with evenly distributed emitters achieved near-uniform particle distribution, with RC values averaging around 0.95, while clustered emitters resulted in localized high concentrations, with RC values exceeding 2.0. Thermal conditions were found to have a minimal effect on RC, with average values of 1.664 for cooling and 1.588 for heating, showing only a 4.68% difference. The RC metric provided clear insights into the non-uniformity of particle distribution, highlighting areas prone to higher concentrations, with some zones reaching RC values of 2.5, indicating concentrations 2.5 times higher than the well-mixed average. These findings underscore the importance of optimizing ventilation systems for both overall air exchange and uniform air distribution, offering practical implications for improving air quality and reducing the risk of airborne pathogen transmission in public transportation systems. Future research should explore real-time ventilation adjustments based on passenger load, the effects of different particle types, and the development of models incorporating human behavior and movement patterns. Full article
Show Figures

Figure 1

18 pages, 6356 KiB  
Article
Modelling Backward Trajectories of Air Masses for Identifying Sources of Particulate Matter Originating from Coal Combustion in a Combined Heat and Power Plant
by Maciej Ciepiela, Wiktoria Sobczyk and Eugeniusz Jacek Sobczyk
Energies 2025, 18(3), 493; https://doi.org/10.3390/en18030493 - 22 Jan 2025
Viewed by 802
Abstract
The paper analyzes the processes of emission and dispersion of particulate contaminants from a large point source emitter: a hard coal-fired power plant. Reference is made to the European Green Deal and its main objective of reducing anthropogenic particulate and greenhouse gas emissions. [...] Read more.
The paper analyzes the processes of emission and dispersion of particulate contaminants from a large point source emitter: a hard coal-fired power plant. Reference is made to the European Green Deal and its main objective of reducing anthropogenic particulate and greenhouse gas emissions. CHPP, Krakow Combined Heat and Power Plant, Poland, as described in the article, has a strong impact on the mechanisms that shape the microclimatic factors of the Krakow agglomeration. This combined heat and power plant provides heat and electricity for the city, while simultaneously emitting significant amounts of suspended particulate matter into the atmosphere. Due to the adverse impact of non-conventional energy sources on the natural environment and the increasing effects of climate warming, radical changes need to be implemented. The HYSPLIT (Hybrid Single-Particles Lagrangian Integrated Trajectories) model was used to track the movement of contaminated air masses. A 5-day episode of increased hourly concentrations of PM2.5 particulate matter contamination was selected to analyze the backward trajectories of air mass displacement. From 15 August 2022 to 19 August 2022, high 24-h particulate matter concentrations were recorded, measuring around 20 µg/m3. The HYSPLIT model, a unique tool in the precise identification of point sources of pollution and their impact on the air quality of the region, was used to analyze the influx of polluted air masses. A 5-day episode of increased hourly concentrations of PM2.5 pollutants was selected for the study, with values of approximately 20 µg/m3. It was found that low-pressure systems over the North Atlantic brought wet and variable weather conditions, while high-pressure systems in southern and eastern Europe, including Poland, provided stable and dry weather conditions. The simulation results were verified by analyzing synoptic maps of the study area. The image of the displacement of contaminated air masses obtained from the HYSPLIT model was found to be consistent with the synoptic maps, confirming the accuracy of the applied model. This means that the HYSPLIT model can be used to create maps of contaminant dispersion directions. Consequently, it was confirmed that modeling using the HYSPLIT model is an effective method for predicting the displacement directions of particulate contamination originating from coal combustion in a combined heat and power plant. Identifying circulation patterns and front zones during episodes of increased contaminant concentrations is strategic for effective weather monitoring, air quality management, and alerting the public to episodes of increased health risk in a large agglomeration. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

16 pages, 6812 KiB  
Article
Predicting Photovoltaic Module Lifespan Based on Combined Stress Tests and Latent Heat Analysis
by Woojun Nam, Jinho Choi, Gyugwang Kim, Jinhee Hyun, Hyungkeun Ahn and Neungsoo Park
Energies 2025, 18(2), 304; https://doi.org/10.3390/en18020304 - 11 Jan 2025
Cited by 3 | Viewed by 1504
Abstract
In this study, long-term reliability tests for high-power-density photovoltaic (PV) modules were introduced and analyzed in accordance with IEC 61215 and light-combined damp heat cycles, such as DIN 75220. The results indicated that post light soaking procedure, light-combined damp heat cycles caused a [...] Read more.
In this study, long-term reliability tests for high-power-density photovoltaic (PV) modules were introduced and analyzed in accordance with IEC 61215 and light-combined damp heat cycles, such as DIN 75220. The results indicated that post light soaking procedure, light-combined damp heat cycles caused a 3.51% power drop, while IEC standard tests (DH1000 and TC200) caused only 0.87% and 1.32% power drops, respectively. IEC 61215 failed to assess the long-term reliability of the high-power-density PV module, such as the passivated emitter rear cell. Additionally, based on the combined test, the latent heat (Qmod) of the module was introduced to predict its degradation rate and to fit the prediction curve of the product guaranteed by the PV module manufacturers. Qmod facilitates in predicting a PV module’s lifespan according to the environmental factors of the actual installation area. The Qmod values of the PV stations in water environments, such as floating and/or marine PVs, indicated that they would last 7.2 years more than those on a rooftop, assuming that latent heat is the only cause of deterioration. Therefore, extending module life and improving power generation efficiency by determining installation sites to minimize latent heat would be advantageous. Full article
(This article belongs to the Special Issue Forecasting of Photovoltaic Power Generation and Model Optimization)
Show Figures

Figure 1

17 pages, 17836 KiB  
Article
Functionalization of Continuous Fiber-Reinforced Thermoplastic Pultrusion Profiles by Welding
by Calvin Ebert, Marcel Nick Dürr and Christian Bonten
J. Compos. Sci. 2025, 9(1), 6; https://doi.org/10.3390/jcs9010006 - 2 Jan 2025
Cited by 2 | Viewed by 1175
Abstract
Highly filled thermoplastic profiles, produced by in situ pultrusion, offer excellent mechanical properties, but further processing is necessary to expand the range of their applications. Due to the thermoplastic matrix, these materials are particularly well-suited for thermal welding processes. However, the high fiber [...] Read more.
Highly filled thermoplastic profiles, produced by in situ pultrusion, offer excellent mechanical properties, but further processing is necessary to expand the range of their applications. Due to the thermoplastic matrix, these materials are particularly well-suited for thermal welding processes. However, the high fiber content of up to 70 vol.-% presents a significant challenge in welding, an aspect that has not yet been thoroughly investigated in the existing literature. This study focuses on the further processing of the highly-filled profiles by adapting the classic hot tool welding process with the aim of investigating the underlying welding mechanism. An IR line-emitter is used to melt the PA6 matrix of the fiber-reinforced plastic component while the second adherend (unfilled PA6) is melted with a classic heating element. Afterward, the joints are tested for tensile and bending strength. The results of these mechanical tests demonstrate that a strong bond can be formed between the adherends. The joint strength reached values of up to 39 MPa, which corresponds to a welding factor of 0.81. Optical examination of the weld seam reveals a reason for the mechanical performance. At high joining pressures, a form-fit is created between the continuous fibers in the profile and the welded-on unfilled PA6. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

Back to TopTop