Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,255)

Search Parameters:
Keywords = heat boundary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1038 KB  
Review
A Systematic Review of Factors Influencing Life Cycle Assessment Outcomes in Aquaponics
by Syed Ejaz Hussain Mehdi, Aparna Sharma, Suleman Shahzad, Sandesh Pandey, Fida Hussain, Woochang Kang and Sang-Eun Oh
Water 2026, 18(3), 301; https://doi.org/10.3390/w18030301 - 23 Jan 2026
Abstract
Aquaponic systems are the integration of aquaculture and hydroponic systems to enhance productivity, reduce land use, and improve sustainability. This review focused on commonly used life cycle assessment (LCA) methodologies, system boundaries, and functional units used in aquaponics, standard impact categories, and identified [...] Read more.
Aquaponic systems are the integration of aquaculture and hydroponic systems to enhance productivity, reduce land use, and improve sustainability. This review focused on commonly used life cycle assessment (LCA) methodologies, system boundaries, and functional units used in aquaponics, standard impact categories, and identified hotspots. The scope is worldwide and encompasses a variety of aquaponic designs, fish species, and crops, illustrating the diversity of the systems examined. The analysis indicates that aquaponics provides the considerable environmental advantages of decreased fertilizer consumption and water conservation in comparison with aquaculture and hydroponic system. However, aquaponics systems are characterized by high energy consumption and may produce greater greenhouse gas (GHG) emissions compared to traditional farming methods when reliant on fossil fuel energy sources. Studies show that fish feed production, system infrastructure, and electricity usage for pumps, lights, heating, and other controls are hotspots. Harmonized comparisons of previous studies show methodological differences, especially in fish–plant co-production. Despite these variations, most believe that energy efficiency, renewable energy, feed optimization, and waste reuse may make aquaponics more sustainable. The study recommends the inclusion of broader environmental and social impacts. Also, future focus might be on making a standard functional unit or specifying system boundaries which might provide different accurate outcomes. Full article
(This article belongs to the Special Issue Advanced Water Management for Sustainable Aquaculture)
29 pages, 2920 KB  
Article
Advancing Energy Flexibility Protocols for Multi-Energy System Integration
by Haihang Chen, Fadi Assad and Konstantinos Salonitis
Energies 2026, 19(3), 588; https://doi.org/10.3390/en19030588 - 23 Jan 2026
Viewed by 20
Abstract
This study investigates the incorporation of a standardised flexibility protocol within a physics-based models to enable controllable demand-side flexibility in residential energy systems. A heating subsystem is developed using MATLAB/Simulink and Simscape, serving as a testbed for protocol-driven control within a Multi-Energy System [...] Read more.
This study investigates the incorporation of a standardised flexibility protocol within a physics-based models to enable controllable demand-side flexibility in residential energy systems. A heating subsystem is developed using MATLAB/Simulink and Simscape, serving as a testbed for protocol-driven control within a Multi-Energy System (MES). A conventional thermostat controller is first established, followed by the implementation of an OpenADR event engine in Stateflow. Simulations conducted under consistent boundary conditions reveal that protocol-enabled control enhances system performance in several respects. It maintains a more stable and pronounced indoor–outdoor temperature differential, thereby improving thermal comfort. It also reduces fuel consumption by curtailing or shifting heat output during demand-response events, while remaining within acceptable comfort limits. Additionally, it improves operational stability by dampening high-frequency fluctuations in mdot_fuel. The resulting co-simulation pipeline offers a modular and reproducible framework for analysing the propagation of grid-level signals to device-level actions. The research contributes a simulation-ready architecture that couples standardised demand-response signalling with a physics-based MES model, alongside quantitative evidence that protocol-compliant actuation can deliver comfort-preserving flexibility in residential heating. The framework is readily extensible to other energy assets, such as cooling systems, electric vehicle charging, and combined heat and power (CHP), and is adaptable to additional protocols, thereby supporting future cross-vector investigations into digitally enabled energy flexibility. Full article
Show Figures

Figure 1

44 pages, 2107 KB  
Review
A Review of Thermal Management Techniques Adopted for High-Power-Density GaN-Based Converters
by Mohamed Belguith, Sonia Eloued, Moncef Kadi, Jaleleddine Ben Hadj Slama and Mahmoud Hamouda
Chips 2026, 5(1), 4; https://doi.org/10.3390/chips5010004 - 22 Jan 2026
Viewed by 4
Abstract
Power converters based on gallium nitride (GaN) are progressing swiftly owing to their exceptional efficiency and tiny dimensions, boosted by high power density and fast switching capabilities. Nevertheless, these benefits are accompanied by considerable thermal management issues that impact reliability, performance, and operational [...] Read more.
Power converters based on gallium nitride (GaN) are progressing swiftly owing to their exceptional efficiency and tiny dimensions, boosted by high power density and fast switching capabilities. Nevertheless, these benefits are accompanied by considerable thermal management issues that impact reliability, performance, and operational lifespan. This review examines advanced thermal management approaches for high-power-density GaN power converters, including active and passive cooling technologies, sophisticated packaging designs, and the use of novel materials like graphene and diamond to improve heat dissipation. The impacts of thermal boundary resistance, self-heating phenomena, and substrate selection on thermal performance are thoroughly analyzed. Strategies for enhancing printed circuit board (PCB) layouts, thermal vias, and the use of thermal interface materials (TIMs) are also emphasized. The study highlights co-design approaches that optimize thermal resistance and layout efficiency, supporting GaN operation under high-frequency conditions. This thorough investigation offers insights into addressing the thermal challenges linked to GaN technology, promoting its adoption in forthcoming power devices. Full article
37 pages, 9423 KB  
Article
Digital Twin-Based Simulation of Smart Building Energy Performance: BIM-Integrated MATLAB/Simulink Framework for BACS and SRI Evaluation
by Gabriela Walczyk and Andrzej Ożadowicz
Energies 2026, 19(2), 543; https://doi.org/10.3390/en19020543 - 21 Jan 2026
Viewed by 59
Abstract
The increasing role of automation systems in energy-efficient buildings creates a need for simulation approaches that support standardized assessment already at the design stage. This paper presents a digital twin-based simulation framework that integrates building information modeling (BIM)-derived building data with MATLAB/Simulink models [...] Read more.
The increasing role of automation systems in energy-efficient buildings creates a need for simulation approaches that support standardized assessment already at the design stage. This paper presents a digital twin-based simulation framework that integrates building information modeling (BIM)-derived building data with MATLAB/Simulink models to enable regulation-oriented evaluation of building automation and control strategies. The proposed approach targets scenario-based analysis of automation maturity levels, covering conventional, advanced, and predictive configurations aligned with EN ISO 52120 and the Smart Readiness Indicator (SRI). A representative academic building model is used to demonstrate how the framework supports reproducible modeling of heating, ventilation, and air conditioning (HVAC), lighting, and shading control functions and enables consistent comparison of their energy-related behavior under unified boundary conditions. The results show that the framework effectively captures performance trends associated with increasing automation sophistication and reveals interaction effects between control subsystems that are not accessible in conventional energy simulation tools. The proposed methodology provides a practical and extensible foundation for early-stage, regulation-aligned evaluation of smart building solutions and for the further development of predictive and artificial intelligence (AI)-assisted control concepts. Full article
Show Figures

Graphical abstract

12 pages, 5353 KB  
Review
State-of-the-Art Overview of Smooth-Edged Material Distribution for Optimizing Topology (SEMDOT) Algorithm
by Minyan Liu, Wanghua Hu, Xuhui Gong, Hao Zhou and Baolin Zhao
Computation 2026, 14(1), 27; https://doi.org/10.3390/computation14010027 - 21 Jan 2026
Viewed by 63
Abstract
Topology optimization is a powerful and efficient design tool, but the structures obtained by element-based topology optimization methods are often limited by fuzzy or jagged boundaries. The smooth-edged material distribution for optimizing topology algorithm (SEMDOT) can effectively deal with this problem and promote [...] Read more.
Topology optimization is a powerful and efficient design tool, but the structures obtained by element-based topology optimization methods are often limited by fuzzy or jagged boundaries. The smooth-edged material distribution for optimizing topology algorithm (SEMDOT) can effectively deal with this problem and promote the practical application of topology optimization structures. This review outlines the theoretical evolution of SEMDOT, including both penalty-based and non-penalty-based formulations, while also providing access to open access codes. SEMDOT’s applications cover diverse areas, including self-supporting structures, energy-efficient manufacturing, bone tissue scaffolds, heat transfer systems, and building parts, demonstrating the versatility of SEMDOT. While SEMDOT addresses boundary issues in topology optimization structures, further theoretical refinement is needed to develop it into a comprehensive platform. This work consolidates the advances in SEMDOT, highlights its interdisciplinary impact, and identifies future research and implementation directions. Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Figure 1

21 pages, 2910 KB  
Article
Towards Sustainable Design: A Shape Optimization Framework for Climate-Adaptive Free-Form Roofs in Hot Regions
by Bowen Hou, Baoshi Jiang and Bangjian Wang
Appl. Sci. 2026, 16(2), 1028; https://doi.org/10.3390/app16021028 - 20 Jan 2026
Viewed by 86
Abstract
This study proposes a cross-disciplinary computational framework to advance the sustainable design of free-form grid roofs in hot climates, integrating architectural geometry with building thermal performance to enhance climate adaptability. Numerical analyses systematically explore the impact of thermal objectives, initial configurations, shape control [...] Read more.
This study proposes a cross-disciplinary computational framework to advance the sustainable design of free-form grid roofs in hot climates, integrating architectural geometry with building thermal performance to enhance climate adaptability. Numerical analyses systematically explore the impact of thermal objectives, initial configurations, shape control strategies, and boundary constraints. The optimization results demonstrate that targeting indoor temperature under extreme heat yields saddle-shaped, self-shading morphologies, which achieve a measurable improvement in thermal comfort by reducing indoor temperatures by approximately 2 °C. A key practical finding is that symmetric-point control outperforms full-point control. While full-point control may generate forms with complex central depressions that complicate drainage, symmetric-point control consistently yields morphologies that are inherently more regular, symmetric, and constructible. This results in a superior balance among thermal performance, practical design attributes (e.g., drainage feasibility and construction simplicity), and geometric coherence—a combination that aligns closely with real-world engineering requirements. Furthermore, directional boundary constraints are proven to be effective tools for regulating passive shading performance. The proposed framework provides engineers and designers with a systematic and automated method for the climate-responsive and low-carbon design of free-form architectural morphologies, contributing to the development of more sustainable and resilient building infrastructure. Full article
Show Figures

Figure 1

24 pages, 12498 KB  
Article
Study on Surface Properties and Microstructural Evolution of LA103Z Mg-Li Alloy by Friction Stir Processing
by Jiqiang Zhai, Kai Hu, Zihan Kong and Xinzhen Fang
Metals 2026, 16(1), 108; https://doi.org/10.3390/met16010108 - 18 Jan 2026
Viewed by 212
Abstract
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify [...] Read more.
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify its surface microstructure and mechanical properties. The effects of tool rotational speed and travelling speed on dynamic recrystallization behavior, grain refinement, and phase evolution in the stirred zone (SZ) and thermomechanically affected zone (TMAZ) were systematically investigated. FSP induced significant grain refinement accompanied by the precipitation of a reticular α-Mg phase along β-Li grain boundaries, as well as Li3Mg7 and Li2MgAl phases within the stirred zone, leading to pronounced strengthening. Under optimized processing conditions, substantial improvements in hardness and tensile properties were achieved compared with the base material. The optimal condition was obtained at 600 rpm and 100 mm/min, yielding an average hardness of 79.17 HV0.2, a tensile strength of 243.6 MPa, and an elongation of 17.9%, corresponding to increases of 47.5% in hardness and 53.3% in tensile strength. Quantitative relationships between heat input, grain size, and mechanical properties further demonstrate that heat input governs microstructural evolution and strengthening behavior during FSP of LA103Z alloy. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

21 pages, 22584 KB  
Article
Early-Age Performance Evolution and Multi-Field Coupling Numerical Simulation of Large-Area Concrete Slabs Under Curing Regime Control
by Xiji Hu, Ruizhen Yan, Xin Cheng, Fanqi Meng, Xiaokang Yang and Menglong Zhou
Buildings 2026, 16(2), 394; https://doi.org/10.3390/buildings16020394 - 17 Jan 2026
Viewed by 152
Abstract
This study investigates the early-age performance of large-area C30 concrete slabs under different curing regimes using a multi-scale approach combining laboratory experiments, field monitoring, and numerical simulation. The experimental results indicated that standard curing (SC7) maximized the mechanical properties. In contrast, the thermal [...] Read more.
This study investigates the early-age performance of large-area C30 concrete slabs under different curing regimes using a multi-scale approach combining laboratory experiments, field monitoring, and numerical simulation. The experimental results indicated that standard curing (SC7) maximized the mechanical properties. In contrast, the thermal insulation and moisture retention curing (TC) regime significantly reduced temperature gradients and stress mutation amplitudes by 42% compared to wet curing (WC) by leveraging the synergistic effect of aluminum foil and insulating cotton. This makes TC a preferred solution in situations where engineering constraints apply. Field monitoring demonstrated that WC is suitable for humidity-sensitive scenarios with low-temperature control requirements, while TC is more suitable for large-area concrete or low-temperature environments, balancing early strength development and long-term durability. This multi-field coupled model exhibits significant deviations during the early stage (0–7 days) due to complex boundary interactions, but achieves high quantitative accuracy in the long-term steady state (after 14 days), with a maximum error below 8%. The analysis revealed that the key driving factors for stress evolution are early hydration heat–humidity coupling and mid-term boundary transient switching. The study provides a novel, multi-scale validated curing optimization path for crack control in large-area concrete slabs. Full article
Show Figures

Figure 1

30 pages, 13241 KB  
Article
Nanosilica Gel-Stabilized Phase-Change Materials Based on Epoxy Resin and Wood’s Metal
by Svetlana O. Ilyina, Irina Y. Gorbunova, Vyacheslav V. Shutov, Michael L. Kerber and Sergey O. Ilyin
Gels 2026, 12(1), 79; https://doi.org/10.3390/gels12010079 - 16 Jan 2026
Viewed by 132
Abstract
The emulsification of a molten fusible metal alloy in a liquid epoxy matrix with its subsequent curing is a novel way to create a highly concentrated phase-change material. However, numerous challenges have arisen. The high interfacial tension between the molten metal and epoxy [...] Read more.
The emulsification of a molten fusible metal alloy in a liquid epoxy matrix with its subsequent curing is a novel way to create a highly concentrated phase-change material. However, numerous challenges have arisen. The high interfacial tension between the molten metal and epoxy resin and the difference in their viscosities hinder the stretching and breaking of metal droplets during stirring. Further, the high density of metal droplets and lack of suitable surfactants lead to their rapid coalescence and sedimentation in the non-cross-linked resin. Finally, the high differences in the thermal expansion coefficients of the metal alloy and cross-linked epoxy polymer may cause cracking of the resulting phase-change material. This work overcomes the above problems by using nanosilica-induced physical gelation to thicken the epoxy medium containing Wood’s metal, stabilize their interfacial boundary, and immobilize the molten metal droplets through the creation of a gel-like network with a yield stress. In turn, the yield stress and the subsequent low-temperature curing with diethylenetriamine prevent delamination and cracking, while the transformation of the epoxy resin as a physical gel into a cross-linked polymer gel ensures form stability. The stabilization mechanism is shown to combine Pickering-like interfacial anchoring of hydrophilic silica at the metal/epoxy boundary with bulk gelation of the epoxy phase, enabling high metal loadings. As a result, epoxy shape-stable phase-change materials containing up to 80 wt% of Wood’s metal were produced. Wood’s metal forms fine dispersed droplets in epoxy medium with an average size of 2–5 µm, which can store thermal energy with an efficiency of up to 120.8 J/cm3. Wood’s metal plasticizes the epoxy matrix and decreases its glass transition temperature because of interactions with the epoxy resin and its hardener. However, the reinforcing effect of the metal particles compensates for this adverse effect, increasing Young’s modulus of the cured phase-change system up to 825 MPa. These form-stable, high-energy-density composites are promising for thermal energy storage in building envelopes, radiation-protective shielding, or industrial heat management systems where leakage-free operation and mechanical integrity are critical. Full article
(This article belongs to the Special Issue Energy Storage and Conductive Gel Polymers)
Show Figures

Graphical abstract

17 pages, 3015 KB  
Article
Yttrium-Enhanced Passive Films in Austenitic Stainless Steel
by Maksym Bichev, Denis Miroshnichenko, Sergey Nesterenko, Leonid Bannikov, Leonid Saienko, Volodymyr Tertychnyi, Vladislav Reivi, Kyrylo Serkiz and Mariia Shved
Electrochem 2026, 7(1), 3; https://doi.org/10.3390/electrochem7010003 - 16 Jan 2026
Viewed by 153
Abstract
It has been demonstrated that a monomolecular surface film with semiconducting characteristics forms on an austenitic, corrosion- and heat-resistant chromium–nickel steel with 0.10 wt.% C, 20 wt.% Cr, 9 wt.% Ni, and 6 wt.% Mn (10Kh20N9G6), microalloyed with yttrium, in aqueous 1 M [...] Read more.
It has been demonstrated that a monomolecular surface film with semiconducting characteristics forms on an austenitic, corrosion- and heat-resistant chromium–nickel steel with 0.10 wt.% C, 20 wt.% Cr, 9 wt.% Ni, and 6 wt.% Mn (10Kh20N9G6), microalloyed with yttrium, in aqueous 1 M H2SO4. This passive layer exhibits semiconducting behavior, as confirmed by electrochemical impedance and capacitance measurements. For the first time, key electronic parameters, including the flat-band potential, the thickness of the semiconductor layer, and the Fermi energy, have been determined from experimental Mott–Schottky plots obtained for the interphase boundary between the yttrium-microalloyed austenitic Cr–Ni steel (10Kh20N9G6) and aqueous 1 M H2SO4. The results reveal a systematic shift in the flat-band potential toward more negative values with increasing yttrium content in the alloy, indicating a modification of the electronic structure of the passive film. Simultaneously, a decrease in the Fermi energy is observed, suggesting an increase in the work function of the metal surface due to the presence of yttrium. These findings contribute to a deeper understanding of passivation mechanisms in yttrium-containing stainless steels. The formation of a semiconducting passive film is essential for enhancing the electrochemical stability of stainless steels, and the role of rare-earth microalloying elements, such as yttrium, in this process is of both fundamental and practical interest. Full article
Show Figures

Figure 1

23 pages, 3212 KB  
Article
On the Heat Transfer Process in a System of Two Convex Bodies Separated by a Vacuum—Mathematical Description and Solution Construction
by Rogério Pazetto Saldanha da Gama, Rogério Martins Saldanha da Gama and Maria Laura Martins-Costa
Thermo 2026, 6(1), 6; https://doi.org/10.3390/thermo6010006 - 16 Jan 2026
Viewed by 168
Abstract
This work presents a straightforward procedure for constructing the solution to the steady-state energy-transfer process in a system of two convex, opaque, gray bodies, with the aim of determining the temperature distribution within these bodies when separated by a vacuum. The methodology proposed [...] Read more.
This work presents a straightforward procedure for constructing the solution to the steady-state energy-transfer process in a system of two convex, opaque, gray bodies, with the aim of determining the temperature distribution within these bodies when separated by a vacuum. The methodology proposed in this work combines a sequence of elements that are functions obtained from the solution of uncomplicated, well-known linear, uncoupled heat transfer problems, thereby enabling solutions to be obtained using tools found in basic engineering textbooks. Specifically, these well-known problems resemble classical conduction-convection heat transfer problems, in which the boundary condition is described by the noteworthy Newton’s law of cooling. The limit of sequences of elements that are solutions to straightforward linear problems corresponds to the original, complex, coupled nonlinear problem. The convergence of these sequences is mathematically proven. The phenomenon (considered in this work) encompasses those involving black bodies. Since each element of the sequence arises from a well-known linear problem, numerical approximations can be used to obtain it, yielding a simple and powerful tool for simulations. Some presented results highlight the importance of considering thermal interaction between the two bodies, even in the absence of physical contact. In particular, the alterations in the temperature distributions of two separate gray bodies are explicitly shown to result from their thermal interaction. Full article
Show Figures

Figure 1

17 pages, 8724 KB  
Article
Microstructure and Property of the Weld Heat-Affected Zone of T4003 Ferritic Stainless Steel with Different Mo Contents
by Yunlong Duan, Yang Hui, Xuefeng Lu, Jie Sheng and Xingchang Tang
Metals 2026, 16(1), 90; https://doi.org/10.3390/met16010090 - 14 Jan 2026
Viewed by 198
Abstract
In the present contribution, Hot-rolled and annealed ferritic stainless steel T4003 with three distinct Mo contents (0%, 0.1%, and 0.2%) served as the research subject. Weldability tests were implemented by means of gas metal arc welding. Coupled with microstructural characterization, mechanical property assessments, [...] Read more.
In the present contribution, Hot-rolled and annealed ferritic stainless steel T4003 with three distinct Mo contents (0%, 0.1%, and 0.2%) served as the research subject. Weldability tests were implemented by means of gas metal arc welding. Coupled with microstructural characterization, mechanical property assessments, and electrochemical corrosion tests, the regulatory mechanism of Mo on the microstructure and properties of the HAZ was systematically elucidated. Results demonstrate that the influence of Mo content on the evolution of the coarse-grained region structure of heat affected zone becomes significant. The addition of 0.1% Mo refines the grains, increasing the fraction of lath martensite to 70–75% while limiting the maximum width of the coarse-grained zone to 0.64 mm. Meantime, the addition promotes the precipitation of (Nb, Ti, Mo) (C, N) composite carbonitrides, enhancing overall performance through synergistic grain refinement and second-phase strengthening. The sample with 0.1% Mo exhibits an average low-temperature impact energy of 16.3 J at −40 °C, with the highest Vickers hardness in the HAZ, favorable strength–plasticity synergy of the welded joint, and optimal corrosion resistance. The coarse-grained zone of the 0.2% Mo sample is dominated by coarse δ-ferrite and features a larger width, and the HAZ shows inferior mechanical properties and corrosion resistance. The precipitated phases in the 0.2% Mo segregate along the grain boundaries and distribute in a chain-like distribution, exacerbating the deterioration of material properties. These findings provide a technical reference for optimizing the composition design of T4003 ferritic stainless steel and ensuring its safe application in railway freight vehicles. Full article
Show Figures

Graphical abstract

26 pages, 5049 KB  
Article
Spatiotemporal Dynamics and Drivers of Potential Winter Ice Resources in China (1990–2020) Using Multi-Source Remote Sensing and Machine Learning
by Donghui Shi
Remote Sens. 2026, 18(2), 250; https://doi.org/10.3390/rs18020250 - 13 Jan 2026
Viewed by 198
Abstract
River and lake ice are sensitive indicators of climate change and important components of hydrological and ecological systems in cold regions. In this study, we develop a simple and transferable “surface water + land surface temperature (LST)” framework on Google Earth Engine to [...] Read more.
River and lake ice are sensitive indicators of climate change and important components of hydrological and ecological systems in cold regions. In this study, we develop a simple and transferable “surface water + land surface temperature (LST)” framework on Google Earth Engine to map potential winter ice area across China from 1990 to 2020. The framework enables consistent, large-scale, long-term monitoring without relying on complex remote sensing models or region-specific thresholds. Our results show that, despite a pronounced northwestward shift in the freezing-zone boundary, more than 400 km in the Northeast Plain and about 13 km per year along the eastern coast, the total ice-covered area increased by approximately 1.1% per year. At the same time, the average ice season became slightly shorter. This indicates asynchronous spatial and temporal responses of potential winter ice to warming. We identify a persistent “Northwest–Northeast dual-core” spatial pattern with strong positive spatial autocorrelation, characterized by increasing ice cover in Tibet, Qinghai, Xinjiang, Inner Mongolia, and Northeast China, and decreasing ice cover mainly in Beijing and Yunnan, where intense urbanization and low-latitude warming dominate. Random Forest modeling further shows that water area fraction, nighttime lights, built-up area, altitude, and water–heat indices are the main controls on potential winter ice. These findings highlight the combined influence of hydrological and thermal conditions and urbanization in reshaping potential winter ice patterns under climate change. Full article
Show Figures

Figure 1

21 pages, 3620 KB  
Article
Geomechanical Analysis of Hot Fluid Injection in Thermal Enhanced Oil Recovery
by Mina S. Khalaf
Energies 2026, 19(2), 386; https://doi.org/10.3390/en19020386 - 13 Jan 2026
Viewed by 140
Abstract
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress [...] Read more.
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress rotation within a displacement discontinuity method (DDM) framework. This study aims to examine the influence of sustained hot-fluid injection on stress redistribution, hydraulic-fracture deformation, and fracture stability in thermal-EOR by accounting for coupled thermal, hydraulic, and mechanical interactions. This study develops a fully coupled thermo-poroelastic DDM formulation in which fracture-surface normal and shear displacement discontinuities, together with fluid and heat influx, act as boundary sources to compute time-dependent stresses, pore pressure, and temperature, while internal fracture fluid flow (Poiseuille-based volume balance), heat transport (conduction–advection with rock exchange), and mixed-mode propagation criteria are included. A representative scenario considers an initially isothermal hydraulic fracture grown to 32 m, followed by 12 months of hot-fluid injection, with temperature contrasts of ΔT = 0–100 °C and reduced pumping rate. Results show that the hydraulic-fracture aperture increases under isothermal and modest heating (ΔT = 25 °C) and remains nearly stable near ΔT = 50 °C, but progressively narrows for ΔT = 75–100 °C despite continued injection, indicating potential injectivity decline driven by thermally induced compressive stresses. Hot injection also tightens fracture tips, restricting unintended propagation, and produces pronounced near-fracture stress amplification and re-orientation: minimum principal stress increases by 6 MPa for ΔT = 50 °C and 10 MPa for ΔT = 100 °C, with principal-stress rotation reaching 70–90° in regions adjacent to the fracture plane and with markedly elevated shear stresses that may promote natural-fracture activation. These findings show that temperature effects can directly influence injectivity, fracture containment, and the risk of unintended fracture or natural-fracture activation, underscoring the importance of temperature-aware geomechanical planning and injection-strategy design in field operations. Incorporating these effects into project design can help operators anticipate injectivity decline, improve fracture containment, and reduce geomechanical uncertainty during long-term hot-fluid injection. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

30 pages, 433 KB  
Review
State of Knowledge in the Field of Regenerative Hardfacing Methods in the Context of the Circular Economy
by Wiesław Czapiewski, Stanisław Pałubicki, Jarosław Plichta and Krzysztof Nadolny
Appl. Sci. 2026, 16(2), 792; https://doi.org/10.3390/app16020792 - 13 Jan 2026
Viewed by 128
Abstract
Regenerative hardfacing of steel substrates is an important technology for restoring the surface layer of components operating under wear conditions, supporting the goals of the circular economy (CE) by extending the service life of components, reducing material and energy consumption throughout their life [...] Read more.
Regenerative hardfacing of steel substrates is an important technology for restoring the surface layer of components operating under wear conditions, supporting the goals of the circular economy (CE) by extending the service life of components, reducing material and energy consumption throughout their life cycle, and shortening downtime during machine repairs. The article provides a synthetic analysis of the literature on the production of functional layers exclusively on steels and systematizes process → structure → properties (PSP) relationships in the context of technological quality and the prediction of the functional properties of welds. The review covers methods used and developed in steel hardfacing (including arc processes and variants with increased energy concentration), analyzed on the basis of measurable process indicators: energy parameters (arc energy/heat input/volume energy), dilution, bead geometry, heat-affected zone characteristics, and the risk of welding defects. It has been shown that these factors determine the structural effects in the weld and the area at the fusion boundary (including phase composition and morphology, hardness gradient, and susceptibility to cracking), which translates into functional properties (hardness, wear resistance, adhesion, and fatigue life) and durability after regeneration. The main result of the work is the development of a PSP table dedicated to hardfacing on steel substrates, mapping the key “levers” of the process to structural consequences and trends in functional properties. This facilitates the identification of optimization directions (minimization of energy input and dilution while ensuring fusion continuity), which translates into longer durability after regeneration and a lower risk of defects—key, measurable effects of CE. Research gaps have also been identified regarding the comparability of results (standardization of energy metrics) and the need to determine and verify “technology windows” within the WPS/WPQR (welding procedure specification/welding procedure qualification record) for layers deposited on steels. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Back to TopTop