Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,678)

Search Parameters:
Keywords = healthcare process improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 238 KiB  
Perspective
Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children
by Obinna Ositadimma Oleribe
Healthcare 2025, 13(15), 1898; https://doi.org/10.3390/healthcare13151898 - 4 Aug 2025
Viewed by 156
Abstract
Neurodevelopmental disorders (NDDs) significantly impact children’s health and development. They pose a substantial burden to families and the healthcare system. Challenges in early identification, accurate and timely diagnosis, and effective treatment persist due to overlapping symptoms, lack of appropriate diagnostic biomarkers, significant stigma [...] Read more.
Neurodevelopmental disorders (NDDs) significantly impact children’s health and development. They pose a substantial burden to families and the healthcare system. Challenges in early identification, accurate and timely diagnosis, and effective treatment persist due to overlapping symptoms, lack of appropriate diagnostic biomarkers, significant stigma and discrimination, and systemic barriers. Generative Artificial Intelligence (GenAI) offers promising solutions to these challenges by enhancing screening, diagnosis, personalized treatment, and research. Although GenAI is already in use in some aspects of NDD management, effective and strategic leveraging of evolving AI tools and resources will enhance early identification and screening, reduce diagnostic processing by up to 90%, and improve clinical decision support. Proper use of GenAI will ensure individualized therapy regimens with demonstrated 36% improvement in at least one objective attention measure compared to baseline and 81–84% accuracy relative to clinician-generated plans, customize learning materials, and deliver better treatment monitoring. GenAI will also accelerate NDD-specific research and innovation with significant time savings, as well as provide tailored family support systems. Finally, it will significantly reduce the mortality and morbidity associated with NDDs. This article explores the potential of GenAI in transforming NDD management and calls for policy initiatives to integrate GenAI into NDD management systems. Full article
13 pages, 1520 KiB  
Article
Designing a Patient Outcome Clinical Assessment Tool for Modified Rankin Scale: “You Feel the Same Way Too”
by Laura London and Noreen Kamal
Informatics 2025, 12(3), 78; https://doi.org/10.3390/informatics12030078 - 4 Aug 2025
Viewed by 125
Abstract
The modified Rankin Scale (mRS) is a widely used outcome measure for assessing disability in stroke care; however, its administration is often affected by subjectivity and variability, leading to poor inter-rater reliability and inconsistent scoring. Originally designed for hospital discharge evaluations, the mRS [...] Read more.
The modified Rankin Scale (mRS) is a widely used outcome measure for assessing disability in stroke care; however, its administration is often affected by subjectivity and variability, leading to poor inter-rater reliability and inconsistent scoring. Originally designed for hospital discharge evaluations, the mRS has evolved into an outcome tool for disability assessment and clinical decision-making. Inconsistencies persist due to a lack of standardization and cognitive biases during its use. This paper presents design principles for creating a standardized clinical assessment tool (CAT) for the mRS, grounded in human–computer interaction (HCI) and cognitive engineering principles. Design principles were informed in part by an anonymous online survey conducted with clinicians across Canada to gain insights into current administration practices, opinions, and challenges of the mRS. The proposed design principles aim to reduce cognitive load, improve inter-rater reliability, and streamline the administration process of the mRS. By focusing on usability and standardization, the design principles seek to enhance scoring consistency and improve the overall reliability of clinical outcomes in stroke care and research. Developing a standardized CAT for the mRS represents a significant step toward improving the accuracy and consistency of stroke disability assessments. Future work will focus on real-world validation with healthcare stakeholders and exploring self-completed mRS assessments to further refine the tool. Full article
Show Figures

Figure 1

26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 (registering DOI) - 2 Aug 2025
Viewed by 253
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

12 pages, 702 KiB  
Article
Construction of Hospital Diagnosis-Related Group Refinement Performance Evaluation Based on Delphi Method and Analytic Hierarchy Process
by Mingchun Cai, Zhengbo Yan, Xiaoli Wang, Bing Mao and Chuan Pu
Hospitals 2025, 2(3), 20; https://doi.org/10.3390/hospitals2030020 - 2 Aug 2025
Viewed by 216
Abstract
Objective: This study aimed to develop a performance evaluation index system for a district-level public hospital in Chongqing, China, based on Diagnosis-Related Groups (DRGs), to provide a benchmark for performance assessment in similar hospitals. The system was constructed using a literature analysis, [...] Read more.
Objective: This study aimed to develop a performance evaluation index system for a district-level public hospital in Chongqing, China, based on Diagnosis-Related Groups (DRGs), to provide a benchmark for performance assessment in similar hospitals. The system was constructed using a literature analysis, the Delphi method, and the Analytic Hierarchy Process (AHP) to identify and weight relevant indicators. Results: The evaluation system consists of three primary indicators and eighteen secondary indicators. Key secondary indicators include the Case Mix Index (CMI), cost consumption index, low-risk group mortality rate, the proportion of patients with three- or four-level surgeries at discharge, and the proportion of medical service revenue to medical income. In 2020, significant improvements were observed in several indicators, such as a decrease in the low-risk group mortality rate to 0% and increases in the proportion of patients with three- or four-level surgeries and CMI by nearly 10% and 13%, respectively. Conclusions: This study successfully developed a comprehensive and scientifically sound performance evaluation index system for a district-level public hospital in Chongqing. The system has proven effective in objectively assessing inpatient medical care performance and providing valuable guidance for improving healthcare services in similar settings. Full article
Show Figures

Figure 1

20 pages, 1387 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 - 1 Aug 2025
Viewed by 111
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
Show Figures

Figure 1

13 pages, 564 KiB  
Article
Enhanced Semantic Retrieval with Structured Prompt and Dimensionality Reduction for Big Data
by Donghyeon Kim, Minki Park, Jungsun Lee, Inho Lee, Jeonghyeon Jin and Yunsick Sung
Mathematics 2025, 13(15), 2469; https://doi.org/10.3390/math13152469 - 31 Jul 2025
Viewed by 359
Abstract
The exponential increase in textual data generated across sectors such as healthcare, finance, and smart manufacturing has intensified the need for effective Big Data analytics. Large language models (LLMs) have become critical tools because of their advanced language processing capabilities. However, their static [...] Read more.
The exponential increase in textual data generated across sectors such as healthcare, finance, and smart manufacturing has intensified the need for effective Big Data analytics. Large language models (LLMs) have become critical tools because of their advanced language processing capabilities. However, their static nature limits their ability to incorporate real-time and domain-specific knowledge. Retrieval-augmented generation (RAG) addresses these limitations by enriching LLM outputs through external content retrieval. Nevertheless, traditional RAG systems remain inefficient, often exhibiting high retrieval latency, redundancy, and diminished response quality when scaled to large datasets. This paper proposes an innovative structured RAG framework specifically designed for large-scale Big Data analytics. The framework transforms unstructured partial prompts into structured semantically coherent partial prompts, leveraging element-specific embedding models and dimensionality reduction techniques, such as principal component analysis. To further improve the retrieval accuracy and computational efficiency, we introduce a multi-level filtering approach integrating semantic constraints and redundancy elimination. In the experiments, the proposed method was compared with structured-format RAG. After generating prompts utilizing two methods, silhouette scores were computed to assess the quality of embedding clusters. The proposed method outperformed the baseline by improving the clustering quality by 32.3%. These results demonstrate the effectiveness of the framework in enhancing LLMs for accurate, diverse, and efficient decision-making in complex Big Data environments. Full article
(This article belongs to the Special Issue Big Data Analysis, Computing and Applications)
Show Figures

Figure 1

10 pages, 478 KiB  
Review
Chewing Matters: Masticatory Function, Oral Microbiota, and Gut Health in the Nutritional Management of Aging
by Monia Lettieri, Alessio Rosa, Fabrizio Spataro, Giovanni Capria, Paolo Barnaba, Marco Gargari and Mirko Martelli
Nutrients 2025, 17(15), 2507; https://doi.org/10.3390/nu17152507 - 30 Jul 2025
Viewed by 350
Abstract
Aging is a multifactorial process that affects various physiological functions, including masticatory performance, which is crucial for oral health and nutritional well-being. Impaired masticatory function, often due to factors such as tooth loss, reduced salivation, or muscle atrophy, can lead to significant nutritional [...] Read more.
Aging is a multifactorial process that affects various physiological functions, including masticatory performance, which is crucial for oral health and nutritional well-being. Impaired masticatory function, often due to factors such as tooth loss, reduced salivation, or muscle atrophy, can lead to significant nutritional challenges and compromise the overall health of elderly individuals. Recent research has illuminated the interconnectedness of masticatory function, oral microbiota, and gut health, suggesting that altered chewing ability may disrupt oral microbial communities, which in turn affect gastrointestinal health and systemic inflammation. This commentary review provides a comprehensive analysis of the role of masticatory function in aging, exploring its impact on the oral microbiota, gut health, and broader nutritional status. We discuss the potential consequences of impaired mastication, including malnutrition, dysbiosis, and gastrointestinal disorders, and explore possible strategies for improving masticatory function and maintaining a healthy gut microbiome through interventions like dietary modifications, oral care, and rehabilitation. We aim to underscore the importance of integrating masticatory function management into the broader context of aging-related healthcare, promoting holistic, multidisciplinary approaches to support nutritional needs and quality of life in older adults. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Graphical abstract

40 pages, 3463 KiB  
Review
Machine Learning-Powered Smart Healthcare Systems in the Era of Big Data: Applications, Diagnostic Insights, Challenges, and Ethical Implications
by Sita Rani, Raman Kumar, B. S. Panda, Rajender Kumar, Nafaa Farhan Muften, Mayada Ahmed Abass and Jasmina Lozanović
Diagnostics 2025, 15(15), 1914; https://doi.org/10.3390/diagnostics15151914 - 30 Jul 2025
Viewed by 564
Abstract
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, [...] Read more.
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, cross-domain ML applications, and a critical discussion on ethical integration in smart diagnostics. The review focuses on the role of big data analysis and ML towards better diagnosis, improved efficiency of operations, and individualized care for patients. It explores the principal challenges of data heterogeneity, privacy, computational complexity, and advanced methods such as federated learning (FL) and edge computing. Applications in real-world settings, such as disease prediction, medical imaging, drug discovery, and remote monitoring, illustrate how ML methods, such as deep learning (DL) and natural language processing (NLP), enhance clinical decision-making. A comparison of ML models highlights their value in dealing with large and heterogeneous healthcare datasets. In addition, the use of nascent technologies such as wearables and Internet of Medical Things (IoMT) is examined for their role in supporting real-time data-driven delivery of healthcare. The paper emphasizes the pragmatic application of intelligent systems by highlighting case studies that reflect up to 95% diagnostic accuracy and cost savings. The review ends with future directions that seek to develop scalable, ethical, and interpretable AI-powered healthcare systems. It bridges the gap between ML algorithms and smart diagnostics, offering critical perspectives for clinicians, data scientists, and policymakers. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

24 pages, 1806 KiB  
Article
Optimization of Cleaning and Hygiene Processes in Healthcare Using Digital Technologies and Ensuring Quality Assurance with Blockchain
by Semra Tebrizcik, Süleyman Ersöz, Elvan Duman, Adnan Aktepe and Ahmet Kürşad Türker
Appl. Sci. 2025, 15(15), 8460; https://doi.org/10.3390/app15158460 - 30 Jul 2025
Viewed by 202
Abstract
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance [...] Read more.
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance the traceability and sustainability of these processes through digitalization. This study proposes a Hyperledger Fabric-based blockchain architecture to establish a reliable and transparent quality assurance system in process management. The proposed Quality Assurance Model utilizes digital technologies and IoT-based RFID devices to ensure the transparent and reliable monitoring of cleaning processes. Operational data related to cleaning processes are automatically recorded and secured using a decentralized blockchain infrastructure. The permissioned nature of Hyperledger Fabric provides a more secure solution compared to traditional data management systems in the healthcare sector while preserving data privacy. Additionally, the execute–order–validate mechanism supports effective data sharing among stakeholders, and consensus algorithms along with chaincode rules enhance the reliability of processes. A working prototype was implemented and validated using Hyperledger Caliper under resource-constrained cloud environments, confirming the system’s feasibility through over 100 TPS throughput and zero transaction failures. Through the proposed system, cleaning/hygiene processes in patient rooms are conducted securely, contributing to the improvement of quality standards in healthcare services. Full article
Show Figures

Figure 1

15 pages, 1152 KiB  
Article
Nurse-Led, Remote Optimisation of Guideline-Directed Medical Therapy in Patients with Heart Failure and Reduced Ejection Fraction Across Australia
by Gabrielle Freedman, Racheal Watt, Enayet Karim Chowdhury, Kate Quinlan, David Eccleston, Andrea Driscoll, James Theuerle and Leighton Kearney
J. Clin. Med. 2025, 14(15), 5371; https://doi.org/10.3390/jcm14155371 - 30 Jul 2025
Viewed by 581
Abstract
Background/Objectives: Guidelines recommend patients with heart failure with reduced ejection fraction (HFrEF) receive four-pillar heart failure (4P-HF) therapy, which significantly reduces cardiac morbidity and mortality. However, implementing these guidelines effectively into clinical practice remains challenging. Methods: Patients with HFrEF on submaximal [...] Read more.
Background/Objectives: Guidelines recommend patients with heart failure with reduced ejection fraction (HFrEF) receive four-pillar heart failure (4P-HF) therapy, which significantly reduces cardiac morbidity and mortality. However, implementing these guidelines effectively into clinical practice remains challenging. Methods: Patients with HFrEF on submaximal 4P-HF therapy were identified from a large, multicentre Cardiology network database using a natural language processing tool, supported by manual file review. A nurse-led, remotely delivered, medication uptitration program aimed to optimise therapy in this real-world cohort. Results: The final cohort included 2004 patients with a mean age of 72.7 ± 11.6 years. Utilisation of 4P-HF increased from 11.1% at baseline to 49.8% post intervention, and each individual medication class increased significantly post intervention (all p < 0.001). The largest increase was observed with the use of sodium–glucose cotransporter 2 inhibitors, which rose from 17.3% to 73.9%, followed by mineralocorticoid receptor antagonists (51.6% to 65.7%), beta-blockers (88.4% to 97.0%), and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers/angiotensin receptor blocker–neprilysin inhibitors (89.8% to 96.4%). In patients on submaximal therapy, barriers were documented in all cases. Following medication optimisation, left ventricular ejection function (LVEF) improved significantly (38.5% ± 10.8% vs. 42.5% ± 11.7, p < 0.001). Conclusions: This nurse-led, remotely delivered, medication optimisation program significantly improved the adoption of 4P-HF therapy and LVEF in patients with HFrEF. The program demonstrates a practical, scalable solution for the optimisation of HFrEF therapy across a large healthcare network. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

26 pages, 14606 KiB  
Review
Attribution-Based Explainability in Medical Imaging: A Critical Review on Explainable Computer Vision (X-CV) Techniques and Their Applications in Medical AI
by Kazi Nabiul Alam, Pooneh Bagheri Zadeh and Akbar Sheikh-Akbari
Electronics 2025, 14(15), 3024; https://doi.org/10.3390/electronics14153024 - 29 Jul 2025
Viewed by 433
Abstract
One of the largest future applications of computer vision is in the healthcare industry. Computer vision tasks are generally implemented in diverse medical imaging scenarios, including detecting or classifying diseases, predicting potential disease progression, analyzing cancer data for advancing future research, and conducting [...] Read more.
One of the largest future applications of computer vision is in the healthcare industry. Computer vision tasks are generally implemented in diverse medical imaging scenarios, including detecting or classifying diseases, predicting potential disease progression, analyzing cancer data for advancing future research, and conducting genetic analysis for personalized medicine. However, a critical drawback of using Computer Vision (CV) approaches is their limited reliability and transparency. Clinicians and patients must comprehend the rationale behind predictions or results to ensure trust and ethical deployment in clinical settings. This demonstrates the adoption of the idea of Explainable Computer Vision (X-CV), which enhances vision-relative interpretability. Among various methodologies, attribution-based approaches are widely employed by researchers to explain medical imaging outputs by identifying influential features. This article solely aims to explore how attribution-based X-CV methods work in medical imaging, what they are good for in real-world use, and what their main limitations are. This study evaluates X-CV techniques by conducting a thorough review of relevant reports, peer-reviewed journals, and methodological approaches to obtain an adequate understanding of attribution-based approaches. It explores how these techniques tackle computational complexity issues, improve diagnostic accuracy and aid clinical decision-making processes. This article intends to present a path that generalizes the concept of trustworthiness towards AI-based healthcare solutions. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
Show Figures

Figure 1

48 pages, 835 KiB  
Review
Evaluating Maturity Models in Healthcare Information Systems: A Comprehensive Review
by Jorge Gomes and Mário Romão
Healthcare 2025, 13(15), 1847; https://doi.org/10.3390/healthcare13151847 - 29 Jul 2025
Viewed by 393
Abstract
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by [...] Read more.
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by assessing readiness, process efficiency, technology adoption, and interoperability. This study presents a comprehensive literature review identifying 45 Maturity Models used across various healthcare domains, including telemedicine, analytics, business intelligence, and electronic medical records. These models, often based on Capability Maturity Model Integration (CMMI), vary in structure, scope, and maturity stages. The findings demonstrate that structured maturity assessments help healthcare organizations plan, implement, and optimize HIS more effectively, leading to enhanced clinical and operational performance. This review contributes to an understanding of how different MMs can support healthcare digital transformation and provides a resource for selecting appropriate models based on specific organizational goals and technological contexts. Full article
Show Figures

Figure 1

14 pages, 298 KiB  
Review
Asthma Symptom Self-Monitoring Methods for Children and Adolescents: Present and Future
by Hyekyun Rhee and Nattasit Katchamat
Children 2025, 12(8), 997; https://doi.org/10.3390/children12080997 - 29 Jul 2025
Viewed by 316
Abstract
Asthma is the leading chronic condition in children and adolescents, requiring continuous monitoring to effectively prevent and manage symptoms. Symptom monitoring can guide timely and effective self-management actions by children and their parents and inform treatment decisions by healthcare providers. This paper examines [...] Read more.
Asthma is the leading chronic condition in children and adolescents, requiring continuous monitoring to effectively prevent and manage symptoms. Symptom monitoring can guide timely and effective self-management actions by children and their parents and inform treatment decisions by healthcare providers. This paper examines two conventional monitoring methods, including symptom-based and peak expiratory flow (PEF) monitoring, reviews early efforts to quantify respiratory symptoms, and introduces an emerging sensor-based mHealth approach. Although symptom-based monitoring is commonly used in clinical practice, its adequacy is a concern due to its subjective nature, as it primarily relies on individual perception. PEF monitoring, while objective, has shown weak correlations with actual asthma activity or lung function and suffers from suboptimal adherence among youth. To enhance objectivity in symptom monitoring, earlier efforts focused on quantifying respiratory symptoms by harnessing mechanical equipment. However, the practicality of these methods for daily use is limited due to the equipment’s bulkiness and the time- and labor-intensive nature of data processing and interpretation. As an innovative alternative, sensor-based mHealth devices have emerged to provide automatic, objective, and continuous monitoring of respiratory symptoms. These wearable technologies offer promising potential to overcome the issues of perceptual inaccuracy and poor adherence associated with conventional methods. However, many of these devices are still in developmental or testing phases, with limited data on their clinical efficacy, usability, and long-term impact on self-management behaviors. Future research and robust clinical trials are warranted to establish their role in asthma monitoring and management and improving asthma outcomes in children and adolescents. Full article
21 pages, 602 KiB  
Review
Transforming Cancer Care: A Narrative Review on Leveraging Artificial Intelligence to Advance Immunotherapy in Underserved Communities
by Victor M. Vasquez, Molly McCabe, Jack C. McKee, Sharon Siby, Usman Hussain, Farah Faizuddin, Aadil Sheikh, Thien Nguyen, Ghislaine Mayer, Jennifer Grier, Subramanian Dhandayuthapani, Shrikanth S. Gadad and Jessica Chacon
J. Clin. Med. 2025, 14(15), 5346; https://doi.org/10.3390/jcm14155346 - 29 Jul 2025
Viewed by 322
Abstract
Purpose: Cancer immunotherapy has transformed oncology, but underserved populations face persistent disparities in access and outcomes. This review explores how artificial intelligence (AI) can help mitigate these barriers. Methods: We conducted a narrative review based on peer-reviewed literature selected for relevance [...] Read more.
Purpose: Cancer immunotherapy has transformed oncology, but underserved populations face persistent disparities in access and outcomes. This review explores how artificial intelligence (AI) can help mitigate these barriers. Methods: We conducted a narrative review based on peer-reviewed literature selected for relevance to artificial intelligence, cancer immunotherapy, and healthcare challenges, without restrictions on publication date. We searched three major electronic databases: PubMed, IEEE Xplore, and arXiv, covering both biomedical and computational literature. The search included publications from January 2015 through April 2024 to capture contemporary developments in AI and cancer immunotherapy. Results: AI tools such as machine learning, natural language processing, and predictive analytics can enhance early detection, personalize treatment, and improve clinical trial representation for historically underrepresented populations. Additionally, AI-driven solutions can aid in managing side effects, expanding telehealth, and addressing social determinants of health (SDOH). However, algorithmic bias, privacy concerns, and data diversity remain major challenges. Conclusions: With intentional design and implementation, AI holds the potential to reduce disparities in cancer immunotherapy and promote more inclusive oncology care. Future efforts must focus on ethical deployment, inclusive data collection, and interdisciplinary collaboration. Full article
(This article belongs to the Special Issue Recent Advances in Immunotherapy of Cancer)
Show Figures

Figure 1

13 pages, 216 KiB  
Article
A Pilot Study of Integrated Digital Tools at a School-Based Health Center Using the RE-AIM Framework
by Steven Vu, Alex Zepeda, Tai Metzger and Kathleen P. Tebb
Healthcare 2025, 13(15), 1839; https://doi.org/10.3390/healthcare13151839 - 29 Jul 2025
Viewed by 325
Abstract
Introduction: Adolescents and young adults (AYAs), especially those from underserved communities, often face barriers to sexual and reproductive health (SRH). This pilot study evaluated the implementation of mobile health technologies to promote SRH care, including the integration of the Rapid Adolescent Prevention [...] Read more.
Introduction: Adolescents and young adults (AYAs), especially those from underserved communities, often face barriers to sexual and reproductive health (SRH). This pilot study evaluated the implementation of mobile health technologies to promote SRH care, including the integration of the Rapid Adolescent Prevention ScreeningTM (RAAPS) and the Health-E You/Salud iTuTM (Health-E You) app at a School-Based Health Center (SBHC) in Los Angeles using the RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) framework. Methods: This multi-method pilot study included the implementation of an integrated tool with two components, the RAAPS electronic health screening tool and the Health-E You app, which delivers tailored SRH education and contraceptive decision support to patients (who were sex-assigned as female at birth) and provides an electronic summary to clinicians to better prepare them for the visit with their patient. Quantitative data on tool usage were collected directly from the back-end data storage for the apps, and qualitative data were obtained through semi-structured interviews and in-clinic observations. Thematic analysis was conducted to identify implementation barriers and facilitators. Results: Between April 2024 and June 2024, 60 unique patients (14–19 years of age) had a healthcare visit. Of these, 35.00% used the integrated RAAPS/Health-E You app, and 88.33% completed the Health-E You app only. All five clinic staff were interviewed and expressed that they valued the tools for their educational impact, noting that they enhanced SRH discussions and helped uncover sensitive information that students might not disclose face-to-face. However, the tools affected clinic workflows and caused rooming delays due to the time-intensive setup process and lack of integration with the clinic’s primary electronic medical record system. In addition, they also reported that the time to complete the screener and app within the context of a 30-min appointment limited the time available for direct patient care. Additionally, staff reported that some students struggled with the two-step process and did not complete all components of the tool. Despite these challenges, clinic staff strongly supported renewing the RAAPS license and continued use of the Health-E You app, emphasizing the platform’s potential for improving SRH care and its educational value. Conclusions: The integrated RAAPS and Health-E You app platform demonstrated educational value and improved SRH care but faced operational and technical barriers in implementing the tool. These findings emphasize the potential of such tools to address SRH disparities among vulnerable AYAs while providing a framework for future implementations in SBHCs. Full article
Back to TopTop