Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,635)

Search Parameters:
Keywords = health & safety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 408 KiB  
Article
Development of a Course to Prepare Nurses to Train Expert Patients
by Manacés Dos Santos-Becerril, Francisca Sánchez-Ayllón, Isabel Morales-Moreno, Flavia Barreto-Tavares-Chiavone, Isabelle Campos-de Acevedo, Ana Luisa Petersen-Cogo, Marcos Antônio Ferreira-Junior and Viviane Euzebia Pereira Santos
Healthcare 2025, 13(15), 1939; https://doi.org/10.3390/healthcare13151939 (registering DOI) - 7 Aug 2025
Abstract
Introduction: With the emergence of the expert patient and the expansion of health literacy, the importance of planning and building health technologies aimed at teaching and training health professionals, especially nurses, due to their activities with patients in Primary Health Care, with the [...] Read more.
Introduction: With the emergence of the expert patient and the expansion of health literacy, the importance of planning and building health technologies aimed at teaching and training health professionals, especially nurses, due to their activities with patients in Primary Health Care, with the aim of meeting the real and constant demands of the expert patient, is evident. Methods: Methodological study with a quantitative approach. The course was constructed based on a scope review, scientific reference, and observational visits during the months of September 2021 and August 2022. For validation, an organized electronic form was used with general information about the research and items of the course constructed for later evaluation by the judges with the three-point Likert scale and with the application of the Delphi Technique between the months of September and October 2022; for the agreement of the judges, the Content Validation Coefficient > 0.8 was considered. Results: Based on the content selected in the scope review, the reference contribution, and the observational visits, the course was constructed. Nine judges participated in the validation stage in Delphi I with a total Content Validation Coefficient above 0.90 and with some suggestions for modifications and improvements pointed out by them. In Delphi II, six judges evaluated the course, resulting in a total Content Validation Coefficient of 0.99. Conclusions: The course developed was considered valid to support the training of Primary Health Care nurses in the formation of the expert patient, with a view to promoting patient autonomy in self-care management, optimizing Primary Health Care, and reducing unnecessary hospital admissions. Full article
44 pages, 4024 KiB  
Review
Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization
by Zhanchao Li, Ebrahim Yahya Khailah, Xingyang Liu and Jiaming Liang
Buildings 2025, 15(15), 2803; https://doi.org/10.3390/buildings15152803 (registering DOI) - 7 Aug 2025
Abstract
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining [...] Read more.
Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
19 pages, 272 KiB  
Article
Legacy of Strength and Future Opportunities: A Qualitative Interpretive Inquiry Regarding Australian Men in Mental Health Nursing
by Natasha Reedy, Trish Luyke, Brendon Robinson, Rhonda Dawson and Daniel Terry
Nurs. Rep. 2025, 15(8), 287; https://doi.org/10.3390/nursrep15080287 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Men have historically contributed significantly to mental health nursing, particularly in inpatient settings, where their presence has supported patient recovery and safety. Despite this legacy, men remain under-represented in the nursing workforce, and addressing this imbalance is critical to workforce sustainability. This [...] Read more.
Background/Objectives: Men have historically contributed significantly to mental health nursing, particularly in inpatient settings, where their presence has supported patient recovery and safety. Despite this legacy, men remain under-represented in the nursing workforce, and addressing this imbalance is critical to workforce sustainability. This study offers a novel contribution by exploring the lived experiences, motivations, and professional identities of men in mental health nursing, an area that has received limited empirical attention. The aim of the study is to examine the characteristics, qualities, and attributes of mental health nurses who are male, which contributes to their attraction to and retention within the profession. Methods: A qualitative interpretive inquiry was conducted among nurses who were male and either currently or previously employed in mental health settings. Two focus groups were conducted using semi-structured questions to explore their career pathways, motivations, professional identities, and perceived contributions. Thematic analysis was used to identify key themes and patterns in their narratives. Results: Seven participants, with 10–30 years of experience, participated. They had entered the profession through diverse pathways, expressing strong alignment between personal values and professional roles. Five themes emerged and centred on mental health being the heart of health, personal and professional fulfillment, camaraderie and teamwork, a profound respect for individuals and compassion, and overcoming and enjoying the challenge. Conclusions: Mental health nurses who are male bring unique contributions to the profession, embodying compassion, resilience, and ethical advocacy. Their experiences challenge traditional gender norms and redefine masculinity in health care. Fostering inclusive environments, mentorship, and leadership opportunities is essential to support their growth. These insights inform strategies to strengthen recruitment, retention, and the future of mental health nursing. Full article
(This article belongs to the Section Mental Health Nursing)
16 pages, 4106 KiB  
Article
Optical Sensing Technologies for Cryo-Tank Composite Structural Element Analysis and Maintenance
by Monica Ciminello, Carmine Carandente Tartaglia and Pietro Caramuta
Appl. Sci. 2025, 15(15), 8748; https://doi.org/10.3390/app15158748 (registering DOI) - 7 Aug 2025
Abstract
This article focuses on activities addressed in the European project hydrogen lightweight & innovative tank for zero-emission aircraft, H2ELIOS. The authors propose a preliminary approach oriented to the design of a structural health monitoring SHM system conceived for a cryo-tank liquid hydrogen storage [...] Read more.
This article focuses on activities addressed in the European project hydrogen lightweight & innovative tank for zero-emission aircraft, H2ELIOS. The authors propose a preliminary approach oriented to the design of a structural health monitoring SHM system conceived for a cryo-tank liquid hydrogen storage for medium range vehicles. The system was ideated to be installed on board and operating during service, to provide early detection and localization of potential damage, critical both in terms of safety and maintenance. The use of optical fibers for strain measurement is justified, on one hand, by the capability of pure silica fiber to prevent hydrogen darkening effects and, on the other hand, by the absence of metal components, which eliminates the risk of embrittlement. In detail, distributed and fiber Bragg grating FBG sensors designed for this specific application have demonstrated reliable monitoring capabilities, even after exposure to hydrogen and at cryogenic temperatures. Furthermore, another key contribution of this preliminary activity is the analysis of thermoplastic material faults by correlating damage characteristics with static and dynamic response. This is due to the fact that the investigated physics strongly depend on the nature of occurring damage. Achievements lie in the demonstrated ability to assess the health status of the reference composite structure, establishing the first steps for a future qualification of the proprietary system, made of commercial and original hardware and software. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensors)
Show Figures

Figure 1

18 pages, 822 KiB  
Systematic Review
Virtual Care Perceptions and Experiences of Older Adults During COVID-19 in Canada: A Systematic Review
by Donna Gao, Angela Xu and Lixia Yang
Healthcare 2025, 13(15), 1937; https://doi.org/10.3390/healthcare13151937 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Older adults (65+) are the fastest growing age group in Canada, comprising 18.8% of the country’s population. During the COVID-19 pandemic, use of virtual care, including telehealth and tele-medicine, increased dramatically among older adults in Canada who often face higher health [...] Read more.
Background/Objectives: Older adults (65+) are the fastest growing age group in Canada, comprising 18.8% of the country’s population. During the COVID-19 pandemic, use of virtual care, including telehealth and tele-medicine, increased dramatically among older adults in Canada who often face higher health risks, mobility limitations, and many barriers to accessing healthcare. Despite the rapid expansion in virtual care, no systematic review has focused specifically on virtual care among older adults in Canada. This review aims to explore the factors influencing virtual care adoption and the experiences of older Canadians during the pandemic through a systematic review. Methods: Conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, the review involved a comprehensive search of PubMed, Scopus, ESCBOHost, and Web of Science on 2 May 2025, yielding 281 unique citations. After screening and applying eligibility criteria, 15 studies employing quantitative, qualitative, or mixed-methods designs, with sample sizes ranging from 15 to 2,282,798, were included and appraised using the Mixed Methods Appraisal Tool (MMAT). Results: The review identified three domains of factors and the ways in which each factor shapes older adults’ virtual care experiences: (1) personal factors influencing virtual care use and demand (e.g., age, education, language, income, immigration status, community sizes), (2) resource factors impacting virtual care adoption (e.g., technology access, support), and (3) varying virtual care experiences among older adults (e.g., in assessment and communication efficacy, privacy, care quality, convenience, safety, and costs). Conclusions: This review highlights the complexities of virtual care engagement among older adults and underscores the need for inclusive, tailored strategies to improve the accessibility and effectiveness of virtual care delivery in both pandemic and post-pandemic contexts. Full article
(This article belongs to the Special Issue Aging and Older Adults’ Healthcare)
Show Figures

Figure 1

23 pages, 19679 KiB  
Article
Bridge Damage Identification Using Time-Varying Filtering-Based Empirical Mode Decomposition and Pre-Trained Convolutional Neural Networks
by Shenghuan Zeng, Jian Cui, Ding Luo and Naiwei Lu
Sensors 2025, 25(15), 4869; https://doi.org/10.3390/s25154869 (registering DOI) - 7 Aug 2025
Abstract
Structural damage identification provides a theoretical foundation for the operational safety and preventive maintenance of in-service bridges. However, practical bridge health monitoring faces challenges in poor signal quality, difficulties in feature extraction, and insufficient damage classification accuracy. This study presents a bridge damage [...] Read more.
Structural damage identification provides a theoretical foundation for the operational safety and preventive maintenance of in-service bridges. However, practical bridge health monitoring faces challenges in poor signal quality, difficulties in feature extraction, and insufficient damage classification accuracy. This study presents a bridge damage identification framework integrating time-varying filtering-based empirical mode decomposition (TVFEMD) with pre-trained convolutional neural networks (CNNs). The proposed method enhances the key frequency-domain features of signals and suppresses the interference of non-stationary noise on model training through adaptive denoising and time–frequency reconstruction. TVFEMD was demonstrated in numerical simulation experiments to have a better performance than the traditional EMD in terms of frequency separation and modal purity. Furthermore, the performances of three pre-trained CNN models were compared in damage classification tasks. The results indicate that ResNet-50 has the best optimal performance compared with the other networks, particularly exhibiting better adaptability and recognition accuracy when processing TVFEMD-denoised signals. In addition, the principal component analysis visualization results demonstrate that TVFEMD significantly improves the clustering and separability of feature data, providing clearer class boundaries and reducing feature overlap. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

14 pages, 514 KiB  
Case Report
Thallium Exposure Secondary to Commercial Kale Chip Consumption: California Case Highlights Opportunities for Improved Surveillance and Toxicological Understanding
by Asha Choudhury, Jefferson Fowles, Russell Bartlett, Mark D. Miller, Timur Durrani, Robert Harrison and Tracy Barreau
Int. J. Environ. Res. Public Health 2025, 22(8), 1235; https://doi.org/10.3390/ijerph22081235 (registering DOI) - 7 Aug 2025
Abstract
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels [...] Read more.
Background: Thallium is a metal that is ubiquitous in our natural environment. Despite its potential for high toxicity, thallium is understudied and not regulated in food. The California Department of Public Health was alerted to a household cluster of elevated urine thallium levels noted among a mother (peak 5.6 µg/g creatinine; adult reference: ≤0.4 µg/g creatinine) and her three young children (peak 10.5 µg/g creatinine; child reference: ≤0.8 µg/g creatinine). Objectives: This case report identifies questions raised after a public health investigation linked a household’s thallium exposure to a commercially available food product. We provide an overview of the public health investigation. We then explore concerns, such as gaps in toxicological data and limited surveillance of thallium in the food supply, which make management of individual and population exposure risks challenging. Methods: We highlight findings from a cross-agency investigation, including a household exposure survey, sampling of possible environmental and dietary exposures (ICP-MS analysis measured thallium in kale chips at 1.98 mg/kg and 2.15 mg/kg), and monitoring of symptoms and urine thallium levels after the source was removed. We use regulatory and research findings to describe the challenges and opportunities in characterizing the scale of thallium in our food supply and effects of dietary exposures on health. Discussion: Thallium can bioaccumulate in our food system, particularly in brassica vegetables like kale. Thallium concentration in foods can also be affected by manufacturing processes, such as dehydration. We have limited surveillance data nationally regarding this metal in our food supply. Dietary reviews internationally show increased thallium intake in toddlers. Limited information is available about low-dose or chronic exposures, particularly among children, although emerging evidence shows that there might be risks associated at lower levels than previously thought. Improved toxicological studies are needed to guide reference doses and food safety standards. Promising action towards enhanced monitoring of thallium is being pursued by food safety agencies internationally, and research is underway to deepen our understanding of thallium toxicity. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

27 pages, 1061 KiB  
Review
Instruments and Measurement Techniques to Assess Extremely Low-Frequency Electromagnetic Fields
by Phoka C. Rathebe and Mota Kholopo
Sensors 2025, 25(15), 4866; https://doi.org/10.3390/s25154866 - 7 Aug 2025
Abstract
This study presents a comprehensive evaluation and selection framework for extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. Recognizing the diversity of application environments and technical constraints, the framework addresses the challenges of selecting appropriate tools for specific scenarios. It integrates a structured, quantitative [...] Read more.
This study presents a comprehensive evaluation and selection framework for extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. Recognizing the diversity of application environments and technical constraints, the framework addresses the challenges of selecting appropriate tools for specific scenarios. It integrates a structured, quantitative approach through a weighted scoring matrix that evaluates instrumentation across six criteria: monitoring duration, sensitivity, environmental adaptability, biological/regulatory relevance, usability, and cost. Complementing this is a logic-based flowchart that visually guides decision-making based on user-defined operational needs. The framework is applied to a realistic occupational case study, demonstrating its effectiveness in producing evidence-based, scenario-sensitive instrument recommendations. This method provides stakeholders with a transparent and adaptable tool for ELF-EMF device selection. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

24 pages, 2199 KiB  
Review
Smart Walking Aids with Sensor Technology for Gait Support and Health Monitoring: A Scoping Review
by Stefan Resch, Aya Zirari, Thi Diem Quynh Tran, Luca Marco Bauer and Daniel Sanchez-Morillo
Technologies 2025, 13(8), 346; https://doi.org/10.3390/technologies13080346 - 7 Aug 2025
Abstract
Smart walking aids represent a growing trend in assistive technologies designed to support individuals with mobility impairments in their daily lives and rehabilitation. Previous research has introduced sensor-integrated systems that provide user feedback to enhance safety and functional mobility. However, a comprehensive overview [...] Read more.
Smart walking aids represent a growing trend in assistive technologies designed to support individuals with mobility impairments in their daily lives and rehabilitation. Previous research has introduced sensor-integrated systems that provide user feedback to enhance safety and functional mobility. However, a comprehensive overview of their technological and functional characteristics is lacking. To address this gap, this scoping review systematically mapped the current state of research in sensor-based walking aids, focusing on device types, sensor technologies, application contexts, target populations, and reported outcomes. In addition, integrated artificial intelligence (AI)-based approaches for functional support and health monitoring were examined. Following PRISMA-ScR guidelines, 35 peer-reviewed articles were identified from three databases: ACM Digital Library, IEEE Xplore, and Web of Science. Extracted data were thematically analyzed and synthesized across device types (e.g., walking canes, crutches, walkers, rollators) and use cases, including gait training, fall prevention, and daily support. Findings show that, while many prototypes show promising features, few have been evaluated in clinical settings or over extended periods. A lack of standardized methods for sensor location assessment, often the superficial implementation of feedback modalities, and limited integration with other assistive technologies were identified. In addition, system validation and user testing lack consensus, with few long-term studies and often incomplete demographic data. Diversity in data communication approaches and the heterogeneous use of AI algorithms were also notable. The review highlights key challenges and research opportunities to guide the future development of intelligent, user-centered mobility systems. Full article
Show Figures

Figure 1

12 pages, 224 KiB  
Review
Italian Guidelines for Cardiological Evaluation in Competitive Football Players: A Detailed Review of COCIS Protocols
by Umile Giuseppe Longo, Georg Ahlbaumer, Roberto Vannicelli, Emanuele Gregorace, Davide Ortolina, Guido Nicodemi, Daniele Altieri, Arianna Carnevale, Silvia Carucci, Alessandra Colella, Francesco Scalfaro and Erika Lemme
Healthcare 2025, 13(15), 1932; https://doi.org/10.3390/healthcare13151932 - 7 Aug 2025
Abstract
Background: Medical clearance for competitive sports is vital to safeguarding athletes’ health, particularly in high-intensity disciplines like football. In Italy, fitness assessments follow stringent protocols set by the Commissione di Vigilanza per il controllo dell’Idoneità Sportiva (COCIS), with a strong focus on cardiovascular [...] Read more.
Background: Medical clearance for competitive sports is vital to safeguarding athletes’ health, particularly in high-intensity disciplines like football. In Italy, fitness assessments follow stringent protocols set by the Commissione di Vigilanza per il controllo dell’Idoneità Sportiva (COCIS), with a strong focus on cardiovascular screening. The primary goal is to prevent sudden cardiac death (SCD), a rare but catastrophic event in athletes. Methods: This paper provides an in-depth narrative review of the 2023 COCIS guidelines, examining the cardiological screening process, required diagnostic tests, management of identified cardiovascular conditions, and the protocols’ role in reducing SCD risk. Results: Comparisons with international standards underscore the effectiveness of the Italian approach. Conclusions: The COCIS 2023 guidelines provide clear, evidence-based protocols for cardiovascular risk assessment, significantly enhancing athlete safety and reducing the incidence of SCD in high-intensity sports. Full article
(This article belongs to the Special Issue Sports Trauma: From Prevention to Surgery and Return to Sport)
20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

21 pages, 885 KiB  
Article
Synergistic Effect of Community Environment on Cognitive Function in Elderly People
by Tao Shen, Ying Li and Man Zhang
Buildings 2025, 15(15), 2792; https://doi.org/10.3390/buildings15152792 - 7 Aug 2025
Abstract
With rapid global aging, the community environment has become a critical factor influencing cognitive health in older adults. However, most existing studies focus on single environmental attributes and rely on linear analytical methods, which fail to capture the complex and synergistic effects of [...] Read more.
With rapid global aging, the community environment has become a critical factor influencing cognitive health in older adults. However, most existing studies focus on single environmental attributes and rely on linear analytical methods, which fail to capture the complex and synergistic effects of community features. Guided by an integrated theoretical perspective on environmental psychology, aging, and cognitive health, this study examines how multiple community environmental factors jointly affect cognitive function in elderly people. A case study was conducted among 215 older residents in Shanghai, China. An exploratory factor analysis (EFA) identified the following five key dimensions of community environment: pedestrian friendliness, blue–green spaces, infrastructure, space attractiveness, and safety. We then applied both Partial Least Squares Structural Equation Modeling (PLS-SEM) and Fuzzy Set Qualitative Comparative Analysis (fsQCA) to reveal linear and configurational relationships. The findings showed that pedestrian friendliness, blue–green spaces, and space attractiveness significantly enhance cognitive health, while fsQCA highlighted multiple pathways that underscore the non-linear and synergistic interactions among environmental features. These results provide theoretical insights into the mechanisms linking community environments and cognitive function and offer practical guidance for designing age-friendly communities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 2328 KiB  
Article
Characteristics, Sources, and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils and Sediments in the Yellow River Delta, China
by Yilei Zhao, Yuxuan Wu, Yue Qi, Junsheng Li, Xueyan Huang, Yuchen Hou, Haojing Hao and Shuyu Zhu
Land 2025, 14(8), 1608; https://doi.org/10.3390/land14081608 - 7 Aug 2025
Abstract
This study investigates the presence, origin, and associated ecological and human health risks of polycyclic aromatic hydrocarbons (PAHs) in soils from uncultivated lands and beach sediments within the Yellow River Delta (YRD), China. The measured concentrations of 16 priority PAHs in soils spanned [...] Read more.
This study investigates the presence, origin, and associated ecological and human health risks of polycyclic aromatic hydrocarbons (PAHs) in soils from uncultivated lands and beach sediments within the Yellow River Delta (YRD), China. The measured concentrations of 16 priority PAHs in soils spanned 24.97–326.42 ng/g (mean: 130.88 ng/g), while concentrations in sediments ranged from 46.17 to 794.32 ng/g, averaging 227.22 ng/g. In terms of composition, low-molecular-weight PAHs predominated in soil samples, whereas high-molecular-weight compounds were more prevalent in sediments. The positive matrix factorization (PMF) model results suggested that petroleum pollution and fuel combustion were the main sources of PAHs in soils, whereas the contribution in sediments was derived from petroleum and traffic pollution. The ecological risk assessment results indicated that there existed no obvious ecological risk of soil PAHs, but sediment PAHs could negatively impact the surrounding ecological environment, especially in the northern coastal beach area. In addition, soil PAHs posed no potential carcinogenic risk to humans. Further pollution prevention and management measures are required in this region to ensure the safety of the environment. Full article
Show Figures

Figure 1

Back to TopTop