Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (769)

Search Parameters:
Keywords = harmless

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4120 KB  
Article
Investigation on the Mechanical Response of a Prefabricated Underground Pipe Gallery with a Flexible Energy Dissipation Node: An Experimental Study
by Enhua Zhang, Haiying Cao, Ping Wang, Zhen Zhao and Jiefeng Liu
Buildings 2025, 15(19), 3521; https://doi.org/10.3390/buildings15193521 - 30 Sep 2025
Abstract
Prefabricated pipe galleries have received increasing attention attributed to their advantages of a convenient construction, short cycle, and high intensification. In this study, a flexible-connection node structure for underground pipe galleries is proposed. The structure made by a polyurea grouting slurry is adopted [...] Read more.
Prefabricated pipe galleries have received increasing attention attributed to their advantages of a convenient construction, short cycle, and high intensification. In this study, a flexible-connection node structure for underground pipe galleries is proposed. The structure made by a polyurea grouting slurry is adopted as the “outer skin” of the node, and the spring vibration isolation bearing is adopted as the “inner rib” of the node. By conducting a series of model tests, the influence of the node types on the mechanical behavior of underground pipe galleries under dynamic compaction and mechanical vibration is studied. The results show that the acceleration and dynamic strain attenuation rates of the flexible-connection node under dynamic compaction are 2.33–3.13 times and 2.63–3.83 times as that of the rigid-connection node, respectively. The acceleration and dynamic strain attenuation rate of the flexible-connection node under machine vibration are 3.01–3.53 times and 4.5–14.73 times as that of the rigid-connection node, respectively. Although residual dynamic earth pressure is monitored in the pipe gallery structure under both connection modes, a reduction on the pressure is achieved by the flexible-connection node. This study would be helpful for the design, operation, and maintenance of underground pipe gallery structures. Full article
(This article belongs to the Special Issue Advances in Vibration Control of Civil Structures)
Show Figures

Figure 1

29 pages, 1477 KB  
Article
An Orthogonal Feature Space as a Watermark: Harmless Model Ownership Verification by Watermarking Feature Weights
by Fanfei Yan, Chenhan Sun, Yuhan Huang, Jian Guo and Hengyi Ren
Electronics 2025, 14(19), 3888; https://doi.org/10.3390/electronics14193888 - 30 Sep 2025
Abstract
High-performance deep learning models require extensive computational resources and datasets, making their ownership protection a pressing concern. To address this challenge, we focus on advancing model security through robust watermarking mechanisms. In this work, we propose a novel deep neural network watermarking method [...] Read more.
High-performance deep learning models require extensive computational resources and datasets, making their ownership protection a pressing concern. To address this challenge, we focus on advancing model security through robust watermarking mechanisms. In this work, we propose a novel deep neural network watermarking method that embeds ownership information directly within the image feature space. Unlike existing approaches that often suffer from low embedding success rates and significant performance degradation, our method leverages convolutional kernels with orthogonal preferences to extract multiperspective features, which are then linearly mapped at the output layer for watermark embedding. Furthermore, we introduce an orthogonal regularization constraint into the loss function to increase the watermark robustness. This constraint enforces orthogonality in both convolutional and fully connected layer weights, suppresses redundancy in hidden layer representations, and minimizes interference between the watermark and the model’s original feature space. Through these innovations, we significantly improve the embedding reliability and preserve model integrity. Experimental results obtained on ResNet-18 and ResNet-101 demonstrate a 100% watermark detection rate with less than 1% performance impact, underscoring the practical security value of our approach. Comparative analysis further validates that our method achieves superior harmlessness and effectiveness relative to state-of-the-art techniques. These contributions highlight the role of our work in strengthening intellectual property protection and the trustworthy deployment of deep learning models. Full article
Show Figures

Figure 1

20 pages, 4745 KB  
Article
Water-Soaking Pretreatment for Enhanced Performance and Heavy Metal Immobilization in Alkali-Activated Pyrolysis MSWIFA Materials
by Shengyu Zhong, Liang Shen, Wanlan Xu, Yi Fang and Yunfeng Pan
Materials 2025, 18(19), 4520; https://doi.org/10.3390/ma18194520 - 28 Sep 2025
Abstract
This study demonstrates that synergistic pyrolysis and water-soaking pretreatment transforms municipal solid waste incineration fly ash (MSWI FA) into high-performance alkali-activated materials when combined with ground granulated blast furnace slag (GGBS). Pyrolysis reduced chlorine content by 94.3% and increased reactive components by 44.4%, [...] Read more.
This study demonstrates that synergistic pyrolysis and water-soaking pretreatment transforms municipal solid waste incineration fly ash (MSWI FA) into high-performance alkali-activated materials when combined with ground granulated blast furnace slag (GGBS). Pyrolysis reduced chlorine content by 94.3% and increased reactive components by 44.4%, thereby shifting hydration products from Friedel’s salt to ettringite (AFt). Subsequent water-soaking eliminated expansion-causing elemental aluminum, liberating activators for enhanced reaction completeness (29% higher cumulative heat release) and enabling a denser matrix with 71.5% harmless pores (<20 nm). The dual-treated FA (T-PFA) achieved exceptional mechanical performance—295.6% higher 56-day compressive strength versus untreated FA at a 1:1 ratio—while reducing porosity by 29.1% relative to pyrolyzed-only FA. Despite 22–38% increased total heavy metal content post-pyrolysis, matrix densification and enhanced C-A-S-H/AFt formation reduced Cr/Cd/Cu/Pb leaching by 11.3–66.7% through strengthened physical encapsulation and chemisorption, with all leachates meeting stringent HJ 1134-2020 thresholds. This integrated approach provides an efficient, environmentally compliant pathway for MSWI FA valorization in low-carbon construction materials. Full article
(This article belongs to the Topic Green Construction Materials and Construction Innovation)
Show Figures

Graphical abstract

23 pages, 1473 KB  
Article
Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass
by Zaineb Dhaouefi, Salma Taktek, François Bélanger, Pauline Fortin, Julie Charbonneau, Sébastien Lange and Habib Horchani
Energies 2025, 18(19), 5151; https://doi.org/10.3390/en18195151 - 28 Sep 2025
Abstract
Anaerobic digestion (AD) is an environmentally sustainable approach for managing invasive plants species, mitigating pollution, and generating renewable energy. However, the complex structure of these biomasses limits their biodegradability and necessitates pretreatment to enhance methane production. This study explored the biotransformation of two [...] Read more.
Anaerobic digestion (AD) is an environmentally sustainable approach for managing invasive plants species, mitigating pollution, and generating renewable energy. However, the complex structure of these biomasses limits their biodegradability and necessitates pretreatment to enhance methane production. This study explored the biotransformation of two invasive species, Reynoutria japonica and Phragmites australis, harvested across diverse phenological stages. Bioprocess intensification was achieved through a single-stage process using a hydrolytic–methanogenic consortium under thermophilic conditions (55 °C, 25 days). The impact of harvest timing distinct plant fractions (shoot vs. root) on biogas production was meticulously evaluated. Results revealed progressive biogas production. Notably, winter-harvested shoot fractions exhibited the highest methane-rich biogas, achieving 551.12 ± 33.07 mL/g VS for Reynoutria and 401.42 ± 24.09 mL/g VS for Phragmites. The resulting digestate demonstrates a rich composition of essential macronutrients (N-P-K) vital for plant growth, highlighting its potential as a valuable biofertilizer. Significantly, complete inhibition of seed germination was observed, confirming the process’s efficacy in preventing the further propagation of invasive species. This research underscores that thermophilic anaerobic digestion, coupled with hydrolytic treatment, is a significant advancement in the valorization of invasive biomasses, contributing to both renewable energy production and ecological recovery. Full article
Show Figures

Figure 1

21 pages, 1819 KB  
Review
Research Progress on the Utilization of Semi-Dry Calcium-Based Desulfurization Dross in China
by Min Pan, Ruiying Wang, Shejiao Yan, Xiangqian Du, Zhenxing Yin, Guangchao Wu, Jiamao Li and Canhua Li
Materials 2025, 18(19), 4455; https://doi.org/10.3390/ma18194455 - 24 Sep 2025
Viewed by 59
Abstract
As a solid waste generated during the desulfurization process of coal-fired power plants, the output of desulfurization dross is increasing year by year. If not properly treated, it may occupy land and potentially pollute the environment. This article reviews the physicochemical properties of [...] Read more.
As a solid waste generated during the desulfurization process of coal-fired power plants, the output of desulfurization dross is increasing year by year. If not properly treated, it may occupy land and potentially pollute the environment. This article reviews the physicochemical properties of desulfurization dross and the progress in its resource utilization. It specifically focuses on the application potential of semi-dry desulfurization dross, emphasizing how its comprehensive resource utilization can reduce environmental pollution and generate considerable economic benefits for related industries. It should be noted, however, that the leaching of heavy metals and the strong alkalinity of desulfurization dross may pose environmental risks such as soil and groundwater contamination. Current research still requires further improvement in the systematic assessment and management strategies of these risks. This review highlights the need to optimize pretreatment technologies for stabilizing desulfurization dross and enhance environmental risk management, to facilitate its large-scale and high-value utilization. This article also looks toward the research directions for semi-dry calcium-based desulfurization dross in the future, aiming to provide a reference for the sustainable development and environmental protection of semi-dry desulfurization dross. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

14 pages, 1452 KB  
Article
Effect of Different Seaweed Extracts on Yield, Quality and Physiological Characteristics of the Alphonse Lavallée (Vitis vinifera L.) Grape Variety
by Osman Doğan and Kevser Yazar
Horticulturae 2025, 11(9), 1118; https://doi.org/10.3390/horticulturae11091118 - 15 Sep 2025
Viewed by 451
Abstract
Grapes are one of the most preferred fruit species in the world. Increasing yield and quality in table grape production has always been the top priority for producers. Producers’ interest in biostimulants from sustainable agricultural practices for quality and yield increase is increasing [...] Read more.
Grapes are one of the most preferred fruit species in the world. Increasing yield and quality in table grape production has always been the top priority for producers. Producers’ interest in biostimulants from sustainable agricultural practices for quality and yield increase is increasing day by day. Seaweed extracts (SWEs), which are among the most preferred biostimulants, are shown as an organic input due to their ecological safety and harmlessness. In this study, Ecklonia maxima (Em), Macrocystis integrifolia (Mi) and Ascophyllum nodosum (An), which are brown SWEs, were applied to the Alphonse Lavallée (AL) grape variety four times via the leaves. As a result of the applications, yield, quality and physiological parameters were examined. As a result of the study, all SWE applied increased yield per vine between 28% and 47%. SWEs improved cluster and berry characteristics and increased phenolic content and antioxidant activity compared to the control. They also contributed to physiological characteristics of the grapevine, such as photosynthetic activity and stomatal conductance. It is thought that SWEs, which are among the sustainable agricultural practices, will improve the yield and quality of grapes not only in organic farming but in all agricultural practices. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

14 pages, 707 KB  
Systematic Review
Health Effects from Secondhand Exposure to E-Cigarettes: A Systematic Review of Peer-Reviewed Articles from 2004–2024
by Roengrudee Patanavanich, Chawaphat Thatasawakul, Kamolnut Youngcharoen, Veerapattra Soponvashira and Panpetch Pichetsin
Int. J. Environ. Res. Public Health 2025, 22(9), 1408; https://doi.org/10.3390/ijerph22091408 - 10 Sep 2025
Viewed by 1724
Abstract
Background: Since the emergence of e-cigarettes on the market in the early 2000s, the prevalence of e-cigarette use has increased globally. The health risks of using e-cigarettes have been increasingly revealed; however, the health effects on non-users exposed to e-cigarettes are less [...] Read more.
Background: Since the emergence of e-cigarettes on the market in the early 2000s, the prevalence of e-cigarette use has increased globally. The health risks of using e-cigarettes have been increasingly revealed; however, the health effects on non-users exposed to e-cigarettes are less known. Methods: A systematic review was conducted of peer-reviewed articles from 2004 to October 2024 from PubMed and Embase. We focused on the studies that described health outcome measures among non-smokers/vapers exposed to secondhand e-cigarettes. We excluded animal studies and those that did not include human participants. We also omitted studies with financial conflicts of interest with the tobacco industry. Results: Of the 8635 studies we found in our search, 16 were included in the final review. Study designs included in our review included a case study, a cohort, eight experimental, four cross-sectional studies, and two observational studies. Health outcome measures were self-reported health symptoms and biomarkers. Ten out of fourteen studies examined respiratory health risks, six described immunological effects, two examined cardiovascular risks, and one explored mental health effects. Self-reported health symptoms such as bronchitis, shortness of breath, asthma, throat irritations, ear infections, and mental health disorders were observed among secondhand e-cigarette exposures when compared with controls. Biomarker measures varied among studies, except for cotinine concentrations of non-smokers/vapers exposed to secondhand e-cigarettes, which were likely to be higher than non-exposed. However, all studies encountered potential limitations. Conclusions: Our review found that secondhand e-cigarette exposure is not harmless and may have negative health consequences. However, higher-quality prospective studies remain essential to examine long-term secondhand exposure. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

11 pages, 731 KB  
Article
Intravenous Immunoglobulin in Acute Exacerbations of Fibrotic Interstitial Lung Diseases: A Retrospective, Real-World Study
by Vasilina Sotiropoulou, Eva Theochari, Matthaios Katsaras, Panagiota Tsiri, Dimitrios Komninos, Ioannis Christopoulos, Georgios Tsirikos, Christina Kalogeropoulou, Dimitrios Daoussis, Kyriakos Karkoulias, Fotios Sampsonas and Argyrios Tzouvelekis
Medicina 2025, 61(9), 1594; https://doi.org/10.3390/medicina61091594 - 4 Sep 2025
Viewed by 340
Abstract
Background and Objectives: Despite the devastating impact of acute exacerbations of fibrotic interstitial lung diseases (AE-fILDs), established treatment strategies are majorly lacking. The therapeutic potential of intravenous immunoglobulin (IVIG) in AE-fILDs was explored considering its anti-inflammatory and immunomodulatory effects, as well as [...] Read more.
Background and Objectives: Despite the devastating impact of acute exacerbations of fibrotic interstitial lung diseases (AE-fILDs), established treatment strategies are majorly lacking. The therapeutic potential of intravenous immunoglobulin (IVIG) in AE-fILDs was explored considering its anti-inflammatory and immunomodulatory effects, as well as the immunocompromised status of fILD patients and the high frequency of infections that AE-fILDs triggers. Materials and Methods: This was an observational, retrospective study. We investigated the therapeutic potential of IVIG in patients hospitalized for AE-fILDs between May 2021 and November 2024. Results: We included 39 patients diagnosed with AE-fILDs. All patients received IVIG (total dose of 1 g/kg, divided into three daily doses), pulse corticosteroids for three days and broad-spectrum antibiotics. No adverse events were considered to be related to IVIG therapy during the study period. The in-hospital and the 90-day mortality were 10 (26%) and 13 (33%) patients, respectively. Twenty-nine patients (74%) were discharged and 18 of them (62%) were in need of long-term oxygen therapy. The mean PaO2/FiO2 ratio (P/F ratio) was 183 mmHg on admission and 294 mmHg on discharge (t-test, p < 0.0001). Conclusions: This study suggests a potential therapeutic signal, indicating that IVIG is a relatively harmless, well-tolerated, and a potentially effective add-on treatment to current therapeutic approaches. Further research is essential to clarify the role of IVIG, determine optimal treatment protocols, and assess its efficacy in different ILD subtypes. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

26 pages, 3958 KB  
Article
Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond
by Victoria Rebeca Dana González Epelboim, Diego G. Lamas, Cristián Huck-Iriart, Ezequiel Nicolas Caputo, Maria Julia Altube, Horacio Emanuel Jerez, Yamila Roxana Simioni, Kajal Ghosal, Maria Jose Morilla, Leticia Herminia Higa and Eder Lilia Romero
Int. J. Mol. Sci. 2025, 26(17), 8607; https://doi.org/10.3390/ijms26178607 - 4 Sep 2025
Viewed by 565
Abstract
The membranes of halophilic archaea are a source of novel biomaterials, mainly of isoprenoid nature, with therapeutic properties practically unraveled. Here, we explored the antitumoral activity of neutral archaeolipids (NAs, such as bacterioruberin, astaxanthin, and dihydrosqualene) present in the total archaeolipids (TAs) (a [...] Read more.
The membranes of halophilic archaea are a source of novel biomaterials, mainly of isoprenoid nature, with therapeutic properties practically unraveled. Here, we explored the antitumoral activity of neutral archaeolipids (NAs, such as bacterioruberin, astaxanthin, and dihydrosqualene) present in the total archaeolipids (TAs) (a fraction from the first step of lipid extraction by the modified Blight and Dyer technique) extracted from halophilic archaea Halorubrum tebenquichense, and formulated as TA-nanoarchaeosomes (TA: polar archaeolipids (PAs): Tween 80, 5:5:4 w:w:w, TA-nanoARC). The structure of 300.3 ± 84.2 nm TA-nanoARC of 0.59 ± 0.12 polydispersity index and −20 ± 3.7 mV ζ potential as determined by SAXS modelling, revealed that NA reduced the hydrophobic core and enlarged its hydrophilic section in comparison to TA-lacking bilayers (nanoARC), while preserving the width (~50 Å) and unilamellarity. Stable to storage and nebulization, TA-nanoARC was cytotoxic on A549 cells after 48 h, with an IC50 expressed as [bacterioruberin] of 0.15 μg/mL (~0.20 µM), comparable to or lower than the IC50 of docetaxel or cisplatin. Such cytotoxicity was exerted at a concentration harmless to macrophages (mTHP-1 cells). Besides, the conditioned medium from TA-nanoARC nebulized on A549 cells reduced the expression of the CD204/SRA-1, an M2 phenotype marker, and induced pro-inflammatory activity, comparable to or to a greater extent than that induced by lipopolysaccharide, including IL-6 and TNF-α, in mTHP-1 as a model of tumor-associated macrophages. The endocytosis of TA-nanoARC by A549 cells induced Lysotracker red fluorescence to fade and blur. This suggested the internalization of the highly viscous and ordered TA-nanoARC rich in NAs and subsequent lysosomal dysfunction (and not its antioxidant activity), as responsible for the selective damage on A549 cells. These are the first results showing that nebulized TA-nanoARC, lethal to A549 cells and modulating mTHP-1 cell phenotype, may act as antitumorals in the absence of cytotoxic drugs. Full article
Show Figures

Graphical abstract

19 pages, 5919 KB  
Article
Degradation of Polymers and Heavy Metals in Waste Drilling Fluid by Sulfur-Doped BiOBr0.5Cl0.5 Photocatalysts
by Tengfei Dong, Guancheng Jiang, Sihe Jiang, Yinbo He and Lili Yang
Gels 2025, 11(9), 684; https://doi.org/10.3390/gels11090684 - 27 Aug 2025
Viewed by 287
Abstract
Waste drilling fluids represent a complex gel–colloidal system containing structurally stable polymeric networks and heavy-metal ions that can cause tremendous damage to the ecosystem. The current disposal methods, like solidification/landfills, formation reinjection, and chemical treatment, commonly suffer from high secondary pollution risks, poor [...] Read more.
Waste drilling fluids represent a complex gel–colloidal system containing structurally stable polymeric networks and heavy-metal ions that can cause tremendous damage to the ecosystem. The current disposal methods, like solidification/landfills, formation reinjection, and chemical treatment, commonly suffer from high secondary pollution risks, poor resource recovery, and incomplete detoxification. This paper developed a photocatalytic approach to complex gel system treatment by hydrothermally synthesizing a novel sulfur-doped, oxygen-vacancy-modified 3D flower-like xS-BiOBr0.5Cl0.5 structure which effectively narrowed the bandgap of BiOX and thus significantly enhanced its catalytic activity. The chemical composition, morphology, specific surface areas, and bandgaps of the materials were characterized. The photocatalytic performance and cyclic stability of the materials were measured, and 0.5S-BiOBr0.5Cl0.5 showed the best photocatalytic performance. The rhodamine B(RhB) degradation and polymer degradation efficiencies of 0.5S-BiOBr0.5Cl0.5 were up to 91% and 79%, respectively, while the Hg(II), Cr(VI), and Cr(III) reduction efficiencies of the material were up to 48.10%, 96.58%, and 96.41%, respectively. The photocatalytic mechanism of the xS-BiOBr0.5Cl0.5 materials was evaluated through an oxygen vacancy analysis, active species capture experiments, and density functional theory (DFT) computations. Overall, the xS-BiOBr0.5Cl0.5 materials can provide a low-cost and harmless treatment method for waste drilling fluids and promote the “green” development of oil and gas. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

25 pages, 609 KB  
Review
Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants
by Dongning Yang, Yin Hou, Chao Wei, Jianan Ling and Xin Zheng
Toxics 2025, 13(8), 694; https://doi.org/10.3390/toxics13080694 - 20 Aug 2025
Viewed by 1086
Abstract
Microcosm technology serves as a sophisticated tool for simulating natural ecosystems, facilitating the examination of pollutants’ ecological impacts across population, community, and ecosystem scales. Currently, this technology finds extensive application in ecological toxicology and ecological risk assessment research. This concise review highlights the [...] Read more.
Microcosm technology serves as a sophisticated tool for simulating natural ecosystems, facilitating the examination of pollutants’ ecological impacts across population, community, and ecosystem scales. Currently, this technology finds extensive application in ecological toxicology and ecological risk assessment research. This concise review highlights the utility of microcosm technology in ecotoxicology, detailing the establishment of aquatic microcosms and analyzing key research trends to assess the ecological impacts of pollutants. It emphasizes the evaluation of pesticides, industrial chemicals, and heavy metals, providing a comparative analysis of safety thresholds derived from microcosm studies versus other methods. Finally, the review underscores the four urgent directions for future exploration: (a) track pollutant metabolites in microcosms; (b) develop microcosms with diverse species for natural ecosystem mimicry; (c) use DNA macrobarcoding to assess zooplankton and link it to species abundance; (d) study reasons behind no observed effect concentration (NOEC) vs. the 95% harmless concentration (HC5) values in microcosm studies. The determination of these directions helps to fill the gaps in understanding the fate and effects of pollutants within controlled ecosystem simulations. Full article
(This article belongs to the Special Issue Environmental Toxicology and Risk Assessment of Priority Substances)
Show Figures

Graphical abstract

29 pages, 4115 KB  
Article
In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach
by Eman G. Youssef, Khaled Elnesr and Amro Hanora
Diseases 2025, 13(8), 259; https://doi.org/10.3390/diseases13080259 - 13 Aug 2025
Viewed by 507
Abstract
Background: While most Escherichia coli strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of E. coli O104:H4, involving both enteroaggregative (EAEC) and enterohemorrhagic (EHEC) strains, occurred [...] Read more.
Background: While most Escherichia coli strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of E. coli O104:H4, involving both enteroaggregative (EAEC) and enterohemorrhagic (EHEC) strains, occurred in Europe, resulting in symptoms ranging from bloody diarrhea to life-threatening colitis and hemolytic uremic syndrome (HUS). Since treatment options remain limited and have changed little over the past 40 years, there is an urgent need for an effective vaccine. Such a vaccine would offer major public health and economic benefits by preventing severe infections and reducing outbreak-related costs. A multiepitope vaccine approach, enabled by advances in immunoinformatics, offers a promising strategy for targeting HUS-causing E. coli (O104:H4 and O157:H7 serotypes) with minimal disruption to normal microbiota. This study aimed to design an immunogenic multiepitope vaccine (MEV) construct using bioinformatics and immunoinformatic tools. Methods and Results: Comparative proteomic analysis identified 672 proteins unique to E. coli O104:H4, excluding proteins shared with the nonpathogenic E. coli K-12-MG1655 strain and those shorter than 100 amino acids. Subcellular localization (P-SORTb) identified 17 extracellular or outer membrane proteins. Four proteins were selected as vaccine candidates based on transmembrane domains (TMHMM), antigenicity (VaxiJen), and conservation among EHEC strains. Epitope prediction revealed ten B-cell, four cytotoxic T-cell, and three helper T-cell epitopes. Four MEVs with different adjuvants were designed and assessed for solubility, stability, and antigenicity. Structural refinement (GALAXY) and docking studies confirmed strong interaction with Toll-Like Receptor 4 (TLR4). In silico immune simulations (C-ImmSim) indicated robust humoral and cellular immune responses. In Conclusions, the proposed MEV construct demonstrated promising immunogenicity and warrants further validation in experimental models. Full article
Show Figures

Figure 1

50 pages, 6557 KB  
Article
Gastroprotective, Antioxidant, Anti-Inflammatory, and Toxicological Evaluation of Stem Bark Extracts of Vitellaria paradoxa and Parkia biglobosa
by Brice Dangnon, Durand Dah-Nouvlessounon, S. M. Ismaël Hoteyi, Haziz Sina, Justinian Andrei Tomescu, Kouassi Jean-Michel Akpo, Maxime Machioud Sangare-Oumar, Adolphe Adjanohoun, Olubukola Oluranti Babalola, Emanuel Vamanu and Lamine Baba-Moussa
Pharmaceuticals 2025, 18(8), 1184; https://doi.org/10.3390/ph18081184 - 11 Aug 2025
Viewed by 660
Abstract
Background/Objectives: Oxidative stress is a pathophysiological factor that causes challenging issues in the treatment of several diseases, including gastric ulcer, inflammatory diseases, and adenocarcinomas. V. paradoxa and P. biglobosa are African plants whose parts are used for treating diseases, including gastrointestinal pathologies. [...] Read more.
Background/Objectives: Oxidative stress is a pathophysiological factor that causes challenging issues in the treatment of several diseases, including gastric ulcer, inflammatory diseases, and adenocarcinomas. V. paradoxa and P. biglobosa are African plants whose parts are used for treating diseases, including gastrointestinal pathologies. This study aimed to characterize the gastroprotective, antioxidant, and anti-inflammatory activities of V. paradoxa and P. biglobosa stem bark extracts based on various solvents. Methods: The phytochemical screening and antioxidant evaluation were performed using radical scavenging (ABTS and DPPH) and reduction (FRAP and APM) methods. The anti-inflammatory activity was performed through an egg albumin denaturation model. The toxicological evaluation was performed on Artemia salina and female Wistar rat models, and the gastroprotective activity was carried out on an ethanolic-induced gastric ulcer rat model. Results: The results reported that V. paradoxa stem bark extracts contain catechin, epicatechin, ferulic acid, apigenin-7-gluc, and hesperidin, while P. biglobosa bark contains chlorogenic acid, catechin, caffeine, epicatechin, and cichoric acid. In the DPPH assay, the lowest scavenging capacities were 1.8 ± 0.21 mmol AAE/mg of dry extract (V. paradoxa, 97% ethanol) and 11.43 ± 0.208 mmol AAE/mg of dry extract (P. biglobosa, 50% ethanol). Similarly, for ABTS, the lowest scavenging capacities were 0.9726 ± 0.03952 mmol AAE/mg of dry extract (V. paradoxa, methanol with 1% HCl) and 1.3 mmol AAE/mg of dry extract (P. biglobosa, 97% ethanol), indicating strong antioxidant capacity. In the FRAP assay, both species reached a maximum reducing power of 2.39 mMol AAE/mg of dry extract (methanolic extract for V. paradoxa; methanol + 1% HCl for P. biglobosa). For APM, the 97% ethanolic extracts again showed the highest total antioxidant capacities: 31.78 ± 1.481 mMol AAE/mg (V. paradoxa) and 31.21 ± 0.852 mMol AAE/mg (P. biglobosa). The stem bark extracts of both V. paradoxa and P. biglobosa were revealed to be harmless in the Artemia salina as well as the rat model. The extracts of V. paradoxa as well as P. biglobosa exerted a stronger gastroprotective effect than omeprazole, a commonly used reference molecule. Conclusions: These extracts, rich in compounds exhibiting strong antioxidant, anti-inflammatory, and gastroprotective activities, surpassed omeprazole in ulcer protection in rat models. Their safety was confirmed in both Artemia salina and rodent assays. Future studies will explore their immunomodulatory, antiproliferative activities in vitro and in vivo and, specifically, the efficacy of isolated compounds in gastric adenocarcinoma models to assess these plants’ anticancer potential and elucidate their underlying mechanisms. Full article
Show Figures

Graphical abstract

18 pages, 4832 KB  
Article
Variable-Sized Green Mussel Shell Waste: Potential Use in Artificial Sand Production
by Pimthong Thongnopkun, Worachai Roubroumlert and Chutiparn Lertvachirapaiboon
Sustainability 2025, 17(16), 7214; https://doi.org/10.3390/su17167214 - 9 Aug 2025
Viewed by 849
Abstract
This article presents an innovative approach as a potential alternative for the reuse of discarded green mussel shells from the fishing and food sectors. This technique entails the use of harmless chemicals and the consumption of energy in an efficient manner to generate [...] Read more.
This article presents an innovative approach as a potential alternative for the reuse of discarded green mussel shells from the fishing and food sectors. This technique entails the use of harmless chemicals and the consumption of energy in an efficient manner to generate shell powder of different dimensions. The shell powder was categorized into three distinct sizes to investigate changes after heat treatment. SEM-EDS was used to analyze particle sizes before calcination and examine the microstructure of heated shell powder. FTIR spectroscopy was conducted to assess the purity of all sizes before and after calcination, showing excellent cleanliness suitable for practical applications. XRD spectroscopy was used to examine the crystal structure, while thermal characteristics and surface color changes during heat treatment were also analyzed due to their impact on final product quality. The variety in particle size enhances the potential for diverse industrial applications. Each size may be suitable for different artificial sand uses, as noted in the conclusion. The proposed method provides both environmental and economic advantages by converting shell waste into a sustainable substitute for artificial sand. It utilizes low-cost, readily available materials and aligns with circular economy principles by reducing shell waste accumulation and dependence on natural aggregates. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Figure 1

13 pages, 2827 KB  
Article
Ultrasonic Nondestructive Testing Image Enhancement Model Based on Super-Resolution Imaging
by Jinxuan Zhu, Guoyou Wang, Kang Luo and Xinfang Zhang
Appl. Sci. 2025, 15(15), 8339; https://doi.org/10.3390/app15158339 - 26 Jul 2025
Viewed by 549
Abstract
Ultrasonic nondestructive testing has been widely used in various industries due to its simple operation and harmlessness for the object to be detected. However, due to the mechanism of ultrasonic image generation, the generated ultrasonic images often have low resolution, which greatly affects [...] Read more.
Ultrasonic nondestructive testing has been widely used in various industries due to its simple operation and harmlessness for the object to be detected. However, due to the mechanism of ultrasonic image generation, the generated ultrasonic images often have low resolution, which greatly affects the final detection results. How to improve the resolution of ultrasonic images has become the key to improving the accuracy of defect detection. Therefore, this paper proposes an ultrasonic super-resolution model based on up- and down-sampling layers and multi-layer residual networks combined with Charbonnier loss function. The degradation features of the image are learned through up- and down-sampling layers, and the intrinsic features of the image are learned through multi-layer residual networks, so that all the feature information of the image is fully learned. The Charbonnier loss function accelerates the convergence of the model. Experimental results show that the model proposed in this paper outperforms the common model performance. Full article
Show Figures

Figure 1

Back to TopTop