Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum Sampling
2.2. Plants Sampling
2.3. Biotransformation Process
2.3.1. Experimental Set up for Batch AD System
2.3.2. Operational Conditions
2.3.3. Biogas Production Kinetics and Simulation
2.3.4. Digestate Valorization: Fertilizing Potential and Innocuity Assays
Fertilizing Potential Evaluation
Digestates Innocuity Test
Validation of Seed Germination Inhibition Using a Thermal Treatment Assay
2.4. Statistical Analysis
3. Results
3.1. Physicochemical and Biochemical Properties of Raw Substrates
3.2. Assessing the Progression of the Biotransformation Process
3.2.1. Physicochemical Characterization of Initial and Post Anaerobic Digestion Mixtures
3.2.2. Carbon Removal and Ammonium Release Efficiency
3.3. Biogas Production Performance
3.3.1. Daily and Cumulative and Biogas Yields
3.3.2. Methane Content
3.4. Digestates Valorization
3.4.1. Fertilizing Potential
3.4.2. Germination Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
ALK | Alkalinity |
BMP | Biochemical Methane Potential |
DM | Dried matter |
I | Inoculum |
N–NH4+ | Ammonium |
Ntot | Total Nitrogen |
P | Phragmites |
P.1 | Phragmites from the first harvest |
P.2 | Phragmites from the second harvest |
P.3 | Phragmites from the third harvest |
PR.3 | Phragmites from the third harvest of root parts |
R | Reynoutria |
R.1 | Reynoutria from the first harvest |
R.2 | Reynoutria from the second harvest |
R.3 | Reynoutria from the third harvest |
S | Substrate |
SIR | Substrate inoculum ratio |
VFA | Volatile Fatty acids |
VS | Volatile solids |
References
- Reid, W.V.; Ali, M.K.; Field, C.B. The Future of Bioenergy. Glob. Change Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef]
- Tran, G.V.; Unpaprom, Y.; Ramaraj, R. Methane Productivity Evaluation of an Invasive Wetland Plant, Common Reed. Biomass Convers. Biorefin. 2020, 10, 689–695. [Google Scholar] [CrossRef]
- Gernaat, D.E.H.J.; de Boer, H.S.; Daioglou, V.; Yalew, S.G.; Müller, C.; van Vuuren, D.P. Climate Change Impacts on Renewable Energy Supply. Nat. Clim. Change 2021, 11, 119–125. [Google Scholar] [CrossRef]
- Ebadian, M.; van Dyk, S.; McMillan, J.D.; Saddler, J. Biofuels Policies that Have Encouraged Their Production and Use: An International Perspective. Energy Policy 2020, 147, 111906. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Qayyum, S.; Tahir, A.; Mian, A.H.; Zeb, S.; Siddiqui, M.F.; Rehman, B. Optimizing Biogas Production through Anaerobic Digestion: Transforming Food Waste and Agricultural Residues into Renewable Energy within a Circular Economy Paradigm. Biomass Convers. Biorefin. 2024. [Google Scholar] [CrossRef]
- Zhou, L.; Hülsemann, B.; Merkle, W.; Guo, J.; Dong, R.; Piepho, H.P.; Gerhards, R.; Müller, J.; Oechsner, H. Influence of Anaerobic Digestion Processes on the Germination of Weed Seeds. Gesunde Pflanz. 2020, 72, 181–194. [Google Scholar] [CrossRef]
- Meerbeek, K.V.; Muys, B.; Hermy, M. Lignocellulosic Biomass for Bioenergy beyond Intensive Cropland and Forests. Renew. Sustain. Energy Rev. 2019, 102, 139–149. [Google Scholar] [CrossRef]
- de la Lama-Calvente, D.; Fernández-Rodríguez, M.J.; Ballesteros, M.; Ruiz-Salvador, Á.R.; Raposo, F.; García-Gómez, J.C.; Borja, R. Turning an Invasive Alien Species into a Valuable Biomass: Anaerobic Digestion of Rugulopteryx Okamurae after Thermal and New Developed Low-Cost Mechanical Pretreatments. Sci. Total Environ. 2023, 856, 158914. [Google Scholar] [CrossRef] [PubMed]
- Hanley, N.; Roberts, M. The Economic Benefits of Invasive Species Management. People Nat. 2019, 1, 124–137. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Rodrigues, A.M.; Loureiro, L.M.E.F.; Sá, L.C.R.; Matias, J.C.O. Energy Recovery from Invasive Species: Creation of Value Chains to Promote Control and Eradication. Recycling 2021, 6, 21. [Google Scholar] [CrossRef]
- Lim, X. Herbicides─Unexpected Allies against Invasive Plants. ACS Cent. Sci. 2022, 8, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Singh, J.S. Invasive Alien Plant Species: Their Impact on Environment, Ecosystem Services and Human Health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef]
- Baute, K.A.; Robinson, D.E.; Eerd, L.L.V.; Edson, M.; Sikkema, P.H.; Gilroyed, B.H. Survival of Seeds from Perennial Biomass Species during Commercial-Scale Anaerobic Digestion. Weed Res. 2016, 56, 258–266. [Google Scholar] [CrossRef]
- Martin, F.M.; Dommanget, F.; Lavallée, F.; Evette, A. Clonal Growth Strategies of Reynoutria japonica in Response to Light, Shade, and Mowing, and Perspectives for Management. NeoBiota 2020, 56, 89–110. [Google Scholar] [CrossRef]
- VanWallendael, A.; Hamann, E.; Franks, S.J. Evidence for Plasticity, but Not Local Adaptation, in Invasive Japanese Knotweed (Reynoutria japonica) in North America. Evol. Ecol. 2018, 32, 395–410. [Google Scholar] [CrossRef]
- Murrell, C.; Gerber, E.; Krebs, C.; Parepa, M.; Schaffner, U.; Bossdorf, O. Invasive Knotweed Affects Native Plants through Allelopathy. Am. J. Bot. 2011, 98, 38–43. [Google Scholar] [CrossRef]
- Cote, S. Analyse Socio-Économique de La Gestion Des Espèces Floristiques Exotiques Envahissantes Au Québec Avec Le Roseau Commun (Phragmites australis) En Exemple; Université de Sherbrooke: Sherbrooke, QC, Canada, 2023. [Google Scholar]
- Eftaxias, A.; Kolokotroni, I.; Michailidis, C.; Charitidis, P.; Diamantis, V. Techno-Economic Assessment of Anaerobic Digestion Technology for Small- and Medium-Sized Animal Husbandry Enterprises. Appl. Sci. 2024, 14, 4957. [Google Scholar] [CrossRef]
- Holliger, C.; Astals, S.; De Laclos, H.F.; Hafner, S.D.; Koch, K.; Weinrich, S. Towards a Standardization of Biomethane Potential Tests: A Commentary. Water Sci. Technol. 2021, 83, 247–250. [Google Scholar] [CrossRef]
- VDI 4630—Fermentation of Organic Materials—Characterization of the Substrate, Sampling, Collection of Material Data, Fermentation Tests|GlobalSpec. Available online: https://standards.globalspec.com/std/10052171/vdi-4630 (accessed on 4 September 2025).
- APHA. Standard Methods for the Examination of Water and Wastewater 5, 21st ed.; American Public Health Association/AmericanWater Works Association/Water Environment Federation: Alexandria, VA, USA, 2005. [Google Scholar]
- Water Analysis Handbook|Hach. Available online: https://www.hach.com/resources/water-analysis-handbook (accessed on 9 June 2025).
- Centre D’expertise en Analyse Environnementale du Québec. Available online: https://www.ceaeq.gouv.qc.ca/index.asp (accessed on 9 June 2025).
- Lymperatou, A.; Rasmussen, N.B.; Gavala, H.N.; Skiadas, I.V. Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects. Energies 2021, 14, 787. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Porhemmat, M.; Pramanik, B.K. Performance and Kinetic Model of a Single-Stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste. Processes 2019, 7, 600. [Google Scholar] [CrossRef]
- Méthode D’analyse des sols, des Fumiers et des Tissus Végétaux—AGDEX 533—Mai 1988 Agri-Réseau|Documents. Agri-Réseau. Available online: https://www.agrireseau.net/documents/96351/methode-d_analyse-des-sols-des-fumiers-et-des-tissus-vegetaux-agdex-533-mai-1988 (accessed on 10 June 2025).
- Mal, T.K.; Narine, L. The Biology of Canadian Weeds. 129. Phragmites australis (Cav.) Trin. Ex Steud. Can. J. Plant Sci. 2003, 84, 365–396. [Google Scholar] [CrossRef]
- Zhang, L.; Loh, K.C. Synergistic Effect of Activated Carbon and Encapsulated Trace Element Additive on Methane Production from Anaerobic Digestion of Food Wastes—Enhanced Operation Stability and Balanced Trace Nutrition. Bioresour. Technol. 2019, 278, 108–115. [Google Scholar] [CrossRef]
- Wintsche, B.; Glaser, K.; Sträuber, H.; Centler, F.; Liebetrau, J.; Harms, H.; Kleinsteuber, S. Trace Elements Induce Predominance among Methanogenic Activity in Anaerobic Digestion. Front. Microbiol. 2016, 7, 2034. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Rodionova, M.V.; Bozieva, A.M.; Zharmukhamedov, S.K.; Leong, Y.K.; Lan, J.C.-W.; Veziroglu, A.; Veziroglu, T.N.; Tomo, T.; Chang, J.S.; Allakhverdiev, S.I. A Comprehensive Review on Lignocellulosic Biomass Biorefinery for Sustainable Biofuel Production. Int. J. Hydrogen Energy 2022, 47, 1481–1498. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef]
- Kasulla, S.; Zafar, S. Role of Microbial Hydrolysis in Anaerobic Digestion: Enhancing Biogas Production Efficiency. Partn. Univers. Innov. Res. Publ. 2024, 2, 43–50. [Google Scholar] [CrossRef]
- Nayeri, D.; Mohammadi, P.; Bashardoust, P.; Eshtiaghi, N. A Comprehensive Review on the Recent Development of Anaerobic Sludge Digestions: Performance, Mechanism, Operational Factors, and Future Challenges. Results Eng. 2024, 22, 102292. [Google Scholar] [CrossRef]
- Cioabla, A.E.; Ionel, I.; Dumitrel, G.A.; Popescu, F. Comparative Study on Factors Affecting Anaerobic Digestion of Agricultural Vegetal Residues. Biotechnol. Biofuels 2012, 5, 39. [Google Scholar] [CrossRef]
- Hossain, M.S.; ul Karim, T.; Onik, M.H.; Kumar, D.; Rahman, M.A.; Yousuf, A.; Uddin, M.R. Impact of Temperature, Inoculum Flow Pattern, Inoculum Type, and Their Ratio on Dry Anaerobic Digestion for Biogas Production. Sci. Rep. 2022, 12, 6162. [Google Scholar] [CrossRef] [PubMed]
- Gensollen, G.; Pourcher, A.M.; Duedal, A.L.; Picard, S.; Roux, S.L.; Peu, P. Impact of pH in the First-Stage of a Two-Stage Anaerobic Digestion on Metabolic Pathways and Methane Production. Bioresour. Technol. Rep. 2022, 20, 101256. [Google Scholar] [CrossRef]
- Kinnunen, M.; Hilderbrandt, D.; Grimberg, S.; Rogers, S.; Mondal, S. Comparative Study of Methanogens in One- and Two-Stage Anaerobic Digester Treating Food Waste. Renew. Agric. Food Syst. 2015, 30, 515–523. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Wang, X. Effects of Alkalinity Sources on the Stability of Anaerobic Digestion from Food Waste. Waste Manag. Res. 2015, 33, 1033–1040. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; El-Mashad, H.M.; Chen, C.; Liu, G.; Zhang, R. Functions of Bacteria and Archaea Participating in the Bioconversion of Organic Waste for Methane Production. Sci. Total Environ. 2021, 763, 143007. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Nassour, A.; Hamdi, M.; Nelles, M. Monitoring of Food Waste Anaerobic Digestion Performance: Conventional Co-Substrates VS Unmarketable Biochar Additions. Foods 2021, 10, 2353. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhen, F.; Liu, H.; Xiao, F.; Sun, Y.; Peng, X.; Li, Y.; Wang, X. Thermodynamics of Volatile Fatty Acid Degradation during Anaerobic Digestion under Organic Overload Stress: The Potential to Better Identify Process Stability. Water Res. 2022, 214, 118187. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the Effect of High Concentrations of Volatile Fatty Acids in Anaerobic Digestion on Methanogenic Communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef]
- Subbarao, P.M.V.; Silva, T.C.D.; Adlak, K.; Kumar, S.; Chandra, R.; Vijay, V.K. Anaerobic Digestion as a Sustainable Technology for Efficiently Utilizing Biomass in the Context of Carbon Neutrality and Circular Economy. Environ. Res. 2023, 234, 116286. [Google Scholar] [CrossRef]
- Bareha, Y.; Girault, R.; Jimenez, J.; Trémier, A. Characterization and Prediction of Organic Nitrogen Biodegradability during Anaerobic Digestion: A Bioaccessibility Approach. Bioresour. Technol. 2018, 263, 425–436. [Google Scholar] [CrossRef]
- Li, B.; Ladipo-Obasa, M.; Romero, A.; Wadhawan, T.; Tobin, M.; Manning, E.; Higgins, M.; Al-Omari, A.; Murthy, S.; Novak, J.T.; et al. The Inhibitory Impact of Ammonia on Thermally Hydrolyzed Sludge Fed Anaerobic Digestion. Water Environ. Res. 2021, 93, 1263–1275. [Google Scholar] [CrossRef]
- Kalamaras, S.D.; Vasileiadis, S.; Karas, P.; Angelidaki, I.; Kotsopoulos, T.A. Microbial Adaptation to High Ammonia Concentrations during Anaerobic Digestion of Manure-Based Feedstock: Biomethanation and 16S rRNA Gene Sequencing. J. Chem. Technol. Biotechnol. 2020, 95, 1970–1979. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Peng, Y.; Huang, W.; Liu, J.; Mironov, V.; Zhang, S. Deeper Insights into the Effects of Substrate to Inoculum Ratio Selection on the Relationship of Kinetic Parameters, Microbial Communities, and Key Metabolic Pathways during the Anaerobic Digestion of Food Waste. Water Res. 2022, 217, 118440. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Qi, G.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Anaerobic Co-Digestion of Dairy Manure and Japanese Knotweed (Fallopia japonica) under Thermophilic Condition: Optimal Ratio for Biochemical Methane Production. Anim. Sci. J. 2021, 92, e13523. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Borrion, A.; Li, J. Influence of Feed/Inoculum Ratios and Waste Cooking Oil Content on the Mesophilic Anaerobic Digestion of Food Waste. Waste Manag. 2018, 73, 156–164. [Google Scholar] [CrossRef]
- Bertrand, R.L. Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period that Prepares Bacteria for Cell Division. J. Bacteriol. 2019, 201, e00697-18. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, K.; Cayetano, R.D.A.; Mehrez, I.; Kumar, G.; Kim, S.H. Evaluation of the Biochemical Methane Potential of Different Sorts of Algerian Date Biomass. Environ. Technol. Innov. 2020, 20, 101180. [Google Scholar] [CrossRef]
- Mao, C.; Wang, X.; Xi, J.; Feng, Y.; Ren, G. Linkage of Kinetic Parameters with Process Parameters and Operational Conditions during Anaerobic Digestion. Energy 2017, 135, 352–360. [Google Scholar] [CrossRef]
- López-Aguilar, H.A.; Morales-Durán, B.; Quiroz-Cardoza, D.; Pérez-Hernández, A. Lag Phase in the Anaerobic Co-Digestion of Sargassum spp. and Organic Domestic Waste. Energies 2023, 16, 5462. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, S.H. Conditions of Lag-Phase Reduction during Anaerobic Digestion of Protein for High-Efficiency Biogas Production. Biomass Bioenergy 2020, 143, 105813. [Google Scholar] [CrossRef]
- Chachkhiani, M.; Dabert, P.; Abzianidze, T.; Partskhaladze, G.; Tsiklauri, L.; Dudauri, T.; Godon, J.J. 16S rDNA Characterisation of Bacterial and Archaeal Communities during Start-up of Anaerobic Thermophilic Digestion of Cattle Manure. Bioresour. Technol. 2004, 93, 227–232. [Google Scholar] [CrossRef]
- Al-Iraqi, A.R.; Gandhi, B.P.; Folkard, A.M.; Barker, P.A.; Semple, K.T. Influence of Inoculum to Substrate Ratio and Substrates Mixing Ratio on Biogas Production from the Anaerobic Co-Digestion of Phragmites australis and Food Waste. Bioenergy Res. 2023, 17, 1277–1287. [Google Scholar] [CrossRef]
- Ye, J.; Li, D.; Sun, Y.; Wang, G.; Yuan, Z.; Zhen, F.; Wang, Y. Improved Biogas Production from Rice Straw by Co-Digestion with Kitchen Waste and Pig Manure. Waste Manag. 2013, 33, 2653–2658. [Google Scholar] [CrossRef]
- Owamah, H.I.; Ikpeseni, S.C.; Alfa, M.I.; Oyebisi, S.O.; Gopikumar, S.; Samuel, O.D.; Ilabor, S.C. Influence of Inoculum/Substrate Ratio on Biogas Yield and Kinetics from the Anaerobic Co-Digestion of Food Waste and Maize Husk. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100558. [Google Scholar] [CrossRef]
- Al-Iraqi, A.R.; Gandhi, B.P.; Folkard, A.M.; Barker, P.A.; Semple, K.T. Determine the Optimal Parameters for Biogas Production from Common Reed (Phragmites australis). Bioenergy Res. 2023, 17, 1302–1314. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Xi, B.; Sun, W.; Xia, X.; Zhu, C.; He, X.; Li, M.; Yang, T.; Wang, P.; et al. Biogas Production Improvement and C/N Control by Natural Clinoptilolite Addition into Anaerobic Co-Digestion of Phragmites australis, Feces and Kitchen Waste. Bioresour. Technol. 2015, 180, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Hans, M.; Kumar, S.; Yadav, Y.K. Thermophilic Anaerobic Digestion: An Advancement towards Enhanced Biogas Production from Lignocellulosic Biomass. Sustainability 2023, 15, 1859. [Google Scholar] [CrossRef]
- Baute, K.; Eerd, L.L.V.; Robinson, D.E.; Sikkema, P.H.; Mushtaq, M.; Gilroyed, B.H. Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada. Energies 2018, 11, 2198. [Google Scholar] [CrossRef]
- Eller, F.; Ehde, P.M.; Oehmke, C.; Ren, L.; Brix, H.; Sorrell, B.K.; Weisner, S.E.B. Biomethane Yield from Different European Phragmites australis Genotypes, Compared with Other Herbaceous Wetland Species Grown at Different Fertilization Regimes. Resources 2020, 9, 57. [Google Scholar] [CrossRef]
- Kandel, T.P.; Sutaryo, S.; Møller, H.B.; Jørgensen, U.; Lærke, P.E. Chemical Composition and Methane Yield of Reed Canary Grass as Influenced by Harvesting Time and Harvest Frequency. Bioresour. Technol. 2013, 130, 659–666. [Google Scholar] [CrossRef]
- Kakuk, B.; Bagi, Z.; Rákhely, G.; Maróti, G.; Dudits, D.; Kovács, K.L. Methane Production from Green and Woody Biomass Using Short Rotation Willow Genotypes for Bioenergy Generation. Bioresour. Technol. 2021, 333, 125223. [Google Scholar] [CrossRef] [PubMed]
- Ersahin, M.E.; Yangin Gomec, C.; Dereli, R.K.; Arikan, O.; Ozturk, I. Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes. BioMed Res. Int. 2011, 2011, 953065. [Google Scholar] [CrossRef]
- Wu, L.-J.; Ye, F.; Yang, F.; Lyu, Y.-K. Applicability of Temperature-Phased Anaerobic Digestion in Enhancing Methanation of High-Solid Sludge: Process Performance, Microbial Community Analysis and Energy Balance Assessment. Bioresour. Technol. 2025, 431, 132614. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A. Anaerobic Co-Digestion of Common Reed and Plant-Based Biowaste from Households. Energies 2025, 18, 2178. [Google Scholar] [CrossRef]
- Dhaouefi, Z.; Lecoublet, M.; Taktek, S.; Lafontaine, S.; LeBihan, Y.; Braghiroli, F.; Horchani, H.; Koubaa, A. A Review of Operational Conditions of the Agroforestry Residues Biomethanization for Bioenergy Production Through Solid-State Anaerobic Digestion (SS-AD). Energies 2025, 18, 1397. [Google Scholar] [CrossRef]
- Elalami, D.; Oukarroum, A.; Barakat, A. Anaerobic Digestion and Agronomic Applications of Microalgae for Its Sustainable Valorization. RSC Adv. 2021, 11, 26444–26462. [Google Scholar] [CrossRef]
- Vidican, R.; Mihăiescu, T.; Pleșa, A.; Mălinaș, A.; Pop, B.-A. Investigations Concerning Heavy Metals Dynamics in Reynoutria japonica Houtt.-Soil Interactions. Toxics 2023, 11, 323. [Google Scholar] [CrossRef]
- Samadi, M.T.; Leili, M.; Asgari, G.; Chavoshi, S. The Potential of Phragmites australis to Bioaccumulation and Translocate Heavy Metals from Landfill Leachate. J. Water Process Eng. 2024, 64, 105657. [Google Scholar] [CrossRef]
- Nag, R.; Auer, A.; Nolan, S.; Russell, L.; Markey, B.K.; Whyte, P.; O’Flaherty, V.; Bolton, D.; Fenton, O.; Richards, K.G.; et al. Evaluation of Pathogen Concentration in Anaerobic Digestate Using a Predictive Modelling Approach (ADRISK). Sci. Total Environ. 2021, 800, 149574. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.; Roß, C.L.; Hoffmann, M.; Muskolus, A.; Ellmer, F.; Kautz, T. The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity. Agriculture 2020, 10, 244. [Google Scholar] [CrossRef]
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The Potential of Digestate as a Biofertilizer in Eroded Soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Czatzkowska, M.; Wolak, I.; Harnisz, M.; Korzeniewska, E. Microbial Diversity and Biosafety Judgment of Digestates Derived from Different Biogas Plants for Agricultural Applications. J. Environ. Manag. 2024, 371, 123329. [Google Scholar] [CrossRef]
- Li, B.; Zhao, N.; Ran, X.; Zheng, Y.; Sobhi, M.; Dong, R.; Guo, J. The Effect of Slow-Release Phosphate Fertilizers from Digestates on Maize Rhizosphere Soil Microbial Community and Nutrient Cycling: Response and Activation Mechanism. Appl. Soil Ecol. 2024, 201, 105528. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Seleiman, M.F. Improving Plant Growth, Seed Yield, and Quality of Faba Bean by Integration of Bio-Fertilizers with Biogas Digestate. Agronomy 2023, 13, 744. [Google Scholar] [CrossRef]
- Abbas, A.M.; Abdelazeem, M.; Novak, S.J. Anaerobic Digestion Reduces Seed Germination and Viability of Six Plant Species from the Upper Nile Valley, Egypt. Agronomy 2023, 13, 396. [Google Scholar] [CrossRef]
- Erraji, H.; Mohamed, A.; Mzabri, B.; Charif, K.; Afilal, M.E.; Mzabri, I.; Charif, K. The Survival of Moroccan Invasive Weed Seeds during Anaerobic Digestion. Environ. Water Sci. Public Health Territ. Intell. 2019, 3, 141–146. [Google Scholar]
- Johansen, A.; Nielsen, H.B.; Hansen, C.M.; Andreasen, C.; Carlsgart, J.; Hauggard-Nielsen, H.; Roepstorff, A. Survival of Weed Seeds and Animal Parasites as Affected by Anaerobic Digestion at Meso- and Thermophilic Conditions. Waste Manag. 2013, 33, 807–812. [Google Scholar] [CrossRef]
Parameters | Assay 1 | Assay 2 | Assay 3 |
---|---|---|---|
pH | 7.19 ± 0.00 | 7.28 ± 0.04 | 6.92 ± 0.01 |
VFA (mg/L) | 5510.10 ± 353.55 | 3864.00 ± 62.23 | 3974 ± 53.74 |
ALK (mg/L) | 5704.50 ± 88.39 | 4865.40 ± 224.97 | 4660.13 ± 234.00 |
Ratio VFA/ALK | 0.96 | 0.79 | 0.85 |
DM (%) | 4.60 ± 0.03 | 3.27 ± 0.02 | 3.81 ± 0.01 |
VS (%) | 66.36 ± 0.68 | 65.27 ± 0.12 | 70.75 ± 0.94 |
N–NH4+ (mg/L) | 1404.50 ± 133.64 | 985.50 ± 19.09 | 756.00 ± 19.09 |
Ntot (mg/L) | 2075.00 ± 212.13 | 1657.40 ± 43.89 | 1599.20 ± 11.97 |
Parameters | Reynoutria | Phragmites | |||||
---|---|---|---|---|---|---|---|
Harvest 1 | Harvest 2 | Harvest 3 | Harvest 1 | Harvest 2 | Harvest 3 | ||
Shoots | Shoots | Roots | Shoots | Shoots | Shoots | Roots | |
Dried Matter (%) | 28.75 ± 1.48 | 25.97 ± 0.73 | 40.39 ± 0.02 | 77.88 ± 1.85 | 70.31 ± 0.10 | 54.36 ± 2.55 | 23.76 ± 0.23 |
Volatile solids (%) | 95.75 ± 0.07 | 98.07 ± 02.24 | 83.93 ± 0.12 | 92.00 ± 0.09 | 91.32 ± 0.04 | 88.67 ± 0.10 | 86.50 ± 0.42 |
Apparent Density (g/cm3) | 0.38 ± 0.00 | 0.49 ± 0.00 | 0.52 ± 0.00 | 0.12 ± 0.00 | 0.21 ± 0.00 | 0.13 ± 0.00 | 0.50 ± 0.00 |
Parameters | Reynoutria | Phragmites | |||||
---|---|---|---|---|---|---|---|
Harvest 1 | Harvest 2 | Harvest 3 | Harvest 1 | Harvest 2 | Harvest 3 | ||
Shoots | Shoots | Roots | Shoots | Shoots | Shoots | Roots | |
Ca (g/kg) | 7.09 ± 0.16 | 7.12 ± 0.72 | 6.27 ± 0.04 | 1.19 ± 0.00 | 1.46 ± 0.02 | 3.29 ± 0.14 | 1.60 ± 0.09 |
K (g/kg) | 7.46 ± 0.09 | 10.31 ± 1.17 | 9.98 ± 0.40 | 2.09 ± 0.06 | 1.46 ± 0.01 | 9.85 ± 0.28 | 12.13 ± 1.21 |
Mg (g/kg) | 1.07 ± 0.04 | 1.17 ± 0.13 | 3.13 ± 0.03 | 0.43 ± 0.02 | 0.48 ± 0.00 | 1.23 ± 0.07 | 2.18 ± 0.42 |
Na (g/kg) | 0.14 ± 0.01 | 0.88 ± 0.00 | 0.24 ± 0.00 | 1.17 ± 0.04 | 2.10 ± 0.07 | 1.06 ± 0.01 | 5.08 ± 0.34 |
P (g/kg) | 0.69 ± 0.00 | 1.58 ± 0.02 | 2.83 ± 0.02 | 0.51 ± 0.03 | 1.46 ± 0.00 | 0.85 ± 0.03 | 2.96 ± 0.33 |
Zn (mg/kg) | 98.01 ± 73.13 | 43.83 ± 10.94 | 89.48 ± 16.39 | 65.45 ± 30.95 | 54.74 ± 20.37 | 113.45 ± 16.18 | 115.47 ± 2.4 |
Mn (mg/kg) | 40.41 ± 3.54 | 54.12 ± 12.73 | 203.58 ± 4.91 | 35.75 ± 2.88 | 48.39 ± 0.79 | 55.71 ± 5.26 | 93.57 ± 15.46 |
Ni (mg/kg) | 1.1 ± 0.00 | 2.0 ± 0.5 | 1.53 ± 0.15 | 0.9 ± 0.00 | ND | 1.47 ± 0.03 | 1.08 ± 0.03 |
Co (mg/kg) | 1.6 ± 0.00 | <DL | 3.75 ± 0.10 | 1.9 ± 0.00 | <DL | <DL | 1.73 ± 0.28 |
Cd (mg/kg) | ND | ND | <DL | <DL | ND | 0.53 ± 0.08 | <DL |
Pb (mg/kg) | <DL | <DL | 6.47 ± 0.15 | <DL | <DL | 1.52 ± 0.17 | 9.46 ± 1.66 |
Cr (mg/kg) | 1.7 ± 0.00 | 5.2 ± 1.1 | 15.73 ± 0.03 | 0.9 ± 0.00 | 4.3 ± 0.9 | 0.31 ± 0.07 | 8.02 ± 1.40 |
Plants | Assays | pH | Alkalinity (mg/L CaCO3) | Volatile Fatty Acids (mg/L) | |||
---|---|---|---|---|---|---|---|
Initial | Post AD | Initial | Post AD | Initial | Post AD | ||
Reynoutria | R1 | 7.17 ± 0.01 | 8.2 ± 0.01 | 4731 ± 191 | 9228 ± 100 | 5853 ± 202 | 250 ± 0.00 |
R2 | 7.10 ± 0.03 | 8.2 ± 0.01 | 5705.64 ± 299.62 | 8932.02 ± 117.41 | 3600.00 ± 113.14 | 278.00 ± 36.77 | |
R3 | 6.63 ± 0.01 | 8.29 ± 0.01 | 4535.74 ± 165.94 | 9704.61 ± 130.80 | 3162.00 ± 313.96 | 361.00 ± 28.28 | |
Phragmites | P1 | 7.11 ± 0.01 | 8.05 ± 0.01 | 5282.06 ± 328.75 | 9947 ± 100 | 5710 ± 255 | 528 ± 0.00 |
P2 | 7.11 ± 0.01 | 8.02 ± 0.04 | 5313.67 ± 75.67 | 8437.9 ± 74.32 | 4150.00 ± 31.11 | 938.00 ± 31.11 | |
P3 | 6.92 ± 0.02 | 8.29 ± 0.03 | 4645.14 ± 297.33 | 9627.83 ± 65.88 | 2786.00 ± 104.65 | 423.00 ± 18.38 | |
PR3 | 6.70 ± 0.01 | 8.14 ± 0.04 | 3445.33 ± 248.77 | 8595.63 ± 100.46 | 4122.00 ± 183.85 | 496.50 ± 95.46 |
Plants | Assays | Dry Matter (%) | % DM Decrease | Volatile Solids (%) | % VS Decrease | NH4 (mg/L) | % NH4 Increase | FAN (mg/L) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Before AD | After AD | Before AD | After AD | Before AD | After AD | ||||||
Reynoutria | R1 | 7.72 ± 0.28 | 3.03 ± 0.07 | 61 | 85.97 ± 0.80 | 59.48 ± 1.31 | 31 | 1175 ± 0.00 | 1627 ± 10 | 28 | 621.2 ± 3.8 |
R2 | 4.67 ± 0.09 | 2.1 ± 0.0 | 55 | 76.64 ± 1.51 | 55.99 ± 0.10 | 27 | 958.50 ± 0.00 | 1188.00 ± 38.18 | 19 | 621.2 ± 3.8 | |
R3 | 3.18 ± 0.19 | 2.93 ± 0.12 | 8 | 95.55 ± 0.19 | 56.80 ± 0.49 | 41 | 756.00 ± 0.00 | 1100.25 ± 9.55 | 31 | 475.0 ± 4.1 | |
Phragmites | P1 | 8.75 ± 0.17 | 3.23 ± 0.23 | 63 | 85.84 ± 0.17 | 60.08 ± 0.91 | 30 | 945.00 ± 19.09 | 1215 ± 14 | 22 | 369.6 ± 4.26 |
P2 | 4.60 ± 0.12 | 3.11 ± 0.00 | 32 | 77.28 ± 0.44 | 64.61 ± 0.00 | 16 | 965.25 ± 9.55 | 1339.88 ± 14.32 | 28 | 388.25 ± 4.15 | |
P3 | 5.37 ± 0.01 | 2.22 ± 0.00 | 59 | 68.54 ± 0.01 | 56.54 ± 0.01 | 18 | 823.50 ± 0.00 | 1377.00 ± 0.00 | 40 | 594.5 ± 0.00 | |
PR3 | 5.60 ± 0.00 | 3.96 ± 0.00 | 29 | 72.49 ± 0.00 | 63.56 ± 0.01 | 12 | 668.25 ± 9.55 | 1019.25 ± 9.55 | 34 | 356.46 ± 3.34 |
P0 | Rm | L | R2 | ||
---|---|---|---|---|---|
R1 | Estimation | 526.98 | 75.77 | 0.00 | 0.985 |
SE | 4.98 | 4.58 | 0.23 | ||
R2 | Estimation | 334.53 | 18.39 | 0.00 | 0.975 |
SE | 9.49 | 1.29 | 0.62 | ||
R3 | Estimation | 31.27 | 15.95 | 16.59 | 0.998 |
SE | 0.27 | 1.02 | 0.07 | ||
P1 | Estimation | 392.04 | 35.71 | 3.67 | 0.997 |
SE | 4.06 | 1.21 | 0.18 | ||
P2 | Estimation | 388.37 | 60.00 | 5.24 | 0.994 |
SE | 4.21 | 3.56 | 0.20 | ||
P3 | Estimation | 385.34 | 20.57 | 1.33 | 0.993 |
SE | 9.78 | 0.80 | 0.32 | ||
PR3 | Estimation | 276.51 | 35.69 | 6.06 | 0.991 |
SE | 4.39 | 2.49 | 0.28 |
Parameters | Reynoutria | Phragmites | Typical Digestate | |||||
---|---|---|---|---|---|---|---|---|
R1 | R 2 | R3 | P1 | P2 | P3 | PR3 | ||
N (g/kg DM) | ND | 5.39 ± 0.50 | 4.00 ± 0.90 | ND | 6.21 ± 0.01 | 4.62 ± 0.29 | 1.94 ± 0.13 | 31–140 |
P2O5 (g/kg DM) | ND | 1.29 ± 0.62 | 2.19 ± 0.67 | ND | 1.31 ± 0.03 | 1.48 ± 0.01 | 1.50 ± 0.04 | 2–42 |
K2O (g/kg DM) | ND | 6.78 ± 1.40 | 9.53 ± 3.18 | ND | 8.12 ± 0.12 | 7.33 ± 1.33 | 5.42 ± 0.30 | 19–95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaouefi, Z.; Taktek, S.; Bélanger, F.; Fortin, P.; Charbonneau, J.; Lange, S.; Horchani, H. Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass. Energies 2025, 18, 5151. https://doi.org/10.3390/en18195151
Dhaouefi Z, Taktek S, Bélanger F, Fortin P, Charbonneau J, Lange S, Horchani H. Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass. Energies. 2025; 18(19):5151. https://doi.org/10.3390/en18195151
Chicago/Turabian StyleDhaouefi, Zaineb, Salma Taktek, François Bélanger, Pauline Fortin, Julie Charbonneau, Sébastien Lange, and Habib Horchani. 2025. "Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass" Energies 18, no. 19: 5151. https://doi.org/10.3390/en18195151
APA StyleDhaouefi, Z., Taktek, S., Bélanger, F., Fortin, P., Charbonneau, J., Lange, S., & Horchani, H. (2025). Optimized Biogas Yield and Safe Digestate Valorization Through Intensified Anaerobic Digestion of Invasive Plant Biomass. Energies, 18(19), 5151. https://doi.org/10.3390/en18195151