Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (229)

Search Parameters:
Keywords = harmful cyanobacterial blooms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 591 KB  
Review
Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress
by Wangle Zhang, Shiyuan Meng, Xiaoxu Wu, Hong Shen, Dongqin Wang, Tong Qiu, Weijie Li, Jiping Chen, Ling Li, Bingbing Liang, Mengdi Zhao, Xuwei Deng and Chi Zhou
Toxins 2025, 17(12), 604; https://doi.org/10.3390/toxins17120604 - 17 Dec 2025
Viewed by 470
Abstract
Cyanobacterial blooms, which are increasingly exacerbated by eutrophication and climate change, pose threats to ecosystems and public health. This paper systematically reviews recent advances in microbial intervention strategies for controlling cyanobacterial blooms. Current approaches primarily comprise direct lysis methods, indirect suppression methods, and [...] Read more.
Cyanobacterial blooms, which are increasingly exacerbated by eutrophication and climate change, pose threats to ecosystems and public health. This paper systematically reviews recent advances in microbial intervention strategies for controlling cyanobacterial blooms. Current approaches primarily comprise direct lysis methods, indirect suppression methods, and integrated strategies. Direct algicide methods rapidly lyse cyanobacterial cells and degrade toxins, although their application is constrained by environmental sensitivity and host specificity. Indirect approaches offer sustainable preventive strategies by inhibiting cyanobacterial growth, yet require careful environmental management. Integrated methods combine microbial strategies with other technologies, enhancing both the efficiency and ecological safety of managing cyanobacterial blooms. While microbial strategies demonstrate significant potential, practical implementation faces challenges, including environmental adaptability, ecological safety, and regulatory frameworks. Future research should focus on integrating synthetic biology, intelligent delivery systems, and multi-omics technologies to achieve more effective and environmentally friendly management of cyanobacterial blooms. Full article
Show Figures

Figure 1

16 pages, 2562 KB  
Article
Pollution Governance in the Lake Taihu Basin: Achievements and Challenges
by Binbin Wu, Lachun Wang, Boqiang Qin and Mengyuan Zhu
Sustainability 2025, 17(24), 11192; https://doi.org/10.3390/su172411192 - 14 Dec 2025
Viewed by 566
Abstract
Following the drinking water crisis induced by harmful algal blooms in Lake Taihu in 2007, industrial restructuring and systematic pollution treatment projects were synchronously conducted to control pollutions in Lake Taihu basin. This paper conducts a systematic review of integrated pollution governance in [...] Read more.
Following the drinking water crisis induced by harmful algal blooms in Lake Taihu in 2007, industrial restructuring and systematic pollution treatment projects were synchronously conducted to control pollutions in Lake Taihu basin. This paper conducts a systematic review of integrated pollution governance in the Lake Taihu Basin to conduct an exploration of sustainability in developing areas. Critical assessment of the conceptual frameworks and implementation strategies from the aspects of governance concept, technology application and environmental benefits have been made through multi-year water quality monitoring. The results showed that the total nitrogen (TN) and total phosphorous (TP) loads entering the lake decreased by 45.6% and 36.6% in 2008–2023, and the water quality of Lake Tiahu and all 15 major inflow rivers met or exceeded Grade III standards in 2024, according to the National Standard for Surface Water Quality. The lake ecosystem has showed signs of restoration via a decline in the extent and intensity of toxic cyanobacterial bloom. At same time, the local economics have been developed without halting due to the pollution governance, which demonstrates a feasible pathway for both pollution management and economic development. This synergistic governance with both soft and hard measures implemented in Lake Taihu basin has reference significance for other developing countries toward sustainability around the world. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

17 pages, 2239 KB  
Article
Overcoming Analytical Challenges for the Detection of 27 Cyanopeptides Using a UHPLC-QqQ-MS Method in Fish Tissues
by Audrey Roy-Lachapelle, François-Xavier Teysseire and Christian Gagnon
Toxins 2025, 17(12), 580; https://doi.org/10.3390/toxins17120580 - 2 Dec 2025
Viewed by 436
Abstract
The increasing occurrence of harmful cyanobacterial blooms in freshwater ecosystems poses important risks to aquatic organisms and human health due to the production of bioactive secondary metabolites such as cyanopeptides. While analytical methods for microcystins are well developed, there is a notable lack [...] Read more.
The increasing occurrence of harmful cyanobacterial blooms in freshwater ecosystems poses important risks to aquatic organisms and human health due to the production of bioactive secondary metabolites such as cyanopeptides. While analytical methods for microcystins are well developed, there is a notable lack of validated protocols for the broader spectrum of cyanopeptides in biota. This study presents the development and validation of a robust UHPLC-QqQ-MS method for the simultaneous extraction, cleanup, and quantification of 27 cyanopeptides, including microcystins, anabaenopeptins, microginins, aeruginosins, aeruginoguanidine, and nodularin, in fish muscle, liver, and whole fish tissues. Comprehensive optimization was conducted to minimize matrix effects and analyte losses during every step of sample preparation. The method demonstrated generally high recoveries (28–98%), good precision (RSD < 20%), and sensitivity, with MQLs below 0.5 ng g−1 for most analytes. Microginins posed analytical challenges due to their amphiphilic structure, which contributed to significant losses during filtration and extraction; the reasoning is discussed. Application to wild fish collected after a mass mortality event revealed no detectable cyanopeptide contamination but confirmed the method’s suitability for comprehensive detection. This represents an important advancement in cyanopeptide analysis, offering a valuable tool for environmental risk assessment and food safety evaluation related to harmful cyanobacteria. Full article
Show Figures

Figure 1

24 pages, 1538 KB  
Opinion
Does Phytoplankton Bloom Management Provide an Opportunity for Greenhouse Gas Mitigation?
by Aaron Kaplan and Moshe Harel
Phycology 2025, 5(4), 76; https://doi.org/10.3390/phycology5040076 - 19 Nov 2025
Viewed by 674
Abstract
A growing body of evidence indicates that freshwater bodies, particularly eutrophic systems, are significant sources of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Unlike marine environments, freshwater systems are generally shallower [...] Read more.
A growing body of evidence indicates that freshwater bodies, particularly eutrophic systems, are significant sources of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Unlike marine environments, freshwater systems are generally shallower and more directly influenced by terrestrial inputs, including nutrient enrichment, organic matter deposition, and steep redox gradients in both the water column and sediments. These conditions promote intense phytoplankton growth, including massive harmful cyanobacterial blooms (HCBs), and stimulate microbial processes that drive GHG production and release. This opinion article examines the biogeochemical mechanisms underlying these emissions and evaluates the potential of mitigation treatments to both enhance carbon sequestration and reduce CH4 and N2O emissions. We argue that effective control of HCBs, whether through nutrient load reduction or direct mitigation protocols, would not only provide communities with toxin-free water but also significantly lower GHG emissions from eutrophic waterbodies. As this is an opinion paper rather than a comprehensive review, we intentionally avoided citing widely accepted concepts, since doing full justice to the many excellent contributions across all relevant subfields would not be possible within the scope of this work. Full article
Show Figures

Figure 1

17 pages, 2557 KB  
Article
In Situ Water Quality Monitoring for the Assessment of Algae and Harmful Substances in Water Bodies with Consideration of Uncertainties
by Stefanie Penzel, Thomas Mayer, Helko Borsdorf, Mathias Rudolph and Olfa Kanoun
Sensors 2025, 25(22), 7055; https://doi.org/10.3390/s25227055 - 19 Nov 2025
Viewed by 596
Abstract
Harmful algal blooms, particularly those caused by cyanobacteria (blue-green algae) and green algae, pose an increasing risk to aquatic ecosystems and public health. This risk is intensified by climate change and nutrient pollution. This study presents a methodology for in situ monitoring and [...] Read more.
Harmful algal blooms, particularly those caused by cyanobacteria (blue-green algae) and green algae, pose an increasing risk to aquatic ecosystems and public health. This risk is intensified by climate change and nutrient pollution. This study presents a methodology for in situ monitoring and assessment of algal contamination in surface waters, combining UV/Vis and fluorescence spectroscopy with a fuzzy pattern classifier for consideration of uncertainties. The system incorporates detailed data pre-processing to minimise measurement uncertainty and uses full-spectrum feature extraction to enhance classification accuracy. To assess the methodology under both controlled and real-world conditions, a mobile submersible probe was tested alongside a laboratory setup. The results demonstrate a high degree of agreement between the two systems, showing particular sensitivity to biological signals, such as the presence of algae. The assessment method successfully identified cyanobacterial and green algal contamination, and its predictions aligned with external observations, such as official warnings and environmental changes. By explicitly accounting for measurement uncertainty and employing a comprehensive spectral analysis approach, the system offers robust and adaptable monitoring capabilities. These findings highlight the potential for scalable, field-deployable solutions for the early detection of harmful algal blooms. Full article
(This article belongs to the Special Issue Sensors for Water Quality Monitoring and Assessment)
Show Figures

Graphical abstract

25 pages, 3960 KB  
Article
Spatial Structure and Temporal Dynamics in Clear Lake, CA: The Role of Wind in Promoting and Sustaining Harmful Cyanobacterial Blooms
by David A. Caron, Alle A. Y. Lie, Brittany Stewart, Amanda Tinoco, Isha Kalra, Stephanie A. Smith, Adam L. Willingham, Shawn Sneddon, Jayme Smith, Eric Webb, Kyra Florea and Meredith D. A. Howard
Water 2025, 17(22), 3265; https://doi.org/10.3390/w17223265 - 15 Nov 2025
Viewed by 599
Abstract
Clear Lake in Lake County, CA, USA has experienced highly toxic cyanobacterial blooms for more than a decade, with multiple cyanobacterial taxa and cyanotoxins appearing sporadically, typically throughout much of the early-spring to late-fall seasons. Recurring blooms have been attributed to high internal [...] Read more.
Clear Lake in Lake County, CA, USA has experienced highly toxic cyanobacterial blooms for more than a decade, with multiple cyanobacterial taxa and cyanotoxins appearing sporadically, typically throughout much of the early-spring to late-fall seasons. Recurring blooms have been attributed to high internal nutrient loads within the lake, with hydrography and hydrology playing important but still poorly documented roles in controlling the availability of growth-limiting elements to the phytoplankton community. The lake is approximately 180 km2 in areal extent and composed of three somewhat disjointed lobes, or ‘Arms’. The large size of the lake presents a formidable task for synoptic lakewide surveys and for understanding the specific features that stimulate the development and magnitude of harmful blooms. We conducted a study in August of 2020 that involved the use of an autonomous underwater vehicle and deployment of a hand-held water column profiler to describe the lakewide status of various biological, chemical, and physical features. Discrete water samples were also collected from ten stations located throughout the lake to produce a near-synoptic depiction of lake status. Additionally, a mechanically driven, continuously monitoring water-column profiler was deployed at a central lake location to document short-term temporal (minutes to months) changes in water-column structure and chemistry. Wind was a dominant feature affecting the lake’s chemistry and biology during the study, resulting in massive concentrations and dramatic spatial heterogeneity of phytoplankton biomass and cyanotoxins in the eastern and southeastern Arms of the lake, and confirmed by the analysis of discrete water samples. Unique insight into the processes leading to or prolonging blooms was revealed by the water column profiler, which demonstrated rapid development (within a few hours) of suboxic conditions during periods of calm winds. We speculate that these quiescent periods are fundamental events in the lake’s ecology, resulting in episodic ‘pulses’ of nutrient release from the sediments, which can stimulate or refuel blooms of cyanobacteria in the water column. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 2100 KB  
Article
Prodigiosin as an Algicidal Agent: Inhibition of Pigment Accumulation and Photosynthetic Efficiency of Cyanobacteria Involved in Algal Blooms
by Chaobo Zhang, Chengshuai Xu, Zhenxia Zhu, Xiu Zhang, Zhaoan Shao, Zhenhui Yu, Zhangdi Zheng, Yijie Wang, Yadong Wang, Yujie Chen, Wei Xu and Jie Cheng
Microorganisms 2025, 13(11), 2569; https://doi.org/10.3390/microorganisms13112569 - 11 Nov 2025
Viewed by 564
Abstract
Eutrophication facilitates the proliferation of cyanobacteria, ultimately leading to the formation of harmful cyanobacterial blooms. Prodigiosin, known for its algicidal properties, presents significant potential for application in water pollution remediation. This study aims to identify and characterize a novel strain with superior prodigiosin [...] Read more.
Eutrophication facilitates the proliferation of cyanobacteria, ultimately leading to the formation of harmful cyanobacterial blooms. Prodigiosin, known for its algicidal properties, presents significant potential for application in water pollution remediation. This study aims to identify and characterize a novel strain with superior prodigiosin production capabilities and to elucidate the algicidal mechanism of prodigiosin against Microcystis aeruginosa and Anabaena sp. by assessing the photosynthetic responses of algal cells in the presence of prodigiosin. The findings revealed the isolation and identification of a new strain, ZC52, classified as Serratia marcescens. The optimal medium composition was determined to be 20.0 mL·L−1 glycerol, 15.0 g·L−1 beef bone peptone, 15.0 g·L−1 magnesium sulfate heptahydrate, 0.15 g·L−1 corn dry powder, and 0.250% tyrosine, resulting in a 47.40% increase in prodigiosin yield, thereby achieving a production level of 7.644 g·L−1. Moreover, the algicidal activity exhibited a concentration-dependent relationship, with 10.0 mg·L−1 of prodigiosin leading to approximately 53.25% and 30.44% inhibition of chlorophyll a content within 24 h, demonstrating the potential of prodigiosin as an effective algicidal compound. Meanwhile, exposure to 10.0 mg·L−1 of prodigiosin resulted in reductions of 46.88% and 21.02% in the Fv/Fm values of M. aeruginosa and Anabaena sp., respectively. Our results indicated that prodigiosin can inhibit the accumulation of photosynthetic pigments and significantly diminish algal photosynthetic efficiency. This study not only identifies valuable microbial resources for prodigiosin production but also provides a theoretical framework and empirical evidence to support the scientific management of cyanobacterial blooms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

11 pages, 1052 KB  
Article
Effects of Artesunate on the Growth and Chlorophyll Fluorescence of the Cyanobacterium Microcystis aeruginosa
by Huan Wang, Wenyu Ning, Wenxia Wang, Yue Hu and Aoao Yang
Phycology 2025, 5(4), 63; https://doi.org/10.3390/phycology5040063 - 20 Oct 2025
Viewed by 498
Abstract
Microcystis aeruginosa, a kind of cyanobacterium, can lead to water blooms under specific conditions and it is harmful to human and ecological security due to the toxins produced by certain strains. Artemisinin, which is derived from Artemisia annua Linn, has a strong [...] Read more.
Microcystis aeruginosa, a kind of cyanobacterium, can lead to water blooms under specific conditions and it is harmful to human and ecological security due to the toxins produced by certain strains. Artemisinin, which is derived from Artemisia annua Linn, has a strong allelopathic effect on algae. Artesunate is a water-soluble derivative of artemisinin. We investigated the effect of artesunate on M. aeruginosa, including growth and key photosynthetic parameters (Fv/Fm, φPSII). Our findings demonstrate that artesunate inhibits the growth of M. aeruginosa by damaging the photosynthetic center of photosystem II (PS II), and this inhibitory effect is enhanced with increasing concentration. At the concentration of 200 mol/L, the maximum inhibition rate was 41.62% for FACHB-315 and 43.19% for FACHB-927 after 96 h. After 24 h of exposure, the φPSII of the two strains decreased significantly (p < 0.01). These results could inform further studies on the use of artesunate to control cyanobacterial growth in water bodies and provide theoretical support for the application of artemisinin derivatives in treating water blooms. Full article
(This article belongs to the Collection Harmful Microalgae)
Show Figures

Figure 1

13 pages, 2559 KB  
Article
Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa
by Zhe Zhao, Dongying Zhao, Yutong Wu, Yibing Zhao, Jie Qu, Wentao Zheng, Lei Fang, Junhuan Gao, Fei Liu, Jihua Wang and Zhenghua Li
Fermentation 2025, 11(10), 596; https://doi.org/10.3390/fermentation11100596 - 17 Oct 2025
Viewed by 1329
Abstract
Harmful cyanobacterial blooms (HABs), primarily composed of toxic cyanobacteria like Microcystis aeruginosa, pose a significant threat to aquatic ecosystems and human health. Algicidal bacteria had emerged as a promising strategy for HAB control due to their safety and efficacy. In this study, [...] Read more.
Harmful cyanobacterial blooms (HABs), primarily composed of toxic cyanobacteria like Microcystis aeruginosa, pose a significant threat to aquatic ecosystems and human health. Algicidal bacteria had emerged as a promising strategy for HAB control due to their safety and efficacy. In this study, the algicidal bacterium Streptomyces violaceorubidus lzh-14, isolated from Cha Lake in Dezhou, China, exhibited strong algicidal activity against M. aeruginosa. When bacterial culture was added to algal cultures at a final volume ratio of 10% (v/v), the algicidal activity reached 94.5% ± 1.8% after 72 h. Moreover, S. violaceorubidus lzh-14 showed varying degrees of algicidal activity against other tested cyanobacterial species. Microscopic observation revealed that M. aeruginosa cells treated with lzh-14 became deformed and ruptured, resulting in the leakage of cellular contents. The algicidal substance extracted from S. violaceorubidus lzh-14 demonstrated strong stability under varying temperatures and pH conditions. Based on these findings, algicidal powder was preliminarily developed. This study confirms that S. violaceorubidus lzh-14 and its active substance have potential as effective biocontrol agents against HABs. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 490 KB  
Review
Checklist of Potentially Harmful Cyanobacterial Species Isolated from Portuguese Water Bodies
by Daniela R. de Figueiredo
Phycology 2025, 5(3), 47; https://doi.org/10.3390/phycology5030047 - 15 Sep 2025
Viewed by 1038
Abstract
HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This [...] Read more.
HCBs (Harmful Cyanobacterial Blooms) are increasing in freshwaters across the globe, particularly at lower latitudes. In Southern Europe, a decrease in annual precipitation and an increase in drought periods have enhanced the occurrence of HCBs, impacting both freshwater ecosystems and human health. This review gathers information on isolated cyanobacterial strains with the potential to form cyanobacterial blooms or to be toxic that have been reported over the past half-century in Portugal. Strains of Microcystis aeruginosa are the most represented ones, many of them microcystin producers. Toxic M. aeruginosa strains have been isolated from lakes (Mira, Barrinha de Mira, and Blue), river sections (Tâmega and Guadiana), and reservoirs (Torrão, Vilar, Montargil, Patudos, Caia, Monte da Barca, Corgas, and Magos). Many other strains from potentially toxic species are listed, namely from Aphanizomenon gracile, Aphanizomenon flos-aquae, Sphaerospermopsis aphanizomenoides, Cuspidothrix issatschenkoi, Dolichospermum flos-aquae, Dolichospermum circinalis, Chrysosporum bergii, Raphidiopsis raciborskii or Planktothrix agardhii. Many of the isolated strains were able to produce cyanotoxins such as microcystins, saxitoxins, cylindrospermopsin, or anatoxin. Most isolates belong to the Portuguese culture collections ESSACC (Estela Sousa e Silva Algal Culture Collection); LEGE-CC (Blue Biotechnology and Ecotoxicology Culture Collection); and ACOI (Coimbra Collection of Algae). Despite many strains already having associated molecular data corroborating a correct identification, a large number of strains are still lacking DNA-based information for phylogenetic affiliation. The present checklist is intended to facilitate access to information regarding strains of potentially toxic cyanobacterial species from Portugal in order to contribute to a better understanding of species-specific HCBs at both regional and global scales. Full article
31 pages, 12038 KB  
Article
Co-Occurrence of Toxic Bloom-Forming Cyanobacteria Planktothrix, Cyanophage, and Symbiotic Bacteria in Ohio Water Treatment Waste: Implications for Harmful Algal Bloom Management
by Angela Brooke Davis, Morgan Evans, Katelyn McKindles and Jiyoung Lee
Toxins 2025, 17(9), 450; https://doi.org/10.3390/toxins17090450 - 5 Sep 2025
Cited by 1 | Viewed by 1334
Abstract
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages [...] Read more.
Cyanobacterial blooms are increasingly becoming more intense and frequent, posing a public health threat globally. Drinking water treatment plants that rely on algal bloom-affected waters may create waste (water treatment residuals, WTRs) that concentrates contaminants. Source waters may contain harmful cyanobacteria, cyanophages (bacteriophages that infect cyanobacteria), and bacteria. Cyanophages are known to affect bloom formation and growth dynamics, so there is a need to understand viral-host dynamics between phage and bacteria in these ecosystems for managing cyanobacteria. This study isolated and characterized lytic cyanophages from WTRs of a HAB-affected lake in Ohio that infect toxic bloom-forming filamentous cyanobacteria Planktothrix agardhii. Phage infections in the Lake Erie cyanobacteria culture were examined visually and via microscopy and fluorometry. Whole genome sequencing and metagenomic analyses were also conducted. Observed changes in Planktothrix included sheared and shriveled filaments, reduced clumping, and buoyancy changes. Photosynthetic pigmentation was unexpectedly more apparent during phage infection. Metagenomic analyses identified nineteen phages and seven other co-existing bacterial genera. Annotated bacterial genomes contained metabolic pathways that may influence phage infection efficiency. Viral genomes were successfully tied to microbial hosts, and annotations identified important viral infection proteins. This study examines cyanobacterial-phage interactions that may have potential for bioremedial applications. Full article
Show Figures

Figure 1

20 pages, 6101 KB  
Article
Inhibitory Effects of Artemisia argyi Extracts on Microcystis aeruginosa: Anti-Algal Mechanisms and Main Allelochemicals
by Jiajia Dong, Peng Li, Yalei Du, Lingling Cao and Zhiqiang Yan
Biology 2025, 14(9), 1141; https://doi.org/10.3390/biology14091141 - 29 Aug 2025
Cited by 2 | Viewed by 923
Abstract
Harmful cyanobacterial blooms (CyanoHABs) threaten freshwater ecosystems and human health. Inhibiting cyanobacteria through plant allelopathy is an effective and environmentally friendly approach for CyanoHAB control. In this study, we evaluated the inhibitory activities of several organic solvent extracts from Artemisia argyi against the [...] Read more.
Harmful cyanobacterial blooms (CyanoHABs) threaten freshwater ecosystems and human health. Inhibiting cyanobacteria through plant allelopathy is an effective and environmentally friendly approach for CyanoHAB control. In this study, we evaluated the inhibitory activities of several organic solvent extracts from Artemisia argyi against the common bloom-forming cyanobacterium Microcystis aeruginosa, explored the anti-algal mechanism of the active fraction, analyzed its secondary metabolites using liquid chromatography–high-resolution mass spectrometry (LC-HRMS), and screened the potential allelochemicals. The results showed that the crude extract of A. argyi leaves (CE) exhibited significant inhibitory effects on M. aeruginosa. Among several solvent fractions of CE, the dichloromethane extract (DE) demonstrated the strongest inhibitory effect, with a 7-day IC50 of 70.43 mg/L. After treatment with DE, the contents of chlorophyll a (Chl a), carotenoids, and phycobiliproteins (PBPs) in M. aeruginosa were significantly reduced. Meanwhile, an excessive accumulation of reactive oxygen species (ROS), reduction of catalase (CAT) activity, increase in malondialdehyde (MDA) content, and shrinkage of the membrane were found in M. aeruginosa cells under DE treatments. There were 81 secondary metabolites annotated in DE by LC-HRMS. Among them, hispidulin, jaceosidin, 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone, and eupatilin possessed strong inhibitory activities, with 7-day IC50 values of 26.23, 27.62, 32.02, and 34.98 mg/L, respectively. These results indicated that the A. argyi extracts possess significant allelopathic activities on M. aeruginosa, and DE was identified as the primary active fraction. It inhibits algae growth by suppressing photosynthesis and inducing peroxidation, ultimately leading to cell death. Flavonoids in DE were the main allelochemicals responsible for the inhibition on algae of A. argyi extracts. Full article
Show Figures

Figure 1

16 pages, 2417 KB  
Article
Phosphorus Mobilization from Lake Sediments Driven by Silver Carp Fecal Inputs: A Microcosm Study
by Shenghong Lu, Xin Chen, Huaqiang Cheng, Jia Jia, Xin Li, Shenghua Hu, Xiaofei Chen and Chenxi Wu
Sustainability 2025, 17(16), 7468; https://doi.org/10.3390/su17167468 - 18 Aug 2025
Viewed by 1179
Abstract
Harmful cyanobacterial blooms pose significant threats to lake ecosystems, and the stocking of filter-feeding fish has often been used for their control. However, filter-feeding fish like silver carp excrete feces that not only retain viable cyanobacterial cells but also increase nutrient loading to [...] Read more.
Harmful cyanobacterial blooms pose significant threats to lake ecosystems, and the stocking of filter-feeding fish has often been used for their control. However, filter-feeding fish like silver carp excrete feces that not only retain viable cyanobacterial cells but also increase nutrient loading to the sediment. Furthermore, the quantity and frequency of fecal input vary depending on the biomass of algae and fish and the stocking strategy. In this study, a two-by-two factorial microcosm experiment was carried out to investigate the effects of silver carp feces on P release in shallow lakes. Results showed that fecal input quantity was the key determinant of P release. The peak flux reached 8.82 mg m−2 d−1 in high input treatments, compared to 1.01 mg m−2 d−1 in low input treatments. Phased-input exacerbated these effects compared to single-input. The dominant mechanisms of sediment P release varied with input levels. Microbial reduction was strongly associated with P release at low fecal input, while high-input scenarios showed concurrent hypoxia, an increase in sediment pH (from 7.28 to 7.46), and competition for adsorption sites by dissolved organic matter (DOM up to 38.57 mg L−1). These results indicate that stocking of filter-feeding fish for cyanobacterial bloom control substantially altered P flux dynamics, with high input treatments exhibiting fluxes from −6.02 to 8.82 mg m−2 d−1 compared to −0.007 to 0.33 mg m−2 d−1 in controls, depending on the patterns of fecal input. For the prevention and control of cyanobacterial blooms and to ensure the sustainability of lakes, the stocking of filter-feeding fish should be carried out before the outbreak of blooms to avoid the impact of large amounts of fish feces input on P release and water quality during the blooms. Full article
Show Figures

Figure 1

13 pages, 1593 KB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 1520
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

17 pages, 5008 KB  
Article
Biodegradation of Microcystins by Aquatic Bacteria Klebsiella spp. Isolated from Lake Kasumigaura
by Thida Lin, Kazuya Shimizu, Tianxiao Liu, Qintong Li and Motoo Utsumi
Toxins 2025, 17(7), 346; https://doi.org/10.3390/toxins17070346 - 10 Jul 2025
Cited by 1 | Viewed by 1352
Abstract
Microcystins (MCs) are the most toxic and abundant cyanotoxins found in natural waters during harmful cyanobacterial blooms. These toxins pose a significant threat to plant, animal, and human health due to their toxicity. Degradation of MCs by MC-degrading bacteria is a promising method [...] Read more.
Microcystins (MCs) are the most toxic and abundant cyanotoxins found in natural waters during harmful cyanobacterial blooms. These toxins pose a significant threat to plant, animal, and human health due to their toxicity. Degradation of MCs by MC-degrading bacteria is a promising method for controlling these toxins, demonstrating safety, high efficiency, and cost-effectiveness. In this study, we isolated potential MC-degrading bacteria (strains TA13, TA14, and TA19) from Lake Kasumigaura in Japan and found that they possess a high capacity for MC degradation. Based on 16S rRNA gene sequencing, all three isolated strains were identified as belonging to the Klebsiella species. These bacteria effectively degraded MC-RR, MC-YR, and MC-LR under various temperature and pH conditions within 10 h, with the highest degrading activity and degradation rate observed at 40 °C. Furthermore, the isolated strains efficiently degraded MCs not only under neutral pH conditions, but also in alkaline environments. Additionally, we detected the MC-degrading gene (mlrA) in all three isolated strains, marking the first report of the mlrA gene in Klebsiella species. The copy number of the mlrA gene in the strains increased after exposure to MCs. These findings indicate that strains TA13, TA14, and TA19 significantly contribute of MC bioremediation in Lake Kasumigaura during cyanobacterial blooms. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

Back to TopTop