Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa
Abstract
1. Introduction
2. Materials and Methods
2.1. Algicidal Cultures
2.2. Algicidal Cultures Isolation, and Identification of Bacterium lzh-14
2.3. Growth Curve of Algicidal Bacterium lzh-14
2.4. Algicidal Activity of Bacterium lzh-14 Against M. aeruginosa
2.5. Algicidal Activity of Bacterium lzh-14 Against M. aeruginosa at Different Growth Phase
2.6. Algicidal Range of Bacterium lzh-14
2.7. Algicidal Mode of Bacterium lzh-14
2.8. Observation on Cell Morphology of Cyanobacteria Attacked by Bacterium lzh-14
2.9. Stability of the Algicidal Compounds
2.10. Algicidal Powder Production and Application
2.11. Statistical Analysis
3. Results
3.1. Identification of S. violaceorubidus lzh-14
3.2. Algicidal Activity of S. violaceorubidus lzh-14 Against M. aeruginosa
3.3. Analysis of Optimal Application Timing for S. violaceorubidus lzh-14 to Achieve Maximum Algicidal Effect
3.4. Broad-Spectrum Algicidal Activity of S. violaceorubidus lzh-14 Against Harmful Cyanobacteria
3.5. Morphological Alterations in M. aeruginosa Cells Induced by S. violaceorubidus lzh-14
3.6. Stability of Algicidal Compounds from S. violaceorubidus lzh-14 Under Various Environmental Conditions
3.7. Algicide Production and Application of S. violaceorubidus lzh-14
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saraf, S.R.; Frenkel, A.; Harke, M.J.; Jankowiak, J.G.; Gobler, C.J.; McElroy, A.E. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR. Aquat. Toxicol. 2018, 194, 18–26. [Google Scholar] [CrossRef]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.; Chen, M.; Zheng, Y. Algicidal properties of microbial fermentation products on inhibiting the growth of harmful dinoflagellate species. Fermentation 2022, 8, 176. [Google Scholar] [CrossRef]
- Mutoti, M.; Gumbo, J.; Jideani, A.I.O. Occurrence of cyanobacteria in water used for food production: A review. Phys. Chem. Earth 2022, 125, 103101. [Google Scholar] [CrossRef]
- Sukenik, A.; Kaplan, A. Cyanobacterial harmful algal blooms in aquatic ecosystems: A comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms 2021, 9, 1472. [Google Scholar] [CrossRef] [PubMed]
- Coyne, K.J.; Wang, Y.; Johnson, G. Algicidal bacteria: A review of current knowledge and applications to control harmful algal blooms. Front. Microbiol. 2022, 13, 871177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Gao, H.; Yang, Y.; Deng, Y.; Ju, F. Fungi as a critical component of lake microbiota in response to cyanobacterial harmful algal blooms. Environ. Sci. Technol. 2025, 59, 11167–11180. [Google Scholar] [CrossRef]
- Harke, M.J.; Steffen, M.M.; Gobler, C.J.; Otten, T.G.; Wilhelm, S.W.; Wood, S.A.; Paerl, H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 2016, 54, 4–20. [Google Scholar] [CrossRef]
- Dong, J.; Li, P.; Du, Y.; Cao, L.; Yan, Z. Inhibitory effects of Artemisia argyi extracts on Microcystis aeruginosa: Anti-algal mechanisms and main allelochemicals. Biology 2025, 14, 1141. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhu, Y.F.; Yang, Y.C.; Xiao, Y.Z.; Zhu, S.N.; Yang, W.D.; Li, H.Y.; Wang, X. Butylparaben-loaded aged polystyrene nanoplastics amplify its toxicity in Microcystis aeruginosa via quorum sensing suppression and enhanced Microcystin-LR release. Environ. Sci. Technol. 2025, 59, 19195–19207. [Google Scholar] [CrossRef]
- Gong, Z.; Sha, J.; Jia, Y.; Ma, J.; Huang, L.; Dai, G.; Song, L. Differential photosynthetic and metabolic susceptibility of Microcystis aeruginosa and Raphidocelis subcapitata to environmentally relevant levels of Diuron. J. Environ. Sci. 2025, 158, 895–906. [Google Scholar] [CrossRef]
- Paerl, H.W.; Fulton, R.S., 3rd; Moisander, P.H.; Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 2001, 1, 76–113. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, H.; Wang, H.; Shutes, B.; Niu, T. Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity. J. Hazard. Mater. 2023, 449, 131042. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.J.; Astuya-Villalón, A.; Llanos-Rivera, A.; Avello-Fontalba, V.; Ulloa-Jofré, V. A critical review on control methods for harmful algal blooms. Rev. Aquac. 2019, 11, 661–684. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, J.; Yang, C.; Ding, M.; Hamilton, P.B.; Zhang, X.; Yang, C.; Zhnag, L.; Dai, X. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Sci. Total Environ. 2021, 769, 144489. [Google Scholar] [CrossRef] [PubMed]
- Morón-López, J.; Font-Nájera, A.; Kokociński, M.; Jarosiewicz, P.; Jurczak, T.; Mankiewicz-Boczek, J. Influence of bloom stage on the effectiveness of algicidal bacteria in controlling harmful cyanobacteria: A microcosm study. Environ. Pollut. 2025, 374, 126261. [Google Scholar] [CrossRef] [PubMed]
- Lemesheva, V.; Islamova, R.; Stepchenkova, E.; Shenfeld, A.; Birkemeyer, C.; Tarakhovskaya, E. Antibacterial, antifungal and algicidal activity of phlorotannins, as principal biologically active components of ten species of brown algae. Plants 2023, 12, 821. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Peng, Y.; Li, Y.; Chen, Z.; Xu, H.; Yu, Z.; Zheng, W.; Zheng, T. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters. Front. Microbiol. 2015, 6, 474. [Google Scholar] [CrossRef]
- Yu, Y.; Zeng, Y.; Li, J.; Yang, C.; Zhang, X.; Luo, F.; Dai, X. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Sci. Total Environ. 2019, 650, 34–43. [Google Scholar] [CrossRef]
- Butsat, W.; Somdee, T.; Somdee, T. A novel actinomycete Streptomyces enissocaesilis exhibiting algicidal activity against the toxic cyanobacterium Phormidium angustissimum. Environ. Sci. Pollut. Res. 2023, 30, 66897–66911. [Google Scholar] [CrossRef]
- Shi, J.; Wang, W.; Wang, F.; Lei, S.; Shao, S.; Wang, C.; Li, G.; An, T. Efficient inactivation of harmful algae K. mikimotoi by a novel algicidal bacterium via a rare direct contact pathway: Performances and mechanisms. Sci. Total Environ. 2023, 892, 164401. [Google Scholar] [CrossRef]
- Zhang, F.; Fan, Y.; Zhang, D.; Chen, S.; Bai, X.; Ma, X.; Xie, Z.; Xu, H. Effect and mechanism of the algicidal bacterium sulfitobacter porphyrae zfx1 on the mitigation of harmful algal blooms caused by prorocentrum donghaiense. Environ. Pollut. 2020, 263, 114475. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liu, L.; Li, Y.; Xiao, Y.; Ding, G.; Lin, S.; Chen, J. Isolation of an algicidal bacterium and its effects against the harmful-algal- bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae). Harmful Algae 2018, 80, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Xu, Y.; Su, H.C.; Xu, W.J.; Wang, L.H.; Xu, Y.N.; Li, Z.J.; Cao, Y.C.; Wen, G.L. Algicidal bacterium CZBC1 inhibits the growth of Oscillatoria chlorina, Oscillatoria tenuis, and Oscillatoria planctonica. AMB Express 2019, 9, 144. [Google Scholar] [CrossRef]
- Nishu, S.D.; Kang, Y.; Han, I.; Jung, T.Y.; Lee, T.K. Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae. PLoS ONE 2019, 14, e0213370. [Google Scholar] [CrossRef]
- Bouizgarne, B.; Lanoot, B.; Loqman, S.; Spröer, C.; Klenk, H.P.; Swings, J.; Ouhdouch, Y. Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L. Int. J. Syst. Evol. Microbiol. 2009, 59, 2857–2863. [Google Scholar] [CrossRef]
- Pridham, T.G.; Hesseltine, C.W.; Benedict, R.G. A guide for the classification of Streptomycetes according to selected groups. Appl. Microbiol. 1958, 6, 52–79. [Google Scholar] [CrossRef]
- Nouioui, I.; Carro, L.; García-López, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.P.; Goodfellow, M.; Göker, M. Genome-based taxonomic classification of the phylum actinobacteria. Front. Microbiol. 2018, 9, 2007. [Google Scholar] [CrossRef]
- Chi, W.; Zheng, L.; He, C.; Han, B.; Zheng, M.; Gao, W.; Sun, C.; Zhou, G.; Gao, X. Quorum sensing of microalgae associated marine Ponticoccus sp. pd-2 and its algicidal function regulation. AMB Express 2017, 7, 59. [Google Scholar] [CrossRef]
- Winker, S.; Woese, C.R. A definition of the domains archaea, bacteria and eucarya in terms of small subunit ribosomal rna characteristics. Syst. Appl. Microbiol. 1991, 14, 305–310. [Google Scholar] [CrossRef]
- Chen, S.; Haga, M.; Imai, I.; Sakai, R.; Fujita, M.J. Function of the algicidal bacterium Pseudomonas sp. Go58 isolated from the biofilm on a water plant, and its active compounds, pyoluteorins. Sci. Total Environ. 2023, 872, 162088. [Google Scholar] [CrossRef]
- Guo, X.; Liu, X.; Wu, L.; Pan, J.; Yang, H. The algicidal activity of Aeromonas sp. strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing. Environ. Microbiol. 2016, 18, 3867–3883. [Google Scholar] [CrossRef]
- Abate, R.; Oon, Y.L.; Oon, Y.S.; Bi, Y.; Mi, W.; Song, G.; Gao, Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024, 10, e36503. [Google Scholar] [CrossRef] [PubMed]
- Rybalchenko, N.; Kharkhota, M.; Avdeeva, L.; Kharchuk, M.; Rybalchenko, T.; Matviienko, N. Algicidal strain of Bacillus velezensis imv b-7571 for controlling harmful algal blooms. Sustain. Chem. Pharm. 2025, 45, 101990. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, H.; Cao, H.; Sun, M.; Wang, C.; Ye, R.; Lu, L.; An, J.; Chen, B. A potential algicidal bacterium against Spirogyra gracilisblooms: Identification, algicidal activity, algicidal mode, and metabolomic profiling. J. Appl. Phycol. 2024, 36, 3829–3842. [Google Scholar] [CrossRef]
- Ko, S.R.; Van Le, V.; Srivastava, A.; Kang, M.; Oh, H.M.; Ahn, C.Y. Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: Effects of its active compound. Mar. Pollut. Bull. 2023, 186, 114397. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Xie, W.; Liang, Y.; Luo, G.; Li, L.; Zheng, W.; Xu, Q.; Xu, H. Algicidal characteristics of novel algicidal compounds, cyclic lipopeptide surfactins from Bacillus tequilensis strain D8, in eliminating Heterosigma akashiwo blooms. Front. Microbiol. 2022, 13, 1066747. [Google Scholar] [CrossRef]
- Wang, J.; Yin, X.; Xu, M.; Chen, Y.; Ji, N.; Gu, H.; Cai, Y.; Shen, X. Isolation and characterization of a high-efficiency algicidal bacterium Pseudoalteromonas sp. ID-B6 against the harmful dinoflagellate noctiluca scintillans. Front. Microbiol. 2022, 13, 1091561. [Google Scholar]
- Kearns, D.B.; Russell, J.B. Catabolite regulation in a diauxic strain and a nondiauxic strain of Streptococcus bovis. Curr. Microbiol. 1996, 33, 216–219. [Google Scholar] [CrossRef]
- Chater, K.F. Recent advances in understanding Streptomyces. F1000Research 2016, 5, 2795. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Tang, S.; Liang, J.; Lin, W.; Luo, L. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS ONE 2013, 8, e76444. [Google Scholar] [CrossRef]
- Shao, H.; Chen, M.; Fei, X.; Zhang, R.; Zhong, Y.; Ni, W.; Tao, X.; He, X.; Zhang, E.; Yong, B.; et al. Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms 2019, 7, 379. [Google Scholar] [CrossRef]
- Demuez, M.; González-Fernández, C.; Ballesteros, M. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption. Biotechnol. Adv. 2015, 33, 1615–1625. [Google Scholar] [CrossRef]
- Park, B.S.; Park, C.S.; Shin, Y.; Yoon, S.; Han, M.S.; Kang, Y.H. Different algicidal modes of the two bacteria aeromonas bestiarum hyd0802-mk36 and pseudomonas syringae kacc10292T against harmful cyanobacteria Microcystis aeruginosa. Toxins 2022, 14, 128. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Y.; Xie, W.; He, W.; Xie, J.; Liu, W. Identifying algicides of enterobacter hormaechei f2 for control of the harmful alga Microcystis aeruginosa. Int. J. Environ. Res. Public Health 2022, 19, 7556. [Google Scholar] [CrossRef]
- Han, S.I.; Kim, S.; Choi, K.Y.; Lee, C.; Park, Y.; Choi, Y.E. Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2. Environ. Sci. Pollut. Res. 2019, 26, 32255–32265. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Yan, Y.; Wang, Y.; Jiang, T.; Zhang, X.; Dai, X.; Igarashi, Y.; Luo, F.; Yang, C. An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species. Chemosphere 2023, 310, 136767. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Lu, J.; Zhang, J.; Jin, Y.; Ren, L.; Xu, H.; Zhao, M.; Ma, Z. Algicidal mechanism and algicidal active metabolites of alteromonas abrolhosensis against harmful dinoflagellates karenia mikimotoi. J. Hazard. Mater. 2025, 490, 137815. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, S.; Luo, G.; Zheng, W.; Tian, Y.; Lei, X.; Yao, L.; Wu, C.; Xu, H. A novel algicidal bacterium, Microbulbifer sp. YX04, triggered oxidative damage and autophagic cell death in phaeocystis globosa, which causes harmful algal blooms. Microbiol. Spectr. 2022, 10, e0093421. [Google Scholar] [CrossRef]
- Lee, Y.C.; Jin, E.; Jung, S.W.; Kim, Y.M.; Chang, K.S.; Yang, J.W.; Kim, S.W.; Kim, Y.O.; Shin, H.J. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci. Rep. 2013, 3, 1292. [Google Scholar] [CrossRef]
- Ren, S.; Jin, Y.; Ma, J.; Zheng, N.; Zhang, J.; Peng, X.; Xie, B. Isolation and characterization of algicidal bacteria from freshwater aquatic environments in china. Front. Microbiol. 2023, 14, 1156291. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic control of harmful algal blooms (habs): A brief review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Parveen; Raj, N.; Khatoon, S.; Fakhri, K.U.; Kumar, P.; Alamri, M.A.; Kamal, M.; Manzoor, N.; Harsha; et al. In-silico and in-vitro evaluation of antifungal bioactive compounds from Streptomyces sp. strain 130 against Aspergillus flavus. J. Biomol. Struct. Dyn. 2025, 43, 6045–6063. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kundu, A.; Kumar, M.; Solanki, R.; Kapur, M.K. Exploitation of potential bioactive compounds from two soil derived actinomycetes, Streptomyces sp. strain 196 and RI.24. Microbiol. Res. 2019, 229, 126312. [Google Scholar] [CrossRef] [PubMed]
- Chanthasena, P.; Hua, Y.; Rosyidah, A.; Pathom-Aree, W.; Limphirat, W.; Nantapong, N. Isolation and identification of bioactive compounds from Streptomyces actinomycinicus PJ85 and their in vitro antimicrobial activities against methicillin-resistant Staphylococcus aureus. Antibiotics 2022, 11, 1797. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xue, J.; Ma, J.; Feng, X.; Ying, H.; Xu, H. Streptomyces lydicus M01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternata on cucumbers. Front. Microbiol. 2020, 11, 942. [Google Scholar] [CrossRef]
- Abbasi, S.; Spor, A.; Sadeghi, A.; Safaie, N. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci. Rep. 2021, 11, 9317. [Google Scholar] [CrossRef]
Algal/Cyanobacteria | Algicidal Ratio (%, t = 72 h) |
---|---|
M. aeruginosa FACHB-915 | 94.5 ± 1.8 |
M. aeruginosa FACHB-911 | 92.1 ± 0.6 |
M. aeruginosa FACHB-977 | 90.2 ± 1.3 |
Synechococcus sp. FACHB-805 | 93.6 ± 1.1 |
Anabaena sp. FACHB-175 | 81.9 ± 1.3 |
Chlorella sp. FACHB-5 | 84.1 ± 2.2 |
Chlorococcum humicola FACHB-21 | 74.2 ± 0.6 |
Scenedesmus sp. FACHB-489 | 76.5 ± 1.8 |
Tribonema utriculosum FACHB-2216 | 33.1 ± 0.9 |
Cystodinium bataviense FACHB-1839 | 22.4 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhao, D.; Wu, Y.; Zhao, Y.; Qu, J.; Zheng, W.; Fang, L.; Gao, J.; Liu, F.; Wang, J.; et al. Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa. Fermentation 2025, 11, 596. https://doi.org/10.3390/fermentation11100596
Zhao Z, Zhao D, Wu Y, Zhao Y, Qu J, Zheng W, Fang L, Gao J, Liu F, Wang J, et al. Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa. Fermentation. 2025; 11(10):596. https://doi.org/10.3390/fermentation11100596
Chicago/Turabian StyleZhao, Zhe, Dongying Zhao, Yutong Wu, Yibing Zhao, Jie Qu, Wentao Zheng, Lei Fang, Junhuan Gao, Fei Liu, Jihua Wang, and et al. 2025. "Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa" Fermentation 11, no. 10: 596. https://doi.org/10.3390/fermentation11100596
APA StyleZhao, Z., Zhao, D., Wu, Y., Zhao, Y., Qu, J., Zheng, W., Fang, L., Gao, J., Liu, F., Wang, J., & Li, Z. (2025). Isolation and Characterization of a High-Efficiency Algicidal Bacterium Streptomyces violaceorubidus lzh-14 Against the Harmful Cyanobacteria Microcystis aeruginosa. Fermentation, 11(10), 596. https://doi.org/10.3390/fermentation11100596