Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = hair microbes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 794 KiB  
Review
HIV-Associated Dermatological Alterations: Barrier Dysfunction, Immune Impairment, and Microbiome Changes
by Muhammad Anshory, Handono Kalim, Jan L. Nouwen and Hok Bing Thio
Int. J. Mol. Sci. 2025, 26(7), 3199; https://doi.org/10.3390/ijms26073199 - 30 Mar 2025
Viewed by 987
Abstract
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play [...] Read more.
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play a role in immune modulation but are affected by HIV-related disruptions. Innate and adaptive immune systems are compromised due to CD4+ T-cell depletion, cytokine imbalances, and altered immune regulation, leading to conditions such as hypersensitivity and inflammatory dermatoses. The skin microbiome in HIV patients shows distinct shifts, including reduced Cutibacterium species and increased opportunistic microbes, independent of CD4+ levels. Age, sex, and environmental stressors exacerbate these changes, with women exhibiting stronger immune responses but higher risks of autoimmune diseases and aging men experiencing accelerated immunosenescence. Understanding these interconnected alterations is essential for developing targeted therapies to manage skin complications and improve the overall health of HIV patients. Full article
(This article belongs to the Special Issue Viral Infections and Immune Responses)
Show Figures

Figure 1

22 pages, 10266 KiB  
Article
Decoding the Impact of a Bacterial Strain of Micrococcus luteus on Arabidopsis Growth and Stress Tolerance
by Yu-Cheng Chang, Pin-Hsueh Lee, Chao-Liang Hsu, Wen-Der Wang, Yueh-Long Chang and Huey-wen Chuang
Microorganisms 2024, 12(11), 2283; https://doi.org/10.3390/microorganisms12112283 - 10 Nov 2024
Cited by 1 | Viewed by 2434
Abstract
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters [...] Read more.
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs), specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi. The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings, causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity. Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally, exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress. MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis. Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore, MlS14 treatment increased the expression of several transcription factors associated with stress responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways essential for growth and adaptation to abiotic stress. Full article
(This article belongs to the Special Issue Research on Plant—Bacteria Interactions)
Show Figures

Figure 1

25 pages, 6153 KiB  
Article
Biomolecules of Fermented Tropical Fruits and Fermenting Microbes as Regulators of Human Hair Loss, Hair Quality, and Scalp Microbiota
by Wolfgang Mayer, Michaela Weibel, Chiara De Luca, Galina Ibragimova, Ilya Trakhtman, Zaira Kharaeva, Danny L. Chandler and Liudmila Korkina
Biomolecules 2023, 13(4), 699; https://doi.org/10.3390/biom13040699 - 20 Apr 2023
Cited by 9 | Viewed by 6787
Abstract
Plant-derived secondary metabolites (polyphenols/terpenes/alkaloids) and microbial exometabolites/membrane components of fermented tropical fruits are known as highly bioavailable biomolecules causing skin and hair improvement effects (wound healing, anti-inflammatory, antioxidant, antidiabetic, antiacne, skin/hair microbiota balancing, hair growth-promoting, and hair loss-inhibiting). Caffein is considered as a [...] Read more.
Plant-derived secondary metabolites (polyphenols/terpenes/alkaloids) and microbial exometabolites/membrane components of fermented tropical fruits are known as highly bioavailable biomolecules causing skin and hair improvement effects (wound healing, anti-inflammatory, antioxidant, antidiabetic, antiacne, skin/hair microbiota balancing, hair growth-promoting, and hair loss-inhibiting). Caffein is considered as a hair growth promoter. A randomized placebo- and caffein-controlled clinical trial on the efficacy of fermented papaya (FP) plus fermented mangosteen (FM) towards human hair quality and loss was conducted. Shampoo and lotion hair care products containing FP, FM, and caffein as active agents were developed and applied to 154 subjects of both sexes with clinically confirmed androgenic or diffuse alopecia for 3 months. Their clinical efficacy was assessed subjectively by questionnaires filled in by dermatologists/trichologists, and by the objective trichomicroscopical calculations. Hair and scalp skin quality was determined by microbiota pattern and ATP, SH-groups, protein, and malonyl dialdehyde quantification. Comparative clinical data showed that the experimental hair care cosmetics significantly inhibited hair loss, increased hair density/thickness, and improved hair follicle structure versus placebo and caffein controls. The cosmetics with FP and FM substantially normalized the microbiota pattern and increased ATP content in hair follicle, while inhibiting lipid peroxidation in the scalp skin, and SH-group formation in the hair shaft. Full article
Show Figures

Figure 1

14 pages, 2832 KiB  
Article
Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs
by Yifei Li, Ilyas Ali, Zhiqi Lei, Yanan Li, Min Yang, Caixia Yang and Lian Li
Metabolites 2023, 13(2), 228; https://doi.org/10.3390/metabo13020228 - 3 Feb 2023
Cited by 24 | Viewed by 5876
Abstract
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong [...] Read more.
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong probiotic properties that can maintain the balance of intestinal flora. However, the role of Saccharomyces boulardii and Pediococcus acidilactici in felines has not been comprehensively studied to date. The aim of this study is to investigate the effect of multistrain probiotics consisting of Saccharomyces boulardii and Pediococcus acidilactici on the gut health of felines by modulating gut microbes and the production of metabolite SCFAs. The results show that the multistrain probiotic did not alter the intestinal microbial diversity and structure of short-haired domestic cats, promoted the colonization of beneficial bacteria, increased the levels of microbiota-derived SCFAs and fecal antioxidants, and reduced the levels of fecal inflammatory markers. In conclusion, the use of a multistrain probiotic in healthy, short-haired domestic cats can promote gut health by modulating gut microbes, improving microbiota-derived SCFA production, reducing inflammatory conditions, and improving antioxidant status. These results provide new insights for further exploration of the role of probiotics in the gut microbiome of cats. Full article
(This article belongs to the Special Issue Nutrient Metabolism Studies in Companion Animals)
Show Figures

Graphical abstract

15 pages, 2419 KiB  
Article
Staphylococcus epidermidis Cicaria, a Novel Strain Derived from the Human Microbiome, and Its Efficacy as a Treatment for Hair Loss
by HyungWoo Jo, Seon Yu Kim, Byung Ha Kang, Chaeyun Baek, Jeong Eun Kwon, Jin Woo Jeang, Young Mok Heo, Hye-Been Kim, Chan Yeong Heo, So Min Kang, Byung Ho Shin, Da Yeong Nam, Yeong-Geun Lee, Se Chan Kang and Dong-Geol Lee
Molecules 2022, 27(16), 5136; https://doi.org/10.3390/molecules27165136 - 12 Aug 2022
Cited by 5 | Viewed by 3860
Abstract
The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several [...] Read more.
The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several studies are being conducted to counteract this. However, not many studies have addressed hair loss from the perspective of the microbiome. In this study, subjects with hair loss and those with normal scalps were set as experimental and control groups, respectively. In the experimental group, hair loss had progressed, and there was a large difference in microbiome composition compared to the group with normal scalps. In particular, differences in Accumulibacter, Staphylococcus, and Corynebacterium were found. From Staphylococcus epidermidis Cicaria, two active components were isolated as a result of repeated column chromatography. Spectroscopic data led to the determination of chemical structures for adenosine and biotin. Fractions were obtained, and ex vivo tests were conducted using hair follicles derived from human scalp tissue. When the microbiome adenosine-treated group was compared to the control group, hair follicle length was increased, and hair root diameter was maintained during the experimental periods. In addition, the Cicaria culture medium and the microbial adenosine- and biotin-treated groups maintained the anagen phase, reducing progression to the catagen phase in the hair growth cycle. In conclusion, it was confirmed that the Cicaria culture medium and the microbial adenosine and biotin derived from the culture were effective in inhibiting hair loss. Full article
Show Figures

Figure 1

16 pages, 3011 KiB  
Article
In Vitro Assessment of Hydrolysed Collagen Fermentation Using Domestic Cat (Felis catus) Faecal Inocula
by Christina F. Butowski, David G. Thomas, Nick J. Cave, Emma N. Bermingham, Douglas I. Rosendale, Shen-Yan Hea, Halina M. Stoklosinski and Wayne Young
Animals 2022, 12(4), 498; https://doi.org/10.3390/ani12040498 - 17 Feb 2022
Cited by 4 | Viewed by 3239
Abstract
The gastrointestinal microbiome has a range of roles in the host, including the production of beneficial fermentation end products such as butyrate, which are typically associated with fermentation of plant fibres. However, domestic cats are obligate carnivores and do not require carbohydrates. It [...] Read more.
The gastrointestinal microbiome has a range of roles in the host, including the production of beneficial fermentation end products such as butyrate, which are typically associated with fermentation of plant fibres. However, domestic cats are obligate carnivores and do not require carbohydrates. It has been hypothesised that in the wild, collagenous parts of prey—the so-called animal-derived fermentable substrates (ADFS) such as tendons and cartilage—may be fermented by the cat’s gastrointestinal microbiome. However, little research has been conducted on ADFS in the domestic cat. Faecal inoculum was obtained from domestic cats either consuming a high carbohydrate (protein:fat:carbohydrate ratio of 35:20:28 (% dry matter basis)) or high protein (protein:fat:carbohydrate ratio of 75:19:1 (% dry matter basis)) diet. ADFS (hydrolysed collagen, cat hair, and cartilage) were used in a series of static in vitro digestions and fermentations. Concentrations of organic acids and ammonia were measured after 24 h of fermentation, and the culture community of microbes was characterised. The type of inoculum used affected the fermentation profile produced by the ADFS. Butyrate concentrations were highest when hydrolysed collagen was fermented with high protein inoculum (p < 0.05). In contrast, butyrate was not detectable when hydrolysed collagen was fermented in high carbohydrate inoculum (p < 0.05). The microbiome of the domestic cat may be able to ferment ADFS to provide beneficial concentrations of butyrate. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

11 pages, 1995 KiB  
Article
Microfabrication of a Chamber for High-Resolution, In Situ Imaging of the Whole Root for Plant–Microbe Interactions
by Lauren K. Jabusch, Peter W. Kim, Dawn Chiniquy, Zhiying Zhao, Bing Wang, Benjamin Bowen, Ashley J. Kang, Yasuo Yoshikuni, Adam M. Deutschbauer, Anup K. Singh and Trent R. Northen
Int. J. Mol. Sci. 2021, 22(15), 7880; https://doi.org/10.3390/ijms22157880 - 23 Jul 2021
Cited by 11 | Viewed by 4003
Abstract
Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe [...] Read more.
Fabricated ecosystems (EcoFABs) offer an innovative approach to in situ examination of microbial establishment patterns around plant roots using nondestructive, high-resolution microscopy. Previously high-resolution imaging was challenging because the roots were not constrained to a fixed distance from the objective. Here, we describe a new ‘Imaging EcoFAB’ and the use of this device to image the entire root system of growing Brachypodium distachyon at high resolutions (20×, 40×) over a 3-week period. The device is capable of investigating root–microbe interactions of multimember communities. We examined nine strains of Pseudomonas simiae with different fluorescent constructs to B. distachyon and individual cells on root hairs were visible. Succession in the rhizosphere using two different strains of P. simiae was examined, where the second addition was shown to be able to establish in the root tissue. The device was suitable for imaging with different solid media at high magnification, allowing for the imaging of fungal establishment in the rhizosphere. Overall, the Imaging EcoFAB could improve our ability to investigate the spatiotemporal dynamics of the rhizosphere, including studies of fluorescently-tagged, multimember, synthetic communities. Full article
Show Figures

Figure 1

22 pages, 7778 KiB  
Article
Chemical Interactions at the Interface of Plant Root Hair Cells and Intracellular Bacteria
by Xiaoqian Chang, Kathryn L. Kingsley and James F. White
Microorganisms 2021, 9(5), 1041; https://doi.org/10.3390/microorganisms9051041 - 12 May 2021
Cited by 34 | Viewed by 11540
Abstract
In this research, we conducted histochemical, inhibitor and other experiments to evaluate the chemical interactions between intracellular bacteria and plant cells. As a result of these experiments, we hypothesize two chemical interactions between bacteria and plant cells. The first chemical interaction between endophyte [...] Read more.
In this research, we conducted histochemical, inhibitor and other experiments to evaluate the chemical interactions between intracellular bacteria and plant cells. As a result of these experiments, we hypothesize two chemical interactions between bacteria and plant cells. The first chemical interaction between endophyte and plant is initiated by microbe-produced ethylene that triggers plant cells to grow, release nutrients and produce superoxide. The superoxide combines with ethylene to form products hydrogen peroxide and carbon dioxide. In the second interaction between microbe and plant the microbe responds to plant-produced superoxide by secretion of nitric oxide to neutralize superoxide. Nitric oxide and superoxide combine to form peroxynitrite that is catalyzed by carbon dioxide to form nitrate. The two chemical interactions underlie hypothesized nutrient exchanges in which plant cells provide intracellular bacteria with fixed carbon, and bacteria provide plant cells with fixed nitrogen. As a consequence of these two interactions between endophytes and plants, plants grow and acquire nutrients from endophytes, and plants acquire enhanced oxidative stress tolerance, becoming more tolerant to abiotic and biotic stresses. Full article
Show Figures

Figure 1

10 pages, 1595 KiB  
Project Report
CROSYMED Project: Enhancing Nutrient Use Efficiency through Legumes in Agroecosystems of the Mediterranean Basin
by Mohamed Lazali, Simon Boudsocq, Elisa Taschen, Mohamed Farissi, Wissem Hamdi, Parthenopi Ralli and Hervé Sentenac
Sustainability 2021, 13(9), 4695; https://doi.org/10.3390/su13094695 - 22 Apr 2021
Cited by 10 | Viewed by 3035
Abstract
Modern intensive agricultural systems generally focus on the productivity of monocultures. They are characterized by a low diversity of crops, with uniform and symmetrical planting layouts. They largely rely on the utilization of chemical inputs. They are widely denounced for their negative environmental [...] Read more.
Modern intensive agricultural systems generally focus on the productivity of monocultures. They are characterized by a low diversity of crops, with uniform and symmetrical planting layouts. They largely rely on the utilization of chemical inputs. They are widely denounced for their negative environmental impacts. In this context, the ecological intensification framework proposes the exploitation of biodiversity in order to better achieve such ecosystem services and soil conservation. Intercropping, i.e., the simultaneous growth of two or more crops mixed in the same field, appears to have the potentialities to improve the productivity, resilience capacity, and ecological sustainability of agroecosystems through the intensification of such positive interactions between plants as facilitation and niche complementarity. Cereal–legume intercropping turns out to be effective in low-N agroecosystems, since legumes have the ability to fix atmospheric nitrogen via their symbiosis with rhizobia. This fixed N, in turn, benefits the cereal through various ecological processes. The objective of the project is to improve the benefit of legumes for intercropped cereals in low-input agroecosystems through the management of plant–plant and plant–microbe interactions. The nitrogen-fixing symbiosis requires phosphorus and iron to be efficient. While these nutrients are prone to be lacking in N-limited agroecosystems, as is the case in Mediterranean agroecosystems, plant–plant interactions and rhizobacteria and mycorrhiza interactions seem to play an important role in their acquisition and efficient utilization. We propose the development of a participatory research project in four Mediterranean agroecosystems. Agronomic and environmental diagnosis will be performed in the field to assess N and P biogeochemical cycles, as well as Fe availability, in combination with the plant performances and the diversity of soil microorganisms. Molecular identification of soil microorganisms from the most productive sites will be done and research of genes for tolerance to Fe- and P-deficiencies will be realized. Glasshouse experiments involving various cultivars of cereals and legumes, as well as the previously identified microorganisms, will be done in order to disentangle the various mechanisms of nutrient acquisition, sharing, and transfer between plants. Other experiments will assess the effects of cereal–legume–microbe interactions on the development and architecture of the plant root systems and root hair development. The lines of research are integrated with a strategy of functional ecology on plant–microbe–soil interactions in the agroecosystems of Gabès (Tunisia), Boumedfaa (Algeria), Beni Mellal (Morocco), and Thessaloniki (Greece). Using multidisciplinary and innovative approaches, the program will provide novel knowledge and understanding of agroecosystem management for food production. Full article
(This article belongs to the Collection Sustainability in Agricultural Systems and Ecosystem Services)
Show Figures

Figure 1

11 pages, 1606 KiB  
Review
The Potential Relevance of the Microbiome to Hair Physiology and Regeneration: The Emerging Role of Metagenomics
by Andria Constantinou, Varvara Kanti, Katarzyna Polak-Witka, Ulrike Blume-Peytavi, George M. Spyrou and Annika Vogt
Biomedicines 2021, 9(3), 236; https://doi.org/10.3390/biomedicines9030236 - 26 Feb 2021
Cited by 28 | Viewed by 10879
Abstract
Human skin and hair follicles are recognized sites of microbial colonization. These microbiota help regulate host immune mechanisms via an interplay between microbes and immune cells, influencing homeostasis and inflammation. Bacteria affect immune responses by controlling the local inflammatory milieu, the breakdown of [...] Read more.
Human skin and hair follicles are recognized sites of microbial colonization. These microbiota help regulate host immune mechanisms via an interplay between microbes and immune cells, influencing homeostasis and inflammation. Bacteria affect immune responses by controlling the local inflammatory milieu, the breakdown of which can result in chronic inflammatory disorders. Follicular microbiome shifts described in some inflammatory cutaneous diseases suggest a link between their development or perpetuation and dysbiosis. Though the hair follicle infundibulum is an area of intense immunological interactions, bulb and bulge regions represent immune-privileged niches. Immune privilege maintenance seems essential for hair growth and regeneration, as collapse and inflammation characterize inflammatory hair disorders like alopecia areata and primary cicatricial alopecia. Current research largely focuses on immunological aberrations. However, studies suggest that external stimuli and interactions across the follicular epithelium can have profound effects on the local immune system, homeostasis, and cycling. Herein, we review hair follicle bacterial colonization, its possible effects on the underlying tissue, and links to the pathogenesis of alopecia, beyond the pure investigation of specific species abundance. As skin microbiology enters the metagenomics era, multi-dimensional approaches will enable a new level of investigations on the effects of microorganisms and metabolism on host tissue. Full article
(This article belongs to the Special Issue Microbial Ecology in Health and Disease)
Show Figures

Graphical abstract

20 pages, 1055 KiB  
Review
The Role of Probiotics and Synbiotics on Hirsutism
by Vasiliki Lolou
Fermentation 2021, 7(1), 10; https://doi.org/10.3390/fermentation7010010 - 11 Jan 2021
Cited by 7 | Viewed by 20763
Abstract
Probiotics and synbiotics are known to have beneficial effects on human health and disease. Hirsutism, a disorder that is characterised by the presence of coarse terminal hairs in a male-like pattern, is usually caused by elevated androgen levels in blood plasma. This disorder [...] Read more.
Probiotics and synbiotics are known to have beneficial effects on human health and disease. Hirsutism, a disorder that is characterised by the presence of coarse terminal hairs in a male-like pattern, is usually caused by elevated androgen levels in blood plasma. This disorder is usually observed in PCOS women and it is linked to insulin resistance (IR). Although idiopathic hirsutism (IH) is not shown to have excess androgen production from the ovarian and adrenal glands, increased 5α-reductase in peripheral tissues and insulin resistance are common observations. The effect of probiotics and synbiotics have been recently studied on PCOS women; androgens were also included in the hormonal groups that were investigated. Only a few studies focus on hirsutism and the potential effect of the beneficial microbes mentioned, whereas the increasing interest on insulin resistance and synbiotics indicate a potential beneficial effect on hirsutism through the management of insulin resistance. Full article
(This article belongs to the Special Issue Fermented Foods and Microbes Related to Health)
Show Figures

Figure 1

18 pages, 3105 KiB  
Article
A Gnotobiotic Model to Examine Plant and Microbiome Contributions to Survival under Arsenic Stress
by María del Carmen Molina, James F. White, Sara García-Salgado, M. Ángeles Quijano and Natalia González-Benítez
Microorganisms 2021, 9(1), 45; https://doi.org/10.3390/microorganisms9010045 - 26 Dec 2020
Cited by 11 | Viewed by 3412
Abstract
So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic [...] Read more.
So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic seeds of J. montana were inoculated with two endophytic bacteria: Pantoea conspicua MC-K1 (PGPB and As resistant bacteria) and Arthrobacter sp. MC-D3A (non-helper and non-As resistant bacteria) and an endobacteria mixture. In holobiotic seedlings (with seed-vectored microbes intact), neither the capacity of germination nor development of roots and lateral hairs was affected at 125 μM As(V). However, in gnotobiotic seedlings, the plants are negatively impacted by absence of a microbiome and presence of arsenic, resulting in reduced growth of roots and root hairs. The inoculation of a single PGPB (P. conspicua-MCK1) shows a tendency to the recovery of the plant, both in arsenic enriched and arsenic-free media, while the inoculation with Arthrobacter sp. does not help in the recovery of the plants. Inoculation with a bacterial mixture allows recovery of plants in arsenic free media; however, plants did not recover under arsenic stress, probably because of a bacterial interaction in the mixture. Full article
Show Figures

Figure 1

20 pages, 4044 KiB  
Review
Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes
by James F. White, Kathryn L. Kingsley, Satish K. Verma and Kurt P. Kowalski
Microorganisms 2018, 6(3), 95; https://doi.org/10.3390/microorganisms6030095 - 17 Sep 2018
Cited by 130 | Viewed by 51581
Abstract
In this paper, we describe a mechanism for the transfer of nutrients from symbiotic microbes (bacteria and fungi) to host plant roots that we term the ‘rhizophagy cycle.’ In the rhizophagy cycle, microbes alternate between a root intracellular endophytic phase and a free-living [...] Read more.
In this paper, we describe a mechanism for the transfer of nutrients from symbiotic microbes (bacteria and fungi) to host plant roots that we term the ‘rhizophagy cycle.’ In the rhizophagy cycle, microbes alternate between a root intracellular endophytic phase and a free-living soil phase. Microbes acquire soil nutrients in the free-living soil phase; nutrients are extracted through exposure to host-produced reactive oxygen in the intracellular endophytic phase. We conducted experiments on several seed-vectored microbes in several host species. We found that initially the symbiotic microbes grow on the rhizoplane in the exudate zone adjacent the root meristem. Microbes enter root tip meristem cells—locating within the periplasmic spaces between cell wall and plasma membrane. In the periplasmic spaces of root cells, microbes convert to wall-less protoplast forms. As root cells mature, microbes continue to be subjected to reactive oxygen (superoxide) produced by NADPH oxidases (NOX) on the root cell plasma membranes. Reactive oxygen degrades some of the intracellular microbes, also likely inducing electrolyte leakage from microbes—effectively extracting nutrients from microbes. Surviving bacteria in root epidermal cells trigger root hair elongation and as hairs elongate bacteria exit at the hair tips, reforming cell walls and cell shapes as microbes emerge into the rhizosphere where they may obtain additional nutrients. Precisely what nutrients are transferred through rhizophagy or how important this process is for nutrient acquisition is still unknown. Full article
(This article belongs to the Special Issue Plant Control of Symbiotic Microbe Behavior and Reproduction)
Show Figures

Graphical abstract

13 pages, 10466 KiB  
Article
Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis
by Satish K. Verma, Kathryn L. Kingsley, Marshall S. Bergen, Kurt P. Kowalski and James F. White
Microorganisms 2018, 6(1), 21; https://doi.org/10.3390/microorganisms6010021 - 8 Mar 2018
Cited by 67 | Viewed by 13566
Abstract
Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil [...] Read more.
Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested presence of genes for both compounds in the genome of SY1. HCN was detected in cultures of SY1. We conclude that microbes from non-cultivated plants may provide disease protection and promote growth of crop plants. Full article
(This article belongs to the Special Issue Symbiotic Plant-Bacterial Endospheric Interactions)
Show Figures

Figure 1

19 pages, 2548 KiB  
Article
Gene Silencing of Argonaute5 Negatively Affects the Establishment of the Legume-Rhizobia Symbiosis
by María Del Rocio Reyero-Saavedra, Zhenzhen Qiao, María Del Socorro Sánchez-Correa, M. Enrique Díaz-Pineda, Jose L. Reyes, Alejandra A. Covarrubias, Marc Libault and Oswaldo Valdés-López
Genes 2017, 8(12), 352; https://doi.org/10.3390/genes8120352 - 28 Nov 2017
Cited by 17 | Viewed by 5919
Abstract
The establishment of the symbiosis between legumes and nitrogen-fixing rhizobia is finely regulated at the transcriptional, posttranscriptional and posttranslational levels. Argonaute5 (AGO5), a protein involved in RNA silencing, can bind both viral RNAs and microRNAs to control plant-microbe interactions and plant physiology. For [...] Read more.
The establishment of the symbiosis between legumes and nitrogen-fixing rhizobia is finely regulated at the transcriptional, posttranscriptional and posttranslational levels. Argonaute5 (AGO5), a protein involved in RNA silencing, can bind both viral RNAs and microRNAs to control plant-microbe interactions and plant physiology. For instance, AGO5 regulates the systemic resistance of Arabidopsis against Potato Virus X as well as the pigmentation of soybean (Glycine max) seeds. Here, we show that AGO5 is also playing a central role in legume nodulation based on its preferential expression in common bean (Phaseolus vulgaris) and soybean roots and nodules. We also report that the expression of AGO5 is induced after 1 h of inoculation with rhizobia. Down-regulation of AGO5 gene in P. vulgaris and G. max causes diminished root hair curling, reduces nodule formation and interferes with the induction of three critical symbiotic genes: Nuclear Factor Y-B (NF-YB), Nodule Inception (NIN) and Flotillin2 (FLOT2). Our findings provide evidence that the common bean and soybean AGO5 genes play an essential role in the establishment of the symbiosis with rhizobia. Full article
(This article belongs to the Special Issue Genetics and Genomics of the Rhizobium-Legume Symbiosis)
Show Figures

Figure 1

Back to TopTop