You are currently on the new version of our website. Access the old version .
BiomedicinesBiomedicines
  • Review
  • Open Access

26 February 2021

The Potential Relevance of the Microbiome to Hair Physiology and Regeneration: The Emerging Role of Metagenomics

,
,
,
,
and
1
Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charitéplatz 1, 10117 Berlin, Germany
2
Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Microbial Ecology in Health and Disease

Abstract

Human skin and hair follicles are recognized sites of microbial colonization. These microbiota help regulate host immune mechanisms via an interplay between microbes and immune cells, influencing homeostasis and inflammation. Bacteria affect immune responses by controlling the local inflammatory milieu, the breakdown of which can result in chronic inflammatory disorders. Follicular microbiome shifts described in some inflammatory cutaneous diseases suggest a link between their development or perpetuation and dysbiosis. Though the hair follicle infundibulum is an area of intense immunological interactions, bulb and bulge regions represent immune-privileged niches. Immune privilege maintenance seems essential for hair growth and regeneration, as collapse and inflammation characterize inflammatory hair disorders like alopecia areata and primary cicatricial alopecia. Current research largely focuses on immunological aberrations. However, studies suggest that external stimuli and interactions across the follicular epithelium can have profound effects on the local immune system, homeostasis, and cycling. Herein, we review hair follicle bacterial colonization, its possible effects on the underlying tissue, and links to the pathogenesis of alopecia, beyond the pure investigation of specific species abundance. As skin microbiology enters the metagenomics era, multi-dimensional approaches will enable a new level of investigations on the effects of microorganisms and metabolism on host tissue.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.