Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = gut resistome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1599 KiB  
Article
Amoxicillin Resistance: An In Vivo Study on the Effects of an Approved Formulation on Antibiotic Resistance in Broiler Chickens
by Ádám Kerek, Ábel Szabó and Ákos Jerzsele
Animals 2025, 15(13), 1944; https://doi.org/10.3390/ani15131944 - 1 Jul 2025
Viewed by 429
Abstract
Background: Antimicrobial resistance (AMR) is a growing global concern in poultry production, where antibiotic use can disrupt gut microbiota and enrich antimicrobial resistance genes (ARGs). Objectives: This study aimed to assess the in vivo effects of a veterinary-approved amoxicillin formulation on gut microbiome [...] Read more.
Background: Antimicrobial resistance (AMR) is a growing global concern in poultry production, where antibiotic use can disrupt gut microbiota and enrich antimicrobial resistance genes (ARGs). Objectives: This study aimed to assess the in vivo effects of a veterinary-approved amoxicillin formulation on gut microbiome composition and ARG profiles in broiler chickens. Methods: A total of 120 Ross-308 broiler chickens were randomly allocated into 12 experimental groups (n = 10 per group), with three replicates per treatment. Birds received either full-dose (1×), a subtherapeutic quarter-dose (¼×) of amoxicillin, a placebo (starch), or no treatment. Cloacal swabs were collected on days 0, 14, and 28 for shotgun metagenomic sequencing. One-way ANOVA was used to evaluate treatment effects on body weight, with significant differences observed from day 14 onward (p < 0.0001). Results: The ¼× dose caused a more pronounced microbiome shift than the 1× dose, with a marked reduction in Pseudomonadota and increase in Bacillota and Bacteroidota. ARG abundance declined in the ¼× group (from 1386 to 1012). While TEM-type ESBL genes were ubiquitous, CTX-M-1 emerged only after ¼× treatment. Worryingly, 20 types of vancomycin resistance genes were detected across all samples. Plasmid-borne ARGs and mobile genetic elements decreased in the ¼× group. Conclusions: Even subtherapeutic antibiotic exposure significantly reshapes the gut microbiota composition and ARG landscape, highlighting the need for refined risk assessments and microbiome-conscious antimicrobial policies in poultry farming. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

34 pages, 2408 KiB  
Review
Multidrug-Resistant Infections and Metabolic Syndrome: An Overlooked Bidirectional Relationship
by Carlo Acierno, Riccardo Nevola, Fannia Barletta, Luca Rinaldi, Ferdinando Carlo Sasso, Luigi Elio Adinolfi and Alfredo Caturano
Biomedicines 2025, 13(6), 1343; https://doi.org/10.3390/biomedicines13061343 - 30 May 2025
Cited by 2 | Viewed by 720
Abstract
Over the past two decades, metabolic syndrome (MetS) and infections caused by multidrug-resistant (MDR) pathogens have emerged as converging global health challenges. Traditionally investigated as separate entities, accumulating evidence increasingly supports a bidirectional relationship between them, mediated by chronic inflammation, immune dysregulation, gut [...] Read more.
Over the past two decades, metabolic syndrome (MetS) and infections caused by multidrug-resistant (MDR) pathogens have emerged as converging global health challenges. Traditionally investigated as separate entities, accumulating evidence increasingly supports a bidirectional relationship between them, mediated by chronic inflammation, immune dysregulation, gut microbiota alterations, and antibiotic-driven expansion of the resistome. This narrative review examines the complex immunometabolic interplay linking MetS and MDR infections, focusing on molecular mechanisms, clinical implications, and prospective research directions. A systematic literature search was conducted using major databases, including PubMed and Scopus, targeting studies from the last 15 years that explore the interface between metabolic dysfunction and antimicrobial resistance. Particular attention is given to key immunometabolic pathways such as the IRS–PI3K–AKT–mTOR axis; the contribution of visceral adiposity and Toll-like receptor (TLR)-mediated inflammation; and the role of gut dysbiosis in augmenting both susceptibility to infections and metabolic derangements. Evidence is presented supporting the hypothesis that MetS increases host vulnerability to MDR pathogens, while chronic MDR infections may reciprocally induce systemic metabolic reprogramming. Viral infections with established metabolic sequelae (e.g., HIV, hepatitis C virus [HCV], and cytomegalovirus [CMV]) are also considered to broaden the conceptual framework. Although current data remain largely associative and fragmented, the emerging MetS–MDR syndemic model poses substantial challenges for translational research, antimicrobial stewardship, and personalized therapeutic strategies. Recognizing this reciprocal relationship is pivotal for refining infection risk stratification, optimizing treatment, and informing public health policies. Further investigations are warranted to elucidate the magnitude and directionality of this association and to identify predictive immunometabolic biomarkers that may guide targeted interventions in high-risk populations. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis and Treatment of Infectious Diseases)
Show Figures

Figure 1

21 pages, 1838 KiB  
Article
Effects of Short-Term Feeding with Diets Containing Insect Meal on the Gut Microbiota of African Catfish Hybrids
by Balázs Libisch, Zsuzsanna J. Sándor, Tibor Keresztény, Chioma Lilian Ozoaduche, Péter P. Papp, Katalin Posta, Janka Biró, Viktor Stojkov, Vojislav Banjac, Nóra Adányi, Mária Berki, Éva Lengyel-Kónya, Rita Tömösközi-Farkas and Ferenc Olasz
Animals 2025, 15(9), 1338; https://doi.org/10.3390/ani15091338 - 6 May 2025
Viewed by 727
Abstract
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly [...] Read more.
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly larvae (BSL) (Hermetia illucens), yellow mealworm (Tenebrio molitor) or blue bottle-fly larvae (Calliphora vicina) for 18 days. The relative abundance of the Bacillaceae, the Planococcaceae and other bacteria significantly increased (p < 0.05) in the intestinal microbiota of the BSL group and also in the pooled group of the three catfish groups that received insect meals. Several strains of the Bacillales cultured from BSL feed had higher (p < 0.05) abundance in the intestinal microbiota of the BSL group compared to those of the control group. Among these Bacillales strains, a single fosB antibiotic resistance gene was identified. In the gut resistomes of both the BSL and the control catfish groups, the tetA(P), tetB(P) and lnu(C) antibiotic-resistance determinants were detected, while fosB was detected only in the BSL group. Overall, the study showed that a short-term shift to diets containing insect meals can induce significant (q < 0.05) changes in the gut microbiota of the African catfish without the development of reduced α-diversity and without the overgrowth of bacteria pathogenic to fish. Full article
Show Figures

Figure 1

20 pages, 18295 KiB  
Article
Metagenomic Insights into the Diverse Antibiotic Resistome of Non-Migratory Corvidae Species on the Qinghai–Tibetan Plateau
by You Wang, Quanchao Cui, Yuliang Hou, Shunfu He, Wenxin Zhao, Zhuoma Lancuo, Kirill Sharshov and Wen Wang
Vet. Sci. 2025, 12(4), 297; https://doi.org/10.3390/vetsci12040297 - 23 Mar 2025
Viewed by 1018
Abstract
Antibiotic resistance represents a global health crisis with far-reaching implications, impacting multiple domains concurrently, including human health, animal health, and the natural environment. Wild birds were identified as carriers and disseminators of antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). A [...] Read more.
Antibiotic resistance represents a global health crisis with far-reaching implications, impacting multiple domains concurrently, including human health, animal health, and the natural environment. Wild birds were identified as carriers and disseminators of antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). A majority of studies in this area have concentrated on migratory birds as carriers for the spread of antibiotic resistance over long distances. However, there has been scant research on the resistome of non-migratory Corvidae species that heavily overlap with human activities, which limits our understanding of antibiotic resistance in these birds and hinders the development of effective management strategies. This study employed a metagenomics approach to examine the characteristics of ARGs and mobile genetic elements (MGEs) in five common Corvidae species inhabiting the Qinghai–Tibetan Plateau. The ARGs were classified into 20 major types and 567 subtypes. Notably, ARGs associated with multidrug resistance, including to macrolide–lincosamide–streptogramins, tetracyclines, beta-lactam, and bacitracin, were particularly abundant, with the subtypes acrB, bacA, macB, class C beta-lactamase, and tetA being especially prevalent. A total of 5 types of MGEs (166 subtypes) were identified across five groups of crows, and transposase genes, which indicated the presence of transposons, were identified as the most abundant type of MGEs. Moreover, some common opportunistic pathogens were identified as potential hosts for these ARGs and MGEs. Procrustes analysis and co-occurrence network analysis showed that the composition of the gut microbiota shaped the ARGs and MGEs, indicating a substantial association between these factors. The primary resistance mechanisms of ARGs in crows were identified as multidrug efflux pumps, alteration of antibiotic targets, and enzymatic inactivation. High-risk ARGs which were found to potentially pose significant risks to public health were also analyzed and resulted in the identification of 81 Rank I and 47 Rank II ARGs. Overall, our study offers a comprehensive characterization of the resistome in wild Corvidae species, enhancing our understanding of the potential public health risks associated with these birds. Full article
Show Figures

Figure 1

15 pages, 31519 KiB  
Article
Metagenomic Insights into Pigeon Gut Microbiota Characteristics and Antibiotic-Resistant Genes
by Wei Dai, Haicong Zhu, Junhong Chen, Hui Chen, Dingzhen Dai and Jian Wu
Biology 2025, 14(1), 25; https://doi.org/10.3390/biology14010025 - 1 Jan 2025
Cited by 1 | Viewed by 1563
Abstract
Background: Antibiotics were extensively used in the pigeon breeding industry previously to promote growth and prevent disease, leading to the spread of antibiotic-resistant genes (ARGs) in gut microbes, which has become a major public health concern. Methods: A metagenomic analysis was performed to [...] Read more.
Background: Antibiotics were extensively used in the pigeon breeding industry previously to promote growth and prevent disease, leading to the spread of antibiotic-resistant genes (ARGs) in gut microbes, which has become a major public health concern. Methods: A metagenomic analysis was performed to investigate the gut microbial communities and ARGs in young and older pigeons in Nanjing, Jiangsu Province, China. Results: There were obviously distinct gut microbiota and functional compositions between young and older pigeons. Both Pseudomonadota and Uroviricota were dominant in young and older pigeons. Although sharing 24 gut microbiota phyla between young and older pigeons, Bacillota and Pseudomonadota were the dominant microbial phyla in them, respectively. Besides the shared metabolic pathways and biosynthesis of secondary metabolites, biosynthesis of amino acids was the most abundant Kyoto Encyclopedia of Genes and Genomes (KEGG) function in young pigeons, while microbial metabolism in diverse environments was abundant in older pigeons. A total of 142 ARGs conferring multidrug resistance, tetracycline, and aminoglycoside resistance were identified; the most abundant gene in young pigeons was tetracycline-tetW, while in older pigeons, it was multidrug-acrB. Conclusions: Our findings revealed significant differences in the gut microbial communities and ARGs between young and older pigeons. This study enhances our understanding of pigeon gut microbiota and antibiotic resistomes, contributing to knowledge-based sustainable pigeon meat production. Full article
Show Figures

Figure 1

18 pages, 1104 KiB  
Review
Exploring the Potential Influence of the Human Gut Microbiota on the Gut Resistome: A Systematic Review
by Justine Fri, Mulalo Raphalalani, Lufuno Grace Mavhandu-Ramarumo and Pascal Obong Bessong
Microbiol. Res. 2024, 15(3), 1616-1633; https://doi.org/10.3390/microbiolres15030107 - 21 Aug 2024
Viewed by 2320
Abstract
Antibiotic resistance is a global health problem. The human gut microbiome is implicated in the dynamics of antibiotic resistance acquisition and transmission, with the gut microbiota thought to play a crucial role. This study aimed to determine the potential influence of the human [...] Read more.
Antibiotic resistance is a global health problem. The human gut microbiome is implicated in the dynamics of antibiotic resistance acquisition and transmission, with the gut microbiota thought to play a crucial role. This study aimed to determine the potential influence of the human gut bacteria microbiota on the gut resistome and the relationship between the gut microbiota and Escherichia coli resistome. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline was used to systematically review studies that characterized the gut microbiota and resistome using metagenomic analysis and/or those that reported gut E. coli resistome in healthy individuals. Changes in the diversity and abundance of the bacterial gut microbiota and the resistome across different time points and participant groups were summarized. Additionally, using E. coli resistome as a proxy for the gut resistome, the microbiota composition of the gut harboring antibiotic-resistant E. coli was examined. The findings suggest that lower bacterial microbiota diversity is likely associated with an increased abundance of the overall gut resistome. Age-related differences were observed, with younger infants exhibiting lower microbiota diversity and higher antibiotic resistance gene (ARG) abundance compared to older infants and adults. Studies that reported positive correlations between the relative abundance of Proteobacteria and ARGs were mainly driven by members within the Enterobacteriaceae family, mainly E. coli. This study also reveals that human gut microbiome studies investigating the gut resistome using metagenomic sequencing approaches in healthy individuals are uncommon. Full article
Show Figures

Figure 1

23 pages, 6628 KiB  
Article
Breaking the Cycle: A Yeast Mannan-Rich Fraction Beneficially Modulates Egg Quality and the Antimicrobial Resistome Associated with Layer Hen Caecal Microbiomes under Commercial Conditions
by Aoife Corrigan, Paula McCooey, Jules Taylor-Pickard, Stephen Stockdale and Richard Murphy
Microorganisms 2024, 12(8), 1562; https://doi.org/10.3390/microorganisms12081562 - 30 Jul 2024
Viewed by 1815
Abstract
Antibiotics and antibiotic growth promoters have been extensively employed in poultry farming to enhance growth performance, maintain bird health, improve nutrient uptake efficiency, and mitigate enteric diseases at both sub-therapeutic and therapeutic doses. However, the extensive use of antimicrobials in poultry farming has [...] Read more.
Antibiotics and antibiotic growth promoters have been extensively employed in poultry farming to enhance growth performance, maintain bird health, improve nutrient uptake efficiency, and mitigate enteric diseases at both sub-therapeutic and therapeutic doses. However, the extensive use of antimicrobials in poultry farming has led to the emergence of antimicrobial resistance (AMR) in microbial reservoirs, representing a significant global public health concern. In response, non-antibiotic dietary interventions, such as yeast mannan-rich fraction (MRF), have emerged as a promising alternative to modulate the gut microbiota and combat the AMR crisis. This study investigated whether a yeast mannan-rich fraction containing feed supplement impacted the performance of laying hens, their microbiomes, and the associated carriage of antimicrobial resistance genes under commercial conditions. High-throughput DNA sequencing was utilised to profile the bacterial community and assess changes in the antibiotic resistance genomes detected in the metagenome, the “resistome”, in response to MRF supplementation. It was found that supplementation favourably influenced laying hen performance and microbial composition. Notably, there was a compositional shift in the MRF supplemented group associated with a lower relative abundance of pathobionts, e.g., Escherichia, Brachyspira and Trueperella, and their AMR-encoded genes, relative to beneficial microbes. Overall, the findings further demonstrate the ability of prebiotics to improve laying hen performance through changes associated with their microbiome and resistome. Full article
(This article belongs to the Special Issue Combating Antibiotic Resistance in Veterinary Microbiology)
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
High Prevalence of Antibiotic Resistance in Traditionally Fermented Foods as a Critical Risk Factor for Host Gut Antibiotic Resistome
by Yutong Li, Siying Fu, Matthias S. Klein and Hua Wang
Microorganisms 2024, 12(7), 1433; https://doi.org/10.3390/microorganisms12071433 - 15 Jul 2024
Cited by 2 | Viewed by 5635
Abstract
This study aimed to assess the suitability of fermented food interventions to replenish damaged gut microbiota. Metagenomic assessment of published sequencing data found that fermented food interventions led to a significant increase in the gut antibiotic resistome in healthy human subjects. Antibiotic resistome [...] Read more.
This study aimed to assess the suitability of fermented food interventions to replenish damaged gut microbiota. Metagenomic assessment of published sequencing data found that fermented food interventions led to a significant increase in the gut antibiotic resistome in healthy human subjects. Antibiotic resistome and viable antibiotic-resistant (AR) bacteria were further highly prevalent in retail kimchi and artisan cheeses by metagenomic and culture analyses. Representative AR pathogens of importance in nosocomial infections, such as Klebsiella pneumoniae, Serratia marcescens, and vancomycin-resistant Enterococcus (VRE), as well as commensals and lactic acid bacteria, were characterized; some exhibited an extremely high minimum inhibitory concentration (MIC) against antibiotics of clinical significance. Exposing fermented food microbiota to representative antibiotics further led to a boost of the corresponding antibiotic and multidrug-resistance gene pools, as well as disturbed microbiota, including the rise of previously undetectable pathogens. These results revealed an underestimated public health risk associated with fermented food intervention at the current stage, particularly for susceptible populations with compromised gut integrity and immune functions seeking gut microbiota rescue. The findings call for productive intervention of foodborne AR via technology innovation and strategic movements to mitigate unnecessary, massive damages to the host gut microbiota due to orally administered or biliary excreted antibiotics. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance)
Show Figures

Figure 1

21 pages, 1656 KiB  
Article
Comprehensive Metagenomic Analysis of Veterinary Probiotics in Broiler Chickens
by Ádám Kerek, István László Román, Ábel Szabó, Márton Papp, Krisztián Bányai, Gábor Kardos, Eszter Kaszab, Krisztina Bali, László Makrai and Ákos Jerzsele
Animals 2024, 14(13), 1927; https://doi.org/10.3390/ani14131927 - 29 Jun 2024
Cited by 2 | Viewed by 2264
Abstract
Probiotics are widely used in broiler chickens to support the gut microbiome, gut health, and to reduce the amount of antibiotics used. Despite their benefits, there is concern over their ability to carry and spread antimicrobial resistance genes (ARGs), posing a significant public [...] Read more.
Probiotics are widely used in broiler chickens to support the gut microbiome, gut health, and to reduce the amount of antibiotics used. Despite their benefits, there is concern over their ability to carry and spread antimicrobial resistance genes (ARGs), posing a significant public health risk. This study utilized next-generation sequencing to investigate ARGs in probiotics approved for poultry, focusing on their potential to be transferred via mobile genetic elements such as plasmids and phages. We examined the gut microbiome and resistome changes in 60 broiler chickens over their rearing period, correlating these changes with different probiotic treatments. Specific resistance mechanisms against critically important antibiotics were identified, including genes related to fluoroquinolone resistance and peptide antibiotic resistance. We also found genes with significant relevance to public health (aadK, AAC(6′)-Ii) and multiple drug-resistance genes (vmlR, ykkC, ykkD, msrC, clbA, eatAv). Only one phage-encoded gene (dfrA43) was detected, with no evidence of plasmid or mobile genetic element transmission. Additionally, metagenomic analysis of fecal samples showed no significant changes corresponding to time or diet across groups. Our findings highlight the potential risks associated with the use of probiotics in poultry, particularly regarding the carriage of ARGs. It is crucial to conduct further research into the molecular genetics of probiotics to develop strategies that mitigate the risk of resistance gene transfer in agriculture, ensuring the safe and effective use of probiotics in animal husbandry. Full article
(This article belongs to the Collection Application of Antibiotic Alternatives in the Poultry Industry)
Show Figures

Figure 1

23 pages, 8306 KiB  
Article
Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China
by Yi Yan, Jialiang Xu, Wenmin Huang, Yufeng Fan, Zhenpeng Li, Mingkai Tian, Jinsheng Ma, Xin Lu and Jian Liang
Microorganisms 2024, 12(5), 911; https://doi.org/10.3390/microorganisms12050911 - 30 Apr 2024
Cited by 6 | Viewed by 2561
Abstract
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction [...] Read more.
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as “terrestrial gut”. Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin. Full article
(This article belongs to the Special Issue Bacterial and Antibiotic Resistance in the Environment)
Show Figures

Figure 1

17 pages, 3270 KiB  
Article
Butyric Acid Supplementation Reduces Changes in the Taxonomic and Functional Composition of Gut Microbiota Caused by H. pylori Eradication Therapy
by Sayar Abdulkhakov, Maria Markelova, Dilyara Safina, Maria Siniagina, Dilyara Khusnutdinova, Rustam Abdulkhakov and Tatiana Grigoryeva
Microorganisms 2024, 12(2), 319; https://doi.org/10.3390/microorganisms12020319 - 3 Feb 2024
Cited by 5 | Viewed by 3809
Abstract
H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome’s functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are [...] Read more.
H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome’s functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are still under discussion. In addition, there are some concerns about the safety of probiotics, emphasizing the need for research of other therapeutic interventions. The aim of our study was to evaluate the influence of butyric acid+inulin supplements on gut microbiota changes (the gut microbiota composition, abundance of metabolic pathways, and gut resistome) caused by H. pylori eradication therapy. Materials and methods. Twenty two H. pylori-positive patients, aged 19 to 64 years, were enrolled in the study and randomized into two treatment groups, as follows: (1) ECAB-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, per os, for 14 days, and (2), ECAB-Z-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, along with butyric acid+inulin (Zacofalk), two tablets daily, each containing 250 mg of butyric acid, and 250 mg of inulin, per os, for 14 days. Fecal samples were collected from each subject prior to eradication therapy (time point I), after the end of eradication therapy (time point II), and a month after the end of eradication therapy (time point III). The total DNA from the fecal samples was isolated for whole genome sequencing using the Illumina NextSeq 500 platform. Qualitative and quantitative changes in gut microbiota were assessed, including alpha and beta diversity, functional potential and antibiotic resistance gene profiling. Results. Gut microbiota alpha diversity significantly decreased compared with the baseline immediately after eradication therapy in both treatment groups (ECAB-14 and ECAB-Z-14). This diversity reached its baseline in the ECAB-Z-14 treatment group a month after the end of eradication therapy. However, in the ECAB-14 treatment arm, a reduction in the Shannon index was observed up to a month after the end of H. pylori eradication therapy. Fewer alterations in the gut microbiota functional potential were observed in the ECAB-Z-14 treatment group. The abundance of genes responsible for the metabolic pathway associated with butyrate production decreased only in the ECAB-14 treatment group. The prevalence of antibiotic-resistant genes in the gut microbiota increased significantly in both treatment groups by the end of treatment. However, more severe alterations were noted in the ECAB-14 treatment group. Conclusions. H. pylori eradication therapy leads to taxonomic changes, a reduction in the alpha diversity index, and alterations in the functional potential of the gut microbiota and gut resistome. Taking butyric acid+inulin supplements during H. pylori eradication therapy could help maintain the gut microbiota in its initial state and facilitate its recovery after H. pylori eradication. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

23 pages, 5377 KiB  
Article
High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome
by Sara Sardzikova, Kristina Andrijkova, Peter Svec, Gabor Beke, Lubos Klucar, Gabriel Minarik, Viktor Bielik, Alexandra Kolenova and Katarina Soltys
Antibiotics 2023, 12(12), 1667; https://doi.org/10.3390/antibiotics12121667 - 27 Nov 2023
Cited by 4 | Viewed by 2265
Abstract
Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 [...] Read more.
Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6′)-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications. Full article
Show Figures

Figure 1

12 pages, 322 KiB  
Review
Antimicrobial Resistance Genes (ARGs), the Gut Microbiome, and Infant Nutrition
by Rufus J. Theophilus and Diana Hazard Taft
Nutrients 2023, 15(14), 3177; https://doi.org/10.3390/nu15143177 - 18 Jul 2023
Cited by 20 | Viewed by 6299
Abstract
The spread of antimicrobial resistance genes (ARGs) is a major public health crisis, with the ongoing spread of ARGs leading to reduced efficacy of antibiotic treatments. The gut microbiome is a key reservoir for ARGs, and because diet shapes the gut microbiome, diet [...] Read more.
The spread of antimicrobial resistance genes (ARGs) is a major public health crisis, with the ongoing spread of ARGs leading to reduced efficacy of antibiotic treatments. The gut microbiome is a key reservoir for ARGs, and because diet shapes the gut microbiome, diet also has the potential to shape the resistome. This diet–gut microbiome–resistome relationship may also be important in infants and young children. This narrative review examines what is known about the interaction between the infant gut microbiome, the infant resistome, and infant nutrition, including exploring the potential of diet to mitigate infant ARG carriage. While more research is needed, diet has the potential to reduce infant and toddler carriage of ARGs, an important goal as part of maintaining the efficacy of available antibiotics and preserving infant and toddler health. Full article
Show Figures

Graphical abstract

17 pages, 757 KiB  
Review
Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)—A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT)
by Blair Merrick, Chrysi Sergaki, Lindsey Edwards, David L. Moyes, Michael Kertanegara, Désirée Prossomariti, Debbie L. Shawcross and Simon D. Goldenberg
Infect. Dis. Rep. 2023, 15(3), 238-254; https://doi.org/10.3390/idr15030025 - 9 May 2023
Cited by 14 | Viewed by 4376
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and [...] Read more.
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT). Full article
(This article belongs to the Section Bacterial Diseases)
Show Figures

Figure 1

24 pages, 1599 KiB  
Review
Cyanobacterial Harmful Algal Bloom Toxin Microcystin and Increased Vibrio Occurrence as Climate-Change-Induced Biological Co-Stressors: Exposure and Disease Outcomes via Their Interaction with Gut–Liver–Brain Axis
by Saurabh Chatterjee and Madhura More
Toxins 2023, 15(4), 289; https://doi.org/10.3390/toxins15040289 - 17 Apr 2023
Cited by 32 | Viewed by 7667
Abstract
The effects of global warming are not limited to rising global temperatures and have set in motion a complex chain of events contributing to climate change. A consequence of global warming and the resultant climate change is the rise in cyanobacterial harmful algal [...] Read more.
The effects of global warming are not limited to rising global temperatures and have set in motion a complex chain of events contributing to climate change. A consequence of global warming and the resultant climate change is the rise in cyanobacterial harmful algal blooms (cyano-HABs) across the world, which pose a threat to public health, aquatic biodiversity, and the livelihood of communities that depend on these water systems, such as farmers and fishers. An increase in cyano-HABs and their intensity is associated with an increase in the leakage of cyanotoxins. Microcystins (MCs) are hepatotoxins produced by some cyanobacterial species, and their organ toxicology has been extensively studied. Recent mouse studies suggest that MCs can induce gut resistome changes. Opportunistic pathogens such as Vibrios are abundantly found in the same habitat as phytoplankton, such as cyanobacteria. Further, MCs can complicate human disorders such as heat stress, cardiovascular diseases, type II diabetes, and non-alcoholic fatty liver disease. Firstly, this review describes how climate change mediates the rise in cyanobacterial harmful algal blooms in freshwater, causing increased levels of MCs. In the later sections, we aim to untangle the ways in which MCs can impact various public health concerns, either solely or in combination with other factors resulting from climate change. In conclusion, this review helps researchers understand the multiple challenges brought forth by a changing climate and the complex relationships between microcystin, Vibrios, and various environmental factors and their effect on human health and disease. Full article
(This article belongs to the Special Issue Ecology and Toxicology of Cyanobacteria and Cyanotoxins)
Show Figures

Figure 1

Back to TopTop