Fish Microbiome, a Novel Tool to Improve Sustainable Production and Welfare in Aquaculture

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 508

Special Issue Editors


E-Mail Website
Guest Editor
Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
Interests: aquaculture; fish nutrition, physiology and nutrigenomics; stress response

E-Mail Website
Guest Editor
Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
Interests: aquaculture; fish microbiome; fish nutrition; fish physiology

Special Issue Information

Dear Colleagues,

In recent years, researchers have attempted to improve the sustainability of aquaculture production by proposing multiple solutions that are relevant in the context of climate change. Due to the high sensitivity of the fish microbiome to changes, it is essential to evaluate these strategies and to predict their short, medium, and long-term effects. Microbial populations are closely associated with aquaculture systems and farmed animals, with which they establish communities and strong functional links. The pivotal role that it plays in numerous metabolic and immune processes makes the microbiota perfect for use as a diagnostic and prognostic tool. However, our understanding of these molecular processes and the identification of bacterial biomarkers remains limited.

This Special Issue of Animals aims to enhance our understanding of the inner mechanisms that regulate the relationships between farming variables and the physiological response of animals, using the fish microbiome as the integrative foundation. The objective of this Special Issue is to reveal the full potential of the microbiota, shed light on its variability, establish robust indicators, and define their functional role within the host–microbiota system through experimental and computational approaches. This Special Issue welcomes the submission of review articles and original research papers that use the microbiome as a tool for the sustainable development of aquaculture production and the implementation of new tailored strategies for assessing fish health and welfare.

Dr. Federico Moroni
Prof. Dr. Jaume Pérez-Sánchez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquaculture
  • microbiome
  • fish nutrition
  • fish welfare
  • sustainability
  • ras system
  • microbiota biomarkers
  • host-microbiota relationship

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 1838 KiB  
Article
Effects of Short-Term Feeding with Diets Containing Insect Meal on the Gut Microbiota of African Catfish Hybrids
by Balázs Libisch, Zsuzsanna J. Sándor, Tibor Keresztény, Chioma Lilian Ozoaduche, Péter P. Papp, Katalin Posta, Janka Biró, Viktor Stojkov, Vojislav Banjac, Nóra Adányi, Mária Berki, Éva Lengyel-Kónya, Rita Tömösközi-Farkas and Ferenc Olasz
Animals 2025, 15(9), 1338; https://doi.org/10.3390/ani15091338 - 6 May 2025
Viewed by 304
Abstract
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly [...] Read more.
The impact of short-term feeding of three distinct diets containing insect meals on the intestinal microbiota of African catfish hybrid (Clarias gariepinus × Heterobranchus longifilis) juveniles was examined. The animals received experimental diets containing 30% insect meals derived from black soldier-fly larvae (BSL) (Hermetia illucens), yellow mealworm (Tenebrio molitor) or blue bottle-fly larvae (Calliphora vicina) for 18 days. The relative abundance of the Bacillaceae, the Planococcaceae and other bacteria significantly increased (p < 0.05) in the intestinal microbiota of the BSL group and also in the pooled group of the three catfish groups that received insect meals. Several strains of the Bacillales cultured from BSL feed had higher (p < 0.05) abundance in the intestinal microbiota of the BSL group compared to those of the control group. Among these Bacillales strains, a single fosB antibiotic resistance gene was identified. In the gut resistomes of both the BSL and the control catfish groups, the tetA(P), tetB(P) and lnu(C) antibiotic-resistance determinants were detected, while fosB was detected only in the BSL group. Overall, the study showed that a short-term shift to diets containing insect meals can induce significant (q < 0.05) changes in the gut microbiota of the African catfish without the development of reduced α-diversity and without the overgrowth of bacteria pathogenic to fish. Full article
Show Figures

Figure 1

Back to TopTop