Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = gut microbiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 470 KiB  
Conference Report
Abstracts of the 3rd International Electronic Conference on Microbiology
by Nico Jehmlich
Biol. Life Sci. Forum 2025, 46(1), 3; https://doi.org/10.3390/blsf2025046003 - 31 Jul 2025
Viewed by 10
Abstract
The current proceedings summarize the presentations delivered during the third International Electronic Conference on Microbiology (ECM 2025), which was held online from 1 to 3 April 2025, via the SciForum platform. This virtual event brought together researchers from around the world to share [...] Read more.
The current proceedings summarize the presentations delivered during the third International Electronic Conference on Microbiology (ECM 2025), which was held online from 1 to 3 April 2025, via the SciForum platform. This virtual event brought together researchers from around the world to share recent advances in microbiological sciences. The ECM 2025 highlighted recent developments across a broad spectrum of microbiological research, including antimicrobial resistance, gut microbiota, infectious diseases, and environmental microbiomes. Participants shared their work through online presentations and abstracts, with selected submissions invited for full publication. The event fostered global collaboration, promoted open-access science, and showcased innovative tools for studying and managing microbial systems in health, agriculture, and industry. The multidisciplinary program was organized into several thematic sessions: S1. Gut Microbiota and Health Disease. S2. Foodborne Pathogens and Food Safety. S3. Antimicrobial Agents and Resistance. S4. Emerging Infectious Diseases. S5. Microbiome and Soil Science. S6. Microbial Characterization and Bioprocess. S7. Microbe–Plant Interactions. This conference report presents summaries of the contributions made by participating authors over the three-day event. Full article
17 pages, 2387 KiB  
Article
Application of Lactobacillus helveticus KLDS 1.1105 Postbiotics for Resisting Pathogenic Bacteria Infection in the Intestine
by Peng Du, Jiaying Liu, Chengwen Hu, Jianing Zhang, Miao Li, Yu Xin, Libo Liu, Aili Li and Chun Li
Foods 2025, 14(15), 2659; https://doi.org/10.3390/foods14152659 - 29 Jul 2025
Viewed by 301
Abstract
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total [...] Read more.
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total antioxidant capacity of Lactobacillus helveticus postbiotics (LHPs) and their impact on intestinal flora using the Simulator for Human Intestinal Microecology Simulation (SHIME). The results indicate that the primary components of postbiotics include polysaccharides, proteins, and organic acids. Furthermore, LHPs have a strong ability to inhibit the growth of harmful bacteria while promoting the growth of probiotics. Additionally, LHPs significantly increased the total antioxidant capacity in the intestine and regulated the balance of intestinal microbiota. Notably, there was also a significant increase in the content of short-chain fatty acids (SCFAs) in the intestine. Overall, LHPs have the potential to aid in the prevention and treatment of diseases by enhancing gut microbiology. Full article
Show Figures

Graphical abstract

34 pages, 6295 KiB  
Article
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation
by Xin Zhang, Ruonan Lian, Bingbing Fan, Lei Meng, Pengxia Zhang, Yu Zhang and Weitong Sun
Pharmaceutics 2025, 17(7), 940; https://doi.org/10.3390/pharmaceutics17070940 - 21 Jul 2025
Viewed by 420
Abstract
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral [...] Read more.
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral drug delivery system, KGM-CUR/PSM microspheres, to achieve precise drug release in CRC and enhance tumor-specific drug accumulation, which leverages high ROS levels in CRC and the β-mannanase overexpression in colorectal tissues. Methods: In this study, we synthesized a ROS-responsive prodrug polymer (PSM) by conjugating polyethylene glycol monomethyl ether (mPEG) and mesalazine (MSL) via a thioether bond. CUR was then encapsulated into PSM using thin-film hydration to form tumor microenvironment-responsive micelles (CUR/PSM). Subsequently, konjac glucomannan (KGM) was employed to fabricate KGM-CUR/PSM microspheres, enabling targeted delivery for colorectal cancer therapy. The ROS/enzyme dual-response properties were confirmed through in vitro drug release studies. Cytotoxicity, cellular uptake, and cell migration were assessed in SW480 cells. In vivo efficacy was evaluated in AOM/DSS-induced CRC mice, monitoring tumor growth, inflammatory markers (TNF-α, IL-1β, IL-6, MPO), and gut microbiota composition. Results: In vitro drug release studies demonstrated that KGM-CUR/PSM microspheres exhibited ROS/enzyme-responsive release profiles. CUR/PSM micelles demonstrated significant anti-CRC efficacy in cytotoxicity assays, cellular uptake studies, and cell migration assays. In AOM/DSS-induced CRC mice, KGM-CUR/PSM microspheres significantly improved survival and inhibited CRC tumor growth, and effectively reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and myeloperoxidase (MPO). Histopathological and microbiological analyses revealed near-normal colon architecture and microbial diversity in the KGM-CUR/PSM group, confirming the system’s ability to disrupt the “inflammation-microbiota-tumor” axis. Conclusions: The KGM-CUR/PSM microspheres demonstrated a synergistic enhancement of anti-tumor efficacy by inducing apoptosis, alleviating inflammation, and modulating the intestinal microbiota, which offers a promising stimuli-responsive drug delivery system for future clinical treatment of CRC. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

58 pages, 656 KiB  
Review
Human Digestive Physiology and Evolutionary Diet: A Metabolomic Perspective on Carnivorous and Scavenger Adaptations
by Vicente Javier Clemente-Suárez, Laura Redondo-Flórez, Ana Isabel Beltrán-Velasco, Rodrigo Yáñez-Sepúlveda, Alejandro Rubio-Zarapuz, Alexandra Martín-Rodríguez, Eduardo Navarro-Jimenez and José Francisco Tornero-Aguilera
Metabolites 2025, 15(7), 453; https://doi.org/10.3390/metabo15070453 - 4 Jul 2025
Viewed by 1671
Abstract
This review examines human digestive physiology and metabolic adaptations in the context of evolutionary dietary patterns, particularly those emphasizing carnivorous and scavenging behaviors. By integrating metabolomic data with archaeological, anatomical, and microbiological evidence, the study explores how early hominins adapted to intermittent but [...] Read more.
This review examines human digestive physiology and metabolic adaptations in the context of evolutionary dietary patterns, particularly those emphasizing carnivorous and scavenging behaviors. By integrating metabolomic data with archaeological, anatomical, and microbiological evidence, the study explores how early hominins adapted to intermittent but energy-dense animal-based diets. The analysis highlights the development of hepatic insulin resistance, enhanced fat and protein metabolism, and shifts in gut microbiota diversity as physiological signatures of meat consumption. Comparative evaluations of digestive enzyme profiles, intestinal morphology, and salivary composition underscore humans’ omnivorous flexibility and partial carnivorous specialization. Additionally, biomarkers such as ketone bodies, branched-chain amino acids, and trimethylamine-N-oxide are identified as metabolic indicators of habitual meat intake. These adaptations, though once evolutionarily advantageous, are discussed in relation to current metabolic disorders in modern nutritional contexts. Overall, this review presents a metabolomic framework for understanding the evolutionary trajectory of human digestion and its implications for health and dietary recommendations. Full article
(This article belongs to the Section Advances in Metabolomics)
23 pages, 1179 KiB  
Review
Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods
by Amanda Priscila Silva Nascimento and Ana Novo Barros
Foods 2025, 14(13), 2320; https://doi.org/10.3390/foods14132320 - 30 Jun 2025
Viewed by 854
Abstract
The growing demand for more sustainable food systems has driven the development of solutions based on food microbiology, capable of integrating safety, functionality, and environmental responsibility. This paper presents a critical and up-to-date review of the most relevant advances at the interface between [...] Read more.
The growing demand for more sustainable food systems has driven the development of solutions based on food microbiology, capable of integrating safety, functionality, and environmental responsibility. This paper presents a critical and up-to-date review of the most relevant advances at the interface between microbiology, sustainability, and food innovation. The analysis is structured around three main axes: (i) microbial fermentation, with a focus on traditional practices and precision technologies aimed at valorizing agro-industrial waste and producing functional foods; (ii) microbial biocontrol, including the use of bacteriocins, protective cultures, bacteriophages, and CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats–CRISPR-associated)-based tools as alternatives to synthetic preservatives; and (iii) the development of functional foods containing probiotics, prebiotics, synbiotics, and postbiotics, with the potential to modulate the gut microbiota and promote metabolic, immune, and cognitive health. In addition to reviewing the microbiological and technological mechanisms involved, the paper discusses international regulatory milestones, scalability challenges, and market trends related to consumer acceptance and clean labeling. Finally, emerging trends and research gaps are addressed, including the use of omics technologies, artificial intelligence, and unexplored microbial resources. Food microbiology, by incorporating sustainable practices and advanced technologies, is positioned as a strategic pillar for building a healthy, circular, science-based food model. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

19 pages, 3682 KiB  
Article
Mulberry (Morus alba) Twig and Leaf Extracts Ameliorate Obesity-Related Metabolic Disorders via Gut Microbiota Modulation in High-Fat Diet-Fed Mice
by Wei Qian, Jinyan Han, Xiang Shi, Xiaoqing Qin, Feng Jiao, Minjuan Zhang, Lijun Bao and Chao Su
Animals 2025, 15(12), 1768; https://doi.org/10.3390/ani15121768 - 15 Jun 2025
Viewed by 780
Abstract
Mulberry (Morus alba) twigs and leaves, rich in flavonoids, polyphenols, polysaccharides, and alkaloids with multi-target regulatory properties on glucose/lipid metabolism, were evaluated for their anti-obesity effects using methanol-extracted twigs (MTE) and aqueous-extracted leaves (MLE) in high-fat diet (HFD)-induced obese mice. Both [...] Read more.
Mulberry (Morus alba) twigs and leaves, rich in flavonoids, polyphenols, polysaccharides, and alkaloids with multi-target regulatory properties on glucose/lipid metabolism, were evaluated for their anti-obesity effects using methanol-extracted twigs (MTE) and aqueous-extracted leaves (MLE) in high-fat diet (HFD)-induced obese mice. Both extracts significantly ameliorated obesity-related metabolic dysregulation, as evidenced by attenuated body weight gain, visceral fat accumulation, serum lipid profiles, homeostatic model assessment of insulin resistance (HOMA-IR), and hepatic inflammation compared to HFD controls (p < 0.05). Concurrently, MTE and MLE enhanced systemic antioxidant capacity and elevated high-density lipoprotein cholesterol (HDL-C) levels. Notably, high-dose MTE (MTEH, 1000 mg/kg) markedly reduced perirenal adiposity while increasing brown adipose tissue mass (p < 0.05). Mechanistic investigations revealed that MTEH reshaped gut microbiota composition by suppressing Firmicutes and Enterococcus, while enriching beneficial Faecalibaculum and Bifidobacterium spp. (p < 0.05). Furthermore, cecal short-chain fatty acid (SCFA) profiling demonstrated MTEH and MLEH-mediated metabolic reprogramming, characterized by increased propionic acid and decreased butyric acid, suggesting microbiota-dependent modulation of host energy metabolism. These findings collectively highlight the potential of mulberry extracts as multi-targeted nutraceuticals for obesity intervention via gut microbiota–SCFA axis regulation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

23 pages, 1011 KiB  
Review
The Role of Targeted Microbiota Therapy in the Prevention and Management of Puerperal Mastitis
by Mariarosaria Matera, Chiara Maria Palazzi, Alexander Bertuccioli, Francesco Di Pierro, Nicola Zerbinati, Massimiliano Cazzaniga, Aurora Gregoretti and Ilaria Cavecchia
Diseases 2025, 13(6), 176; https://doi.org/10.3390/diseases13060176 - 5 Jun 2025
Viewed by 776
Abstract
Mastitis, an inflammatory condition of the breast, significantly affects breastfeeding women and can lead to the early cessation of lactation. This article explores the pathophysiology of mastitis, distinguishing between acute mastitis (AM) and subacute mastitis (SAM), with a focus on the microbial dynamics [...] Read more.
Mastitis, an inflammatory condition of the breast, significantly affects breastfeeding women and can lead to the early cessation of lactation. This article explores the pathophysiology of mastitis, distinguishing between acute mastitis (AM) and subacute mastitis (SAM), with a focus on the microbial dynamics involved. AM is primarily associated with Staphylococcus aureus, while SAM is linked to a dysbiotic milk microbiota characterized by an imbalance of microbial species, including increased levels of opportunistic pathogens. The role of inflammation and the gut–breast axis in the development of mastitis are discussed, emphasizing the importance of maintaining a healthy microbiota. Recent studies highlight the potential of probiotics as a preventive and therapeutic measure against mastitis, showing promising results in reducing incidence and recurrence. However, further research is necessary to optimize probiotic strains, dosages, and treatment protocols. This review underscores the need for a comprehensive understanding of the microbiological, immunological, and inflammatory factors involved in mastitis to develop effective prevention and treatment strategies. Full article
Show Figures

Figure 1

13 pages, 1175 KiB  
Article
Gut Microbiota Dysbiosis in Japanese Female Patients with Nontuberculous Mycobacteria-Associated Lung Disease: An Observational Study
by Kanako Kono, Yutaka Kozu, Shun Yokota, Kouta Hatayama, Kenji Mizumura, Shuichiro Maruoka, Hiroaki Masuyama and Yasuhiro Gon
Biomedicines 2025, 13(5), 1264; https://doi.org/10.3390/biomedicines13051264 - 21 May 2025
Viewed by 674
Abstract
Background/Objectives: Nontuberculous mycobacterial pulmonary disease (NTM-PD) is treated using a combination of multiple antimicrobial agents and prolonged therapy; however, recurrence and reinfection rates remain high. Susceptibility to NTM-PD is not fully understood. We aimed to investigate the association between NTM-PD and gut [...] Read more.
Background/Objectives: Nontuberculous mycobacterial pulmonary disease (NTM-PD) is treated using a combination of multiple antimicrobial agents and prolonged therapy; however, recurrence and reinfection rates remain high. Susceptibility to NTM-PD is not fully understood. We aimed to investigate the association between NTM-PD and gut microbiota and determine the impact of antimicrobial therapy on the composition of the gut microbiota. Methods: We analyzed the gut microbiota of 20 Japanese females with NTM-PD (mean age: 67.9 years; range: 50–80 years) at different treatment stages—before, during, and at recurrence—alongside 20 healthy individuals, using 16S rRNA gene amplicon sequencing. Results: Subgroup A (pre-treatment) showed a small difference in β-diversity when compared with the healthy control (HC) group, while no significant differences in α-diversity were observed. Subgroup B (during treatment) exhibited a larger difference in β-diversity compared with the HC group, along with a decrease in α-diversity. The α-diversity of the gut microbiota in Subgroup C (at recurrence) was lower than that in Subgroup A but higher than that in Subgroup B. In Subgroups A and C, the bacterial taxa Sutterella, Adlercreutzia, Odoribacter, and Prevotella had decreased relative abundance, while Erysipelatoclostridium, Massilimicrobiota, Flavonifractor, Eggerthella, and Fusobacterium had increased relative abundance compared to those in the HC group. Conclusions: The loss of normal resident gut bacteria may hinder reacquisition. Treatment may be associated with the persistence of a dysbiotic gut microbiota, fostering susceptibility to NTM-PD. Gut microbiota dysbiosis may heighten susceptibility to NTM-PD, complicate treatment outcomes, and increase the risk of microbiological recurrence following therapy. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Graphical abstract

27 pages, 980 KiB  
Review
The Role of the Gut Microbiota in Female Reproductive and Gynecological Health: Insights into Endometrial Signaling Pathways
by Patricia Escorcia Mora, Diana Valbuena and Antonio Diez-Juan
Life 2025, 15(5), 762; https://doi.org/10.3390/life15050762 - 9 May 2025
Cited by 5 | Viewed by 2637
Abstract
Fertility is a dynamic, multifactorial process governed by hormonal, immune, metabolic, and environmental factors. Recent evidence highlights the gut microbiota as a key systemic regulator of reproductive health, with notable impacts on endometrial function, implantation, pregnancy maintenance, and the timing of birth. This [...] Read more.
Fertility is a dynamic, multifactorial process governed by hormonal, immune, metabolic, and environmental factors. Recent evidence highlights the gut microbiota as a key systemic regulator of reproductive health, with notable impacts on endometrial function, implantation, pregnancy maintenance, and the timing of birth. This review examines the gut–endometrial axis, focusing on how gut microbial communities influence reproductive biology through molecular signaling pathways. We discuss the modulatory roles of microbial-derived metabolites—including short-chain fatty acids, bile acids, and tryptophan catabolites—in shaping immune tolerance, estrogen metabolism, and epithelial integrity at the uterine interface. Emphasis is placed on shared mechanisms such as β-glucuronidase-mediated estrogen recycling, Toll-like receptor (TLR)-driven inflammation, Th17/Treg cell imbalance, and microbial translocation, which collectively implicate dysbiosis in the etiology of gynecological disorders including endometriosis, polycystic ovary syndrome (PCOS), recurrent implantation failure (RIF), preeclampsia (PE), and preterm birth (PTB). Although most current evidence remains correlational, emerging insights from metagenomic and metabolomic profiling, along with microbiota-depletion models and Mendelian randomization studies, underscore the biological significance of gut-reproductive crosstalk. By integrating concepts from microbiology, immunology, and reproductive molecular biology, this review offers a systems-level perspective on host–microbiota interactions in female fertility. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

22 pages, 1455 KiB  
Review
Kombucha: An Old Tradition into a New Concept of a Beneficial, Health-Promoting Beverage
by Dhuelly Kelly Almeida Andrade, Boying Wang, Emília Maria França Lima, Sergei Konstantinovich Shebeko, Alexey Mikhailovich Ermakov, Valentina Nikolaevna Khramova, Iskra Vitanova Ivanova, Ramon da Silva Rocha, Manuela Vaz-Velho, Anthony Nhamo Mutukumira and Svetoslav Dimitrov Todorov
Foods 2025, 14(9), 1547; https://doi.org/10.3390/foods14091547 - 28 Apr 2025
Cited by 2 | Viewed by 3628
Abstract
Kombucha is an ancient, fermented beverage that has gained increasing popularity worldwide due to its potential health benefits. Its origins trace back to China, from where it spread across Asia and Europe before reaching the modern global market. The fermentation of kombucha is [...] Read more.
Kombucha is an ancient, fermented beverage that has gained increasing popularity worldwide due to its potential health benefits. Its origins trace back to China, from where it spread across Asia and Europe before reaching the modern global market. The fermentation of kombucha is mediated by a Symbiotic Culture of Bacteria and Yeasts (SCOBY), comprising yeasts, acetic acid bacteria, and lactic acid bacteria. The microbial consortium plays a crucial role in the production of organic acids and bioactive metabolites, shaping the sensory characteristics of the beverage. Given the growing interest in kombucha as a functional beverage, this study aims to explore its historical background, fermentation process, and microbiological composition, including key yeasts, acid acetic bacteria, and lactic acid bacteria and their interactions. Additionally, we describe the potential health effects of kombucha, particularly its antimicrobial and antioxidant activity, the probiotic potential of the strains associated with kombucha, and safety considerations while also addressing the risks associated with its consumption. Although several studies suggested that kombucha may have antioxidants, antimicrobial, and probiotic properties, as well as contribute to gut microbiota regulation and immune system support, there is significant variability in the composition of the beverage, especially in artisanal preparations. This variability poses challenges in standardizing its potential effects and ensuring consistent safety. The risk of contamination further underscores the importance of adhering to strict sanitary production standards. To scientifically validate its health benefits and guarantee safe consumption, further research with larger sample sizes and robust methodologies is essential. The findings of this study will contribute to a deeper understanding of the functional properties of kombucha and provide scientific support for its safe and beneficial applications. Full article
Show Figures

Figure 1

23 pages, 4146 KiB  
Review
Human Gut Microbiome: A Connecting Organ Between Nutrition, Metabolism, and Health
by Sandra Valencia, Martha Zuluaga, María Cristina Florian Pérez, Kevin Fernando Montoya-Quintero, Mariana S. Candamil-Cortés and Sebastian Robledo
Int. J. Mol. Sci. 2025, 26(9), 4112; https://doi.org/10.3390/ijms26094112 - 26 Apr 2025
Cited by 1 | Viewed by 3957
Abstract
The gut microbiome plays a vital role in human health, functioning as a metabolic organ that influences nutrient absorption and overall well-being. With growing evidence that dietary interventions can modulate the microbiome and improve health, this review examines whether healthcare systems should prioritize [...] Read more.
The gut microbiome plays a vital role in human health, functioning as a metabolic organ that influences nutrient absorption and overall well-being. With growing evidence that dietary interventions can modulate the microbiome and improve health, this review examines whether healthcare systems should prioritize personalized microbiome-targeted therapies, such as probiotics, prebiotics, and microbiota transplants, over traditional pharmaceutical treatments for chronic diseases like obesity, diabetes, cardiovascular risk, and inflammatory conditions. A systematic review using Web of Science and Scopus databases was conducted, followed by a scientometric analysis. Key metabolic pathways, such as dietary fiber fermentation and short-chain fatty acid production, were explored, focusing on their impact on lipid and glucose metabolism. The interactions between microbial metabolites and the immune system were also investigated. Dietary interventions, including increased fiber and probiotic intake, show potential for addressing dysbiosis linked to conditions, such as type 2 diabetes, obesity, and autoimmune diseases. The review emphasizes the need to incorporate microbiome modulation strategies into clinical practice and research, calling for a multidisciplinary approach that integrates nutrition, microbiology, and biochemistry to better understand the gut microbiome’s complex role in health. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

16 pages, 2241 KiB  
Article
A Two-Phage Cocktail Modulates Gut Microbiota Composition and Metabolic Profiles in an Ex Vivo Colon Model
by Sthefhany Nohemí Rodríguez-Arellano, Jean Pierre González-Gómez, Bruno Gomez-Gil, Marisela González-Ávila, Juan Ramón Palomera-Hernández, Elisa Barrón-Cabrera, Marcela de Jesús Vergara-Jiménez and Cristobal Chaidez
Int. J. Mol. Sci. 2025, 26(6), 2805; https://doi.org/10.3390/ijms26062805 - 20 Mar 2025
Viewed by 740
Abstract
Bacteriophage therapy is a promising approach for targeting antibiotic-resistant bacteria and modulating gut microbiota in metabolic diseases such as obesity. This study evaluated the impact of a two-phage cocktail on an ex vivo colonic simulation model of gut microbiota derived from obese individuals, [...] Read more.
Bacteriophage therapy is a promising approach for targeting antibiotic-resistant bacteria and modulating gut microbiota in metabolic diseases such as obesity. This study evaluated the impact of a two-phage cocktail on an ex vivo colonic simulation model of gut microbiota derived from obese individuals, both in its normalized state and after enrichment with Enterobacter cloacae, an obesity-related bacteria. Microbiological analyses confirmed that the phage cocktail remained active throughout the colonic regions over three digestion cycles and effectively reduced enterobacterial populations in the enriched microbiota. Metabarcoding of the 16S rRNA gene revealed that phage therapy did not significantly alter the abundance of dominant genera, but selectively reduced E. cloacae across all colonic regions. Alpha diversity was significantly affected only in the enriched microbiota, while beta diversity analysis indicated significant compositional shifts during therapy, with reduced dispersion in the final treatment stage. Short-chain fatty acid profiling demonstrated region- and group-specific metabolic responses, with increased lactic and butyric acid concentrations in the ascending colon of the enriched microbiota following phage treatment. This study provides the first ex vivo evidence that a two-phage cocktail can selectively eliminate E. cloacae while preserving overall microbiota structure and functionality. These findings establish a foundation for future in vivo studies exploring the role of phage therapy in reshaping gut microbial communities and metabolic profiles, highlighting its potential as a precision tool for managing gut dysbiosis in metabolic disorders. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

23 pages, 6857 KiB  
Article
Research Status and Trends of Gut Microbiota and Intestinal Diseases Based on Bibliometrics
by Xiao Sun and Jiancheng Zhai
Microorganisms 2025, 13(3), 673; https://doi.org/10.3390/microorganisms13030673 - 17 Mar 2025
Cited by 1 | Viewed by 1391
Abstract
Gut microbiota plays an important role in gut health, and its dysbiosis is closely related to the pathogenesis of various intestinal diseases. The field of gut microbiota and intestinal diseases has not yet been systematically quantified through bibliometric methods. This study conducted bibliometric [...] Read more.
Gut microbiota plays an important role in gut health, and its dysbiosis is closely related to the pathogenesis of various intestinal diseases. The field of gut microbiota and intestinal diseases has not yet been systematically quantified through bibliometric methods. This study conducted bibliometric analysis to delineate the evolution of research on gut microbiota and intestinal diseases. Data were sourced from the Web of Science Core Collection database from 2009 to 2023 and were scientometrically analyzed using CiteSpace. We have found that the number of annual publications has been steadily increasing and showing an upward trend. China and the Chinese Academy of Sciences are the country and institution with the most contributions, respectively. Frontiers in Microbiology and Nutrients are the journals with the most publications, while Plos One and Nature are the journals with the most citations. The field has shifted from focusing on traditional descriptive analysis of gut microbiota composition to exploring the causal relationship between gut microbiota and intestinal diseases. The research hotspots and trends mainly include the correlation between specific intestinal diseases and gut microbiota diversity, the mechanism of gut microbiota involvement in intestinal diseases, the exploration of important gut microbiota related to intestinal diseases, and the relationship between gut microbiota and human gut health. This study provides a comprehensive knowledge map of gut microbiota and intestinal diseases, highlights key research areas, and outlines potential future directions. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Vaginal Seeding: Is There Any Positive Effect in Canine C-Sections?
by Samara Beretta, Renatha Almeida de Araújo, Melissa Oliveira Bianchini, Jaqueline Tamara Bonavina, João Domingos Rocha-Júnior, Nayara Camatta Campos, Lucas José Luduverio Pizauro, Fernanda Andreza Rodrigues-Silva, Gilson Hélio Toniollo, Marita Vedovelli Cardozo and Maricy Apparício
Animals 2025, 15(3), 416; https://doi.org/10.3390/ani15030416 - 2 Feb 2025
Cited by 1 | Viewed by 1277
Abstract
This study aimed to scrutinize variations in the intestinal microbiota of neonatal dogs born through natural birth versus elective cesarean section, focusing on evaluating the influence of vaginal seeding on the microbiota of cesarean-born neonates. Samples were collected from cesarean-sectioned females before anesthesia [...] Read more.
This study aimed to scrutinize variations in the intestinal microbiota of neonatal dogs born through natural birth versus elective cesarean section, focusing on evaluating the influence of vaginal seeding on the microbiota of cesarean-born neonates. Samples were collected from cesarean-sectioned females before anesthesia and from naturally birthing females during prodrome signs, along with neonates at eight time points from birth to 15 days of age. In the cesarean section group, seeding was performed in half of the neonates (cesarean section seeding group; seeding consisted of gently rubbing the gauze, obtained from the mother’s vagina, onto the mouths, faces, and bodies of the newborns), while the other half underwent microbiological sample collection without seeding (cesarean section group). Another group (normal birth group) consisted of naturally born neonates. Microbiota analysis included counting for enterobacteria, Staphylococcus spp., and Streptococcus spp. The results suggested that vertical transmission played a crucial role, but the method of birth did not emerge as the primary determinant of observed differences. Under study conditions, vaginal seeding failed to effectively modulate the microbiota of neonates born through elective cesarean section. Further investigations into the gut–brain axis are suggested for understanding factors influencing the initial development of the canine intestinal microbiota in neonates born through different delivery routes. Full article
Show Figures

Figure 1

26 pages, 1303 KiB  
Review
The Urogenital System Microbiota: Is It a New Gamechanger in Urogenital Cancers?
by Gülfem Ece, Ahmet Aktaş, Ayse Caner, İmran Sağlık, Tuğba Kula Atik, Özlem Ulusan Bağcı, Fulya Bayındır Bilman, Hadiye Demirbakan, Seda Güdül Havuz, Esra Kaya, Özlem Koyuncu Özyurt, Gülay Yetkin and Orçun Zorbozan
Microorganisms 2025, 13(2), 315; https://doi.org/10.3390/microorganisms13020315 - 1 Feb 2025
Cited by 1 | Viewed by 2123
Abstract
The human microbiome, which encompasses microbial communities and their genetic material, significantly influences health and disease, including cancer. The urogenital microbiota, naturally present in the urinary and genital tracts, interact with factors such as age, lifestyle, and health conditions to affect homeostasis and [...] Read more.
The human microbiome, which encompasses microbial communities and their genetic material, significantly influences health and disease, including cancer. The urogenital microbiota, naturally present in the urinary and genital tracts, interact with factors such as age, lifestyle, and health conditions to affect homeostasis and carcinogenesis. Studies suggest that alterations in this microbiota contribute to the development and progression of genitourinary cancers, emphasizing the concept of oncobiome, which refers to microbial genetic contributions to cancer. Similarly, gut microbiota can influence hormone levels and systemic inflammation, impacting cancers such as cervical and prostate cancer. Advanced studies indicate that microbial communities in genitourinary cancers have distinct profiles that may serve as diagnostic biomarkers or therapeutic targets. Dysbiosis of the urinary microbiota correlates with bladder and kidney cancer. Additionally, gut microbiota influence the effectiveness of cancer treatments. However, further research is necessary to clarify causality, the role of microbial metabolites, and hormonal regulation. The aim of this review is to understand that these dynamics present opportunities for innovative cancer diagnostics and therapies, highlighting the need for integration of microbiology, oncology, and genomics to explore the role of microbiota in genitourinary cancers. For this, a comprehensive search of relevant databases was conducted, applying specific inclusion and exclusion criteria to identify studies examining the association between microbiota and urogenital cancers. Research into the mechanisms by which microbiota influence urogenital cancers may pave the way for new diagnostic and therapeutic approaches, ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue Microbiota in Human Health and Disease)
Show Figures

Figure 1

Back to TopTop