Human Digestive Physiology and Evolutionary Diet: A Metabolomic Perspective on Carnivorous and Scavenger Adaptations
Abstract
1. Introduction
Search Methods and Strategies for Research Identification
2. Evolution of the Human Diet: Paleontological and Archaeological Evidence
2.1. Meat Consumption in Ancestral Hominins
2.2. Hunting Tools and Food Processing in the Fossil Record
2.3. Marrow and Fat Consumption in Hominins
3. Dental and Masticatory Adaptations
3.1. Human vs. Carnivore and Herbivore Dentition
3.2. Molar Structure and Evolutionary Trends from Early Hominins to Humans
4. Digestive Anatomy and Physiology: Comparison with Carnivores and Omnivores
4.1. Digestive Anatomy and Physiology: A Comparative Overview of Carnivores and Omnivores
Characteristic | Carnivores | Omnivores |
---|---|---|
Dentition | Sharp canines for tearing flesh | Mixed dentition (canines for tearing, molars for grinding) |
Stomach | Single-chambered; highly acidic and specialized for protein | Single-chambered; less specialized, capable of processing varied foods |
Small Intestine | Short in proportion to body length | Intermediate length for broader nutrient absorption |
Large Intestine | Simple and short; limited microbial fermentation | Longer; supports microbial fermentation of plant matter |
Dietary Adaptability | Specialized for high-protein intake; limited carbohydrate processing | Flexible; capable of digesting both animal and plant-based foods |
4.2. Human Intestinal Length in Comparison to Carnivorous and Herbivorous Species
4.3. Presence and Functionality of the Human Cecum and Its Dietary Implications
4.4. Gastric Emptying Rate and Stomach Acidity in Relation to Meat Digestion
5. Digestive Enzyme Production and Dietary Implications
5.1. Pepsin and Proteases in Protein Digestion
5.2. Limited Capacity for Complex Polysaccharide Digestion in Humans
5.3. Enzymatic Profiles of Carnivores vs. Omnivores (Humans)
5.3.1. Carbohydrate-Digesting Enzymes (Amylases)
5.3.2. Protein-Digesting Enzymes (Proteases)
5.3.3. Fat-Digesting Enzymes (Lipases)
5.3.4. Evolutionary Considerations
6. Macronutrient Metabolism in Humans
6.1. Efficient Conversion of Proteins and Fats into Energy: A Lower Dependence on Carbohydrates
6.2. Impact of Low-Carbohydrate Diets on Human Metabolic Regulation
7. Metabolomic Profile of Individuals on Carnivorous Diets
8. Gut Microbiota and Adaptation to a Carnivorous Diet
8.1. Differences in Microbiota Composition Among Carnivores, Omnivores, and Herbivores
- •
- •
- Bacteroides species are efficient in hydrolyzing fats and proteins, contributing to lipid metabolism and the production of essential nutrients [207].
- •
- Fusobacterium specializes in the degradation of amino acids and peptides, further supporting protein digestion and energy extraction [208].
8.2. Impact of High Fiber Intake on Human Gut Microbiota
9. Hormonal Regulation and Meat Consumption
9.1. Regulation of Leptin and Ghrelin in Response to High-Protein Diets
9.2. Influence on Energy Metabolism and Weight Homeostasis
10. Anthropological Evidence of Scavenging in Early Humans
10.1. Analysis of Feeding Strategies in Early Hominins
10.2. Evidence of Access to Meat Through Opportunistic Scavenging
10.3. Comparison with Other Scavenger Species and Its Evolutionary Relevance
11. Metabolomics and Protein Digestion in Humans
12. Metabolomics of Lipid Metabolism in Carnivorous Diets
12.1. Utilization of Ketone Bodies and Fatty Acids as Primary Energy Sources
12.2. Regulation of Lipid Synthesis and Oxidation in Response to High-Meat Diets
12.3. Metabolomic Profiles of Individuals in Physiological Ketosis
13. Impact of a Carnivorous Diet on Modern Human Health
13.1. Benefits and Risks of High Meat Consumption in Contemporary Diets
13.2. Relationship with Metabolic and Cardiovascular Diseases
13.3. Individual Adaptability and Genetic Differences in Meat Digestion
14. Implications for Contemporary Nutrition
15. Controversies and Limitations of the Evolutionary Approach
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; Van Der Hooft, J.J.J.; Wishart, D.S. The Food Metabolome: A Window over Dietary Exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Ungar, P.S.; Sponheimer, M. The Diets of Early Hominins. Science 2011, 334, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef]
- Belinchón-deMiguel, P.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Clemente-Suárez, V.J. Evolutionary Echoes: A Four-Day Fasting and Low-Caloric Intake Study on Autonomic Modulation and Physiological Adaptations in Humans. Life 2024, 14, 456. [Google Scholar] [CrossRef]
- Belinchón-deMiguel, P.; Ramos-Campo, D.J.; Clemente-Suárez, V.J. Exploring the Evolutionary Disparities: A Case Study on the Psychophysiological Response to Recreating the Hunter–Gatherer Lifestyle through Physical Activity and Caloric Restriction. Appl. Sci. 2023, 13, 11140. [Google Scholar] [CrossRef]
- Weimbs, T.; Saville, J.; Kalantar-Zadeh, K. Ketogenic Metabolic Therapy for Chronic Kidney Disease—The pro Part. Clin. Kidney J. 2024, 17, sfad273. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Milton, K. The Critical Role Played by Animal Source Foods in Human (Homo) Evolution. J. Nutr. 2003, 133 (Suppl. 2), 3886S–3892S. [Google Scholar] [CrossRef]
- Aiello, L.C.; Wheeler, P. The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution. Curr. Anthr. 1995, 36, 99. [Google Scholar] [CrossRef]
- Beasley, D.E.; Koltz, A.M.; Lambert, J.E.; Fierer, N.; Dunn, R.R. The Evolution of Stomach Acidity and Its Relevance to the Human Microbiome. PLoS ONE 2015, 10, e0134116. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Bhupathiraju, S.N.; Hu, F.B. Use of Metabolomics in Improving Assessment of Dietary Intake. Clin. Chem. 2018, 64, 82–98. [Google Scholar] [CrossRef]
- Speth, J.D. Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet? PaleoAnthropology 2017, 44–72. [Google Scholar] [CrossRef]
- Bocherens, H. Neanderthal Dietary Habits: Review of the Isotopic Evidence. In Vertebrate Paleobiology and Paleoanthropology; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Sonnenburg, J.L.; Bäckhed, F. Diet-Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Oellgaard, J.; Winther, S.A.; Hansen, T.S.; Rossing, P.; von Scholten, B.J. Trimethylamine N-Oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Curr. Pharm. Des. 2017, 23, 3699–3712. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Solon-Biet, S.M.; Cogger, V.C.; Pulpitel, T.; Wahl, D.; Clark, X.; Bagley, E.E.; Gregoriou, G.C.; Senior, A.M.; Wang, Q.P.; Brandon, A.E.; et al. Branched-Chain Amino Acids Impact Health and Lifespan Indirectly via Amino Acid Balance and Appetite Control. Nat. Metab. 2019, 1, 532–545. [Google Scholar] [CrossRef]
- Paoli, A.; Bianco, A.; Grimaldi, K.A. The Ketogenic Diet and Sport: A Possible Marriage? Exerc. Sport Sci. Rev. 2015, 43, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Gerszten, R.E. Toward New Biomarkers of Cardiometabolic Diseases. Cell Metab. 2013, 18, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B. Metabolomics and Metabolic Diseases: Where Do We Stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef]
- Martín-Rodríguez, A.; Gostian-Ropotin, L.A.; Beltrán-Velasco, A.I.; Belando-Pedreño, N.; Simón, J.A.; López-Mora, C.; Navarro-Jiménez, E.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Sporting Mind: The Interplay of Physical Activity and Psychological Health. Sports 2024, 12, 37. [Google Scholar] [CrossRef]
- Merino, M.; Tornero-Aguilera, J.F.; Rubio-Zarapuz, A.; Villanueva-Tobaldo, C.V.; Martín-Rodríguez, A.; Clemente-Suárez, V.J. Body Perceptions and Psychological Well-Being: A Review of the Impact of Social Media and Physical Measurements on Self-Esteem and Mental Health with a Focus on Body Image Satisfaction and Its Relationship with Cultural and Gender Factors. Healthcare 2024, 12, 1396. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 8848. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Ruisoto, P.; Dalamitros, A.A.; Beltran-Velasco, A.I.; Hormeño-Holgado, A.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Performance of Fuzzy Multi-Criteria Decision Analysis of Emergency System in COVID-19 Pandemic. An Extensive Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 5208. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Alt, K.W.; Al-Ahmad, A.; Woelber, J.P. Nutrition and Health in Human Evolution–Past to Present. Nutrients 2022, 14, 3594. [Google Scholar] [CrossRef]
- Scott, R.S.; Ungar, P.S.; Bergstrom, T.S.; Brown, C.A.; Childs, B.E.; Teaford, M.F.; Walker, A. Dental Microwear Texture Analysis: Technical Considerations. J. Hum. Evol. 2006, 51, 339–349. [Google Scholar] [CrossRef]
- Sponheimer, M.; Alemseged, Z.; Cerling, T.E.; Grine, F.E.; Kimbel, W.H.; Leakey, M.G.; Lee-Thorp, J.A.; Manthi, F.K.; Reed, K.E.; Wood, B.A.; et al. Isotopic Evidence of Early Hominin Diets. Proc. Natl. Acad. Sci. USA 2013, 110, 10513–10518. [Google Scholar] [CrossRef]
- McPherron, S.P.; Alemseged, Z.; Marean, C.W.; Wynn, J.G.; Reed, D.; Geraads, D.; Bobe, R.; Béarat, H.A. Evidence for Stone-Tool-Assisted Consumption of Animal Tissues before 3.39 Million Years Ago at Dikika, Ethiopia. Nature 2010, 466, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Byeon, W.; Domínguez-Rodrigo, M.; Arampatzis, G.; Baquedano, E.; Yravedra, J.; Maté-González, M.A.; Koumoutsakos, P. Automated Identification and Deep Classification of Cut Marks on Bones and Its Paleoanthropological Implications. J. Comput. Sci. 2019, 32, 36–43. [Google Scholar] [CrossRef]
- Braun, D.R. Australopithecine Butchers. Nature 2010, 466, 828. [Google Scholar] [CrossRef]
- Rowan, J.; Lazagabaster, I.A.; Campisano, C.J.; Bibi, F.; Bobe, R.; Boisserie, J.R.; Frost, S.R.; Getachew, T.; Gilbert, C.C.; Lewis, M.E.; et al. Early Pleistocene Large Mammals from Maka’amitalu, Hadar, Lower Awash Valley, Ethiopia. PeerJ 2022, 10, e13210. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Pickering, T.R.; Semaw, S.; Rogers, M.J. Cutmarked Bones from Pliocene Archaeological Sites at Gona, Afar, Ethiopia: Implications for the Function of the World’s Oldest Stone Tools. J. Hum. Evol. 2005, 48, 109–121. [Google Scholar] [CrossRef]
- Ferraro, J.V.; Plummer, T.W.; Pobiner, B.L.; Oliver, J.S.; Bishop, L.C.; Braun, D.R.; Ditchfield, P.W.; Seaman, J.W.; Binetti, K.M.; Seaman, J.W.; et al. Earliest Archaeological Evidence of Persistent Hominin Carnivory. PLoS ONE 2013, 8, e62174. [Google Scholar] [CrossRef]
- Curran, S.C.; Drăgușin, V.; Pobiner, B.; Pante, M.; Hellstrom, J.; Woodhead, J.; Croitor, R.; Doboș, A.; Gogol, S.E.; Ersek, V.; et al. Hominin Presence in Eurasia by at Least 1.95 Million Years Ago. Nat. Commun. 2025, 16, 836. [Google Scholar] [CrossRef]
- Gorbunova, N.A. Assessing the Role of Meat Consumption in Human Evolutionary Changes. A Review. Theory Pract. Meat Process. 2024, 9, 53–64. [Google Scholar] [CrossRef]
- Antón, S.C.; Taboada, H.G.; Middleton, E.R.; Rainwater, C.W.; Taylor, A.B.; Turner, T.R.; Turnquist, J.E.; Weinstein, K.J.; Williams, S.A. Morphological Variation in Homo Erectus and the Origins of Developmental Plasticity. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 1–18. [Google Scholar] [CrossRef]
- Puech, P.F.; Albertini, H.; Serratrice, C. Tooth Microwear and Dietary Patterns in Early Hominids from Laetoli, Hadar and Olduvai. J. Hum. Evol. 1983, 12, 721–729. [Google Scholar] [CrossRef]
- Zink, K.D.; Lieberman, D.E. Impact of Meat and Lower Palaeolithic Food Processing Techniques on Chewing in Humans. Nature 2016, 531, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food Proteins from Animals and Plants: Differences in the Nutritional and Functional Properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Harvati, K.; Reyes-Centeno, H. Evolution of Homo in the Middle and Late Pleistocene. J. Hum. Evol. 2022, 173, 103279. [Google Scholar] [CrossRef]
- Richards, M.P.; Trinkaus, E. Out of Africa: Modern Human Origins Special Feature: Isotopic Evidence for the Diets of European Neanderthals and Early Modern Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 16034–16039. [Google Scholar] [CrossRef]
- Jaouen, K.; Beasley, M.; Schoeninger, M.; Hublin, J.J.; Richards, M.P. Zinc Isotope Ratios of Bones and Teeth as New Dietary Indicators: Results from a Modern Food Web (Koobi Fora, Kenya). Sci. Rep. 2016, 6, 26281. [Google Scholar] [CrossRef]
- Hardy, K.; Buckley, S.; Collins, M.J.; Estalrrich, A.; Brothwell, D.; Copeland, L.; García-Tabernero, A.; García-Vargas, S.; De La Rasilla, M.; Lalueza-Fox, C.; et al. Neanderthal Medics? Evidence for Food, Cooking, and Medicinal Plants Entrapped in Dental Calculus. Naturwissenschaften 2012, 99, 617–626. [Google Scholar] [CrossRef]
- Rampelli, S.; Turroni, S.; Mallol, C.; Hernandez, C.; Galván, B.; Sistiaga, A.; Biagi, E.; Astolfi, A.; Brigidi, P.; Benazzi, S.; et al. Components of a Neanderthal Gut Microbiome Recovered from Fecal Sediments from El Salt. Commun. Biol. 2021, 4, 169. [Google Scholar] [CrossRef]
- Shipley, G.P.; Kindscher, K. Evidence for the Paleoethnobotany of the Neanderthal: A Review of the Literature. Scientifica 2016, 2016, 8927654. [Google Scholar] [CrossRef]
- Palma-Morales, M.; Mateos, A.; Rodríguez, J.; Casuso, R.A.; Huertas, J.R. Food Made Us Human: Recent Genetic Variability and Its Relevance to the Current Distribution of Macronutrients. Nutrition 2022, 101, 111702. [Google Scholar] [CrossRef]
- Barsky, D.; Vergès, J.M.; Titton, S.; Guardiola, M.; Sala, R.; Moyano, I.T. The Emergence and Significance of Heavy-Duty Scrapers in Ancient Stone Toolkits. Comptes Rendus Palevol 2018, 17, 201–219. [Google Scholar] [CrossRef]
- de la Torre, I.; Doyon, L.; Benito-Calvo, A.; Mora, R.; Mwakyoma, I.; Njau, J.K.; Peters, R.F.; Theodoropoulou, A.; d’Errico, F. Systematic Bone Tool Production at 1.5 Million Years Ago. Nature 2025, 640, 130–134. [Google Scholar] [CrossRef]
- Braun, D.R.; Pante, M.; Archer, W. Cut Marks on Bone Surfaces: Influences on Variation in the Form of Traces of Ancient Behaviour. Interface Focus 2016, 6, 20160006. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Shipton, C.; Clarkson, C. Stone Toolmaking Difficulty and the Evolution of Hominin Technological Skills. Sci. Rep. 2022, 12, 5883. [Google Scholar] [CrossRef]
- Conard, N.J.; Serangeli, J.; Böhner, U.; Starkovich, B.M.; Miller, C.E.; Urban, B.; Van Kolfschoten, T. Excavations at Schöningen and Paradigm Shifts in Human Evolution. J. Hum. Evol. 2015, 89, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zink, K.D.; Lieberman, D.E.; Lucas, P.W. Food Material Properties and Early Hominin Processing Techniques. J. Hum. Evol. 2014, 77, 155–166. [Google Scholar] [CrossRef]
- Karkanas, P.; Shahack-Gross, R.; Ayalon, A.; Bar-Matthews, M.; Barkai, R.; Frumkin, A.; Gopher, A.; Stiner, M.C. Evidence for Habitual Use of Fire at the End of the Lower Paleolithic: Site-Formation Processes at Qesem Cave, Israel. J. Hum. Evol. 2007, 53, 197–212. [Google Scholar] [CrossRef]
- Shipman, P.; Rose, J. Early Hominid Hunting, Butchering, and Carcass-Processing Behaviors: Approaches to the Fossil Record. J. Anthropol. Archaeol. 1983, 2, 57–98. [Google Scholar] [CrossRef]
- Blasco, R.; Rosell, J.; Arilla, M.; Margalida, A.; Villalba, D.; Gopher, A.; Barkai, R. Bone Marrow Storage and Delayed Consumption at Middle Pleistocene Qesem Cave, Israel (420 to 200 Ka). Sci. Adv. 2019, 5, aav9822. [Google Scholar] [CrossRef] [PubMed]
- Pante, M.; de La, T.A.; d’Errico, F.; Njau, J.; Blumenschine, R. Bone Tools from Beds II–IV, Olduvai Gorge, Tanzania, and Implications for the Origins and Evolution of Bone Technology. J. Hum. Evol. 2020, 148, 102885. [Google Scholar] [CrossRef] [PubMed]
- Ollé, A.; Mosquera, M.; Rodríguez, X.P.; de Lombera-Hermida, A.; García-Antón, M.D.; García-Medrano, P.; Peña, L.; Menéndez, L.; Navazo, M.; Terradillos, M.; et al. The Early and Middle Pleistocene Technological Record from Sierra de Atapuerca (Burgos, Spain). Quat. Int. 2013, 295, 138–167. [Google Scholar] [CrossRef]
- Solodenko, N.; Zupancich, A.; Cesaro, S.N.; Marder, O.; Lemorini, C.; Barkai, R. Fat Residue Use-Wear Found on Acheulian Biface Scraper Associated with Butchered Elephant Remains at the Site of Revadim, Israel. PLoS ONE 2015, 10, e0118572. [Google Scholar] [CrossRef]
- Bhargavi, A.; Ajay, S.; Rohit, B.; Vishal, A.; Minkle, G. Comparative Tooth Anatomy—A Review. Int. J. Dent. Sci. Res. 2013, 1, 34–37. [Google Scholar] [CrossRef]
- Grenot, C.J. Ecophysiological Characteristics of Large Herbivorous Mammals in Arid Africa and the Middle East. J. Arid Environ. 1992, 23, 125–155. [Google Scholar] [CrossRef]
- Linnell, J.D.C.; Cretois, B.; Nilsen, E.B.; Rolandsen, C.M.; Solberg, E.J.; Veiberg, V.; Kaczensky, P.; Van Moorter, B.; Panzacchi, M.; Rauset, G.R.; et al. The Challenges and Opportunities of Coexisting with Wild Ungulates in the Human-Dominated Landscapes of Europe’s Anthropocene. Biol. Conserv. 2020, 244, 108500. [Google Scholar] [CrossRef]
- Kim, G.; Oh, J.; Cho, M. Differences between Vegetarians and Omnivores in Food Choice Motivation and Dietarian Identity. Foods 2022, 11, 539. [Google Scholar] [CrossRef]
- ZAWAWI, R.N.; ALMOSA, N.A. Assessment of Enamel Surface Roughness and Hardness with Metal and Ceramic Orthodontic Brackets Using Different Etching and Adhesive Systems: An in Vitro Study. Saudi Dent. J. 2023, 35, 641–650. [Google Scholar] [CrossRef]
- Daubert, D.M.; Kelley, J.L.; Udod, Y.G.; Habor, C.; Kleist, C.G.; Furman, I.K.; Tikonov, I.N.; Swanson, W.J.; Roberts, F.A. Human Enamel Thickness and ENAM Polymorphism. Int. J. Oral Sci. 2016, 8, 93–97. [Google Scholar] [CrossRef]
- Ricketts, R.M. Facial and Denture Changes during Orthodontic Treatment as Analyzed from the Temporomandibular Joint. Am. J. Orthod. 1955, 41, 163–179. [Google Scholar] [CrossRef]
- Koc, D.; Dogan, A.; Bek, B. Bite Force and Influential Factors on Bite Force Measurements: A Literature Review. Eur. J. Dent. 2010, 4, 223–232. [Google Scholar] [CrossRef]
- Evans, A.R.; Daly, E.S.; Catlett, K.K.; Paul, K.S.; King, S.J.; Skinner, M.M.; Nesse, H.P.; Hublin, J.J.; Townsend, G.C.; Schwartz, G.T.; et al. A Simple Rule Governs the Evolution and Development of Hominin Tooth Size. Nature 2016, 530, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Ungar, P.S.; Grine, F.E.; Teaford, M.F. Dental Microwear and Diet of the Plio-Pleistocene Hominin Paranthropus Boisei. PLoS ONE 2008, 3, e2044. [Google Scholar] [CrossRef]
- Zollikofer, C.P.E.; Beyrand, V.; Lordkipanidze, D.; Tafforeau, P.; Ponce de León, M.S. Dental Evidence for Extended Growth in Early Homo from Dmanisi. Nature 2024, 635, 906–911. [Google Scholar] [CrossRef]
- Domínguez-Solera, S.D.; Martín-Lerma, I.; Moreno, D.; Pérez-Garrido, C. Lower Paleolithic Butchery Knives and Carpentry Tools: MODE 1 Industry of “El Pino” (Campos Del Paraíso, Cuenca, Spain). J. Archaeol. Sci. Rep. 2022, 42, 103377. [Google Scholar] [CrossRef]
- Prat, S. Emergence of the Genus Homo: From Concept to Taxonomy. Anthropologie 2022, 126, 103068. [Google Scholar] [CrossRef]
- Thackeray, J.F.; Maureille, B.; Vandermeersch, B.; Braga, J.; Chaix, R. Morphometric Comparisons between Neanderthals and ‘Anatomically Modern’ Homo Sapiens from Europe and the Near East. Ann. Transvaal Musuem 2005, 42, 47–51. [Google Scholar]
- Kondo, M.; Ikenaka, Y.; Nakayama, S.M.M.; Kawai, Y.K.; Mizukawa, H.; Mitani, Y.; Nomyama, K.; Tanabe, S.; Ishizuka, M. Sulfotransferases (SULTs), Enzymatic and Genetic Variation in Carnivora: Limited Sulfation Capacity in Pinnipeds. Comp. Biochem. Physiol. Part—C Toxicol. Pharmacol. 2023, 263, 109476. [Google Scholar] [CrossRef]
- Luca, F.; Perry, G.H.; Di Rienzo, A. Evolutionary Adaptations to Dietary Changes. Annu. Rev. Nutr. 2010, 30, 291–314. [Google Scholar] [CrossRef]
- James, W.P.T.; Johnson, R.J.; Speakman, J.R.; Wallace, D.C.; Frühbeck, G.; Iversen, P.O.; Stover, P.J. Nutrition and Its Role in Human Evolution. J. Intern. Med. 2019, 285, 533–549. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.S.; Castellano, S.; Andrés, A.M. The Genomics of Human Local Adaptation. Trends Genet. 2020, 36, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J. Xenobiotics 2021, 11, 94–114. [Google Scholar] [CrossRef]
- He, W.; Connolly, E.D.; Wu, G. Characteristics of the Digestive Tract of Dogs and Cats; Springer: Berlin/Heidelberg, Germany, 2024; pp. 15–38. [Google Scholar] [CrossRef]
- Gibson, L.A.; Hume, I.D. Digestive Performance and Digesta Passage in the Omnivorous Greater Bilby, Macrotis Lagotis (Marsupialia: Peramelidae). J. Comp. Physiol. B 2000, 170, 457–467. [Google Scholar] [CrossRef]
- Pujahari, A.K. Tiger Food for Short Bowel: Two Cases. J. Clin. Diagn. Res. 2016, 10, PL01–PL02. [Google Scholar] [CrossRef]
- Helander, H.F.; Fändriks, L. Surface Area of the Digestive Tract—Revisited. Scand. J. Gastroenterol. 2014, 49, 681–689. [Google Scholar] [CrossRef]
- Neves, M.P.; Amorim, J.P.d.A.; Delariva, R.L.; Kratina, P.; Fialho, C.B. Linking Anatomical and Histological Traits of the Digestive Tract to Resource Consumption and Assimilation of Omnivorous Tetra Fishes. Ecol. Evol. 2024, 14, 11375. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shu, Y.; Huang, Y.; Tan, J.; Wang, F.; Tang, L.; Fang, T.; Yuan, S.; Wang, L. Microbial Biogeography along the Gastrointestinal Tract of a Wild Chinese Muntjac (Muntiacus Reevesi). Microorganisms 2024, 12, 1587. [Google Scholar] [CrossRef]
- Harter, T.S.; Verreth, J.A.J.; Heinsbroek, L.T.N.; Schrama, J.W. Isoenergetic Replacement of Fat by Starch in Diets for African Catfish (Clarias Gariepinus): Effect on Water Fluxes in the Gastro Intestinal Tract. PLoS ONE 2013, 8, e55245. [Google Scholar] [CrossRef]
- McKenney, E.A.; Hale, A.R.; Anderson, J.; Larsen, R.; Grant, C.; Dunn, R.R. Hidden Diversity: Comparative Functional Morphology of Humans and Other Species. PeerJ 2023, 11, 15148. [Google Scholar] [CrossRef]
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The Role of Meat in the Human Diet: Evolutionary Aspects and Nutritional Value. Anim. Front. 2023, 13, vfac093. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Metzler-Zebeli, B.U.; Zebeli, Q. Gut Function-Enhancing Properties and Metabolic Effects of Dietary Indigestible Sugars in Rodents and Rabbits. Nutrients 2015, 7, 8348–8365. [Google Scholar] [CrossRef]
- Havenaar, R. Intestinal Health Functions of Colonic Microbial Metabolites: A Review. Benef. Microbes 2011, 2, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Abbott, D.W.; Uwiera, R.R.E.; Inglis, G.D. Removal of the Cecum Affects Intestinal Fermentation, Enteric Bacterial Community Structure, and Acute Colitis in Mice. Gut Microbes 2018, 9, 218–235. [Google Scholar] [CrossRef]
- Sulistyowati, E.; Handayani, D.; Soeharto, S.; Rudijanto, A. A High-Fat and High-Fructose Diet Lowers the Cecal Digesta’s Weight and Short-Chain Fatty Acid Level of a Sprague–Dawley Rat Model. Turk. J. Med. Sci. 2022, 52, 1911–1914. [Google Scholar] [CrossRef]
- Fu, B.; Zhao, X.; Khan, M.; Jiang, Y.; Li, W.; Mushtaq, M.; Danzeng, B.; Ni, X.; Azeem, Z.; Shao, Q.; et al. Cecum Microbiota Composition, Fermentation Characteristics, and Immunometabolic Biomarkers of Yunshang Black Goat Fed Varying Dietary Energy and Protein Levels. Front. Microbiol 2025, 16, e1523586. [Google Scholar] [CrossRef]
- Zaborin, A.; Penalver Bernabe, B.; Keskey, R.; Sangwan, N.; Hyoju, S.; Gottel, N.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Spatial Compartmentalization of the Microbiome between the Lumen and Crypts Is Lost in the Murine Cecum Following the Process of Surgery, Including Overnight Fasting and Exposure to Antibiotics. Msystems 2020, 5 3, e00377-20. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H. Microbiota or Short-Chain Fatty Acids: Which Regulates Diabetes? Cell. Mol. Immunol. 2018, 15, 88–91. [Google Scholar] [CrossRef]
- Bhat, M.A.; Mishra, A.K.; Tantray, J.A.; Alatawi, H.A.; Saeed, M.; Rahman, S.; Jan, A.T. Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life 2022, 12, 1986. [Google Scholar] [CrossRef]
- Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Khani Ali Akbari, S.; Yousefimashouf, R.; Karampoor, S. Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomed. Pharmacother. 2021, 139, 111619. [Google Scholar] [CrossRef]
- Mariño, E.; Richards, J.L.; McLeod, K.H.; Stanley, D.; Yap, Y.A.; Knight, J.; McKenzie, C.; Kranich, J.; Oliveira, A.C.; Rossello, F.J.; et al. Gut Microbial Metabolites Limit the Frequency of Autoimmune T Cells and Protect against Type 1 Diabetes. Nat. Immunol. 2017, 18, 552–562. [Google Scholar] [CrossRef]
- Urlacher, S.S.; Kim, E.Y.; Luan, T.; Young, L.J.; Adjetey, B. Minimally Invasive Biomarkers in Human and Non-Human Primate Evolutionary Biology: Tools for Understanding Variation and Adaptation. Am. J. Hum. Biol. 2022, 34, e23811. [Google Scholar] [CrossRef] [PubMed]
- Amato, K.R. Incorporating the Gut Microbiota into Models of Human and Non-Human Primate Ecology and Evolution. Am. J. Phys. Anthropol. 2016, 159, 22908. [Google Scholar] [CrossRef] [PubMed]
- MacKie, A. The Role of Food Structure in Gastric Emptying Rate, Absorption and Metabolism. Proc. Nutr. Soc. 2023, 83, 35–41. [Google Scholar] [CrossRef]
- Goyal, R.K.; Guo, Y.; Mashimo, H. Advances in the Physiology of Gastric Emptying. Neurogastroenterol. Motil. 2019, 31, e13546. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, S.; Lee, J.H.; Seo, J.H.; Pasricha, P.J.; Mittal, R. Effect of Stomach Motility on Food Hydrolysis and Gastric Emptying: Insight from Computational Models. Phys. Fluids 2022, 34, 111909. [Google Scholar] [CrossRef]
- Fernandes, S.Q.; Kothare, M.V.; Mahmoudi, B. A Novel Compartmental Approach for Modeling Stomach Motility and Gastric Emptying. Comput. Biol. Med. 2024, 181, 109035. [Google Scholar] [CrossRef]
- Ebara, R.; Ishida, S.; Miyagawa, T.; Imai, Y. Effects of Peristaltic Amplitude and Frequency on Gastric Emptying and Mixing: A Simulation Study. J. R. Soc. Interface 2023, 20, 1–8. [Google Scholar] [CrossRef]
- Miyagawa, T.; Imai, Y.; Ishida, S.; Ishikawa, T. Relationship between Gastric Motility and Liquid Mixing in the Stomach. Am. J. Physiol. Gastrointest Liver Physiol. 2016, 311, G1114–G1121. [Google Scholar] [CrossRef]
- Goyal, R.K.; Cristofaro, V.; Sullivan, M.P. Rapid Gastric Emptying in Diabetes Mellitus: Pathophysiology and Clinical Importance. J. Diabetes Its Complicat. 2019, 33, 107414. [Google Scholar] [CrossRef]
- Mori, H.; Verbeure, W.; Schol, J.; Carbone, F.; Tack, J. Gastrointestinal Hormones and Regulation of Gastric Emptying. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Singh, R.; Ha, S.E.; Martin, A.M.; Jones, L.A.; Jin, B.; Jorgensen, B.G.; Zogg, H.; Chervo, T.; Gottfried-Blackmore, A.; et al. Serotonin Deficiency Is Associated with Delayed Gastric Emptying. Gastroenterology 2021, 160, 2451–2466.e19. [Google Scholar] [CrossRef]
- Barr, B.; Levitt, D.E.; Gollahon, L. Red Meat Amino Acids for Beginners: A Narrative Review. Nutrients 2025, 17, 939. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, W.; Liu, D.; Li, X.; Liu, S.; Wu, X.; Wang, H. Impact of Food Physical Properties on Oral Drug Absorption: A Comprehensive Review. Drug Des. Dev. Ther. 2025, 19, 267–280. [Google Scholar] [CrossRef]
- Tian, L.; Huang, C.; Fu, W.; Gao, L.; Mi, N.; Bai, M.; Ma, H.; Zhang, C.; Lu, Y.; Zhao, J.; et al. Proton Pump Inhibitors May Enhance the Risk of Digestive Diseases by Regulating Intestinal Microbiota. Front. Pharmacol. 2023, 14, e1217306. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Lebwohl, B.; Abrams, J.A. The Impact of Proton Pump Inhibitors on the Human Gastrointestinal Microbiome. Clin. Lab. Med. 2014, 34, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, C.O.; Olaniyan, O.T.; Varma, A. Enzymes Involved with Digestion of Animal Nutrition: Role and Their Biotechnological Application; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Corsato Alvarenga, I.; Aldrich, C.G.; Shi, Y.C. Factors Affecting Digestibility of Starches and Their Implications on Adult Dog Health. Anim. Feed. Sci. Technol. 2021, 282, 115134. [Google Scholar] [CrossRef]
- Janiak, M.C. Digestive Enzymes of Human and Nonhuman Primates. Evol. Anthropol. 2016, 25, 253–266. [Google Scholar] [CrossRef]
- Dominy, N.J.; Vogel, E.R.; Yeakel, J.D.; Constantino, P.; Lucas, P.W. Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins. Evol. Biol. 2008, 35, 159–175. [Google Scholar] [CrossRef]
- Zhang, J. Parallel Adaptive Origins of Digestive RNases in Asian and African Leaf Monkeys. Nat. Genet. 2006, 38, 819–823. [Google Scholar] [CrossRef]
- Perry, G.H.; Dominy, N.J.; Claw, K.G.; Lee, A.S.; Fiegler, H.; Redon, R.; Werner, J.; Villanea, F.A.; Mountain, J.L.; Misra, R.; et al. Diet and the Evolution of Human Amylase Gene Copy Number Variation. Nat. Genet. 2007, 39, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Heda, R.; Toro, F.; Tombazzi, C.R. Physiology, Pepsin; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Robertson, D.S. The Chemical Reactions in the Human Stomach and the Relationship to Metabolic Disorders. Med. Hypotheses 2005, 64, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, Z.; Everett, D.W.; Gilbert, E.P.; Singh, H.; Ye, A. Digestion of Food Proteins: The Role of Pepsin. Crit. Rev. Food Sci. Nutr. 2025, 1–22. [Google Scholar] [CrossRef]
- Whitcomb, D.C.; Lowe, M.E. Human Pancreatic Digestive Enzymes. Dig. Dis. Sci. 2007, 52, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Karasov, W.H.; Douglas, A.E. Comparative Digestive Physiology. Compr. Physiol. 2013, 3, 741–783. [Google Scholar] [CrossRef]
- Goldberg, D.M. Functional, Chemical, and Clinical Aspects of Proteolytic Enzymes in the Alimentary Canal. Clin. Biochem. 1976, 9, 131–135. [Google Scholar] [CrossRef]
- Bolognini, D.; Halgren, A.; Lou, R.N.; Raveane, A.; Rocha, J.L.; Guarracino, A.; Soranzo, N.; Chin, C.-S.; Garrison, E.; Sudmant, P.H. Recurrent Evolution and Selection Shape Structural Diversity at the Amylase Locus. Nature 2024, 634, 617–625. [Google Scholar] [CrossRef]
- Yang, Q.; Chang, S.; Zhang, X.; Luo, F.; Li, W.; Ren, J. The Fate of Dietary Polysaccharides in the Digestive Tract. Trends Food Sci. Technol. 2024, 150, 104606. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
- Holland, C.; Ryden, P.; Edwards, C.H.; Grundy, M.M.L. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020, 9, 201. [Google Scholar] [CrossRef]
- German, D.P.; Horn, M.H.; Gawlicka, A. Digestive Enzyme Activities in Herbivorous and Carnivorous Prickleback Fishes (Teleostei: Stichaeidae): Ontogenetic, Dietary, and Phylogenetic Effects. Physiol. Biochem. Zool. 2004, 77, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Castro-Ruiz, D.; Andree, K.B.; Blondeau-Bidet, E.; Fernández-Méndez, C.; García-Dávila, C.; Gisbert, E.; Darias, M.J. Isolation, Identification, and Gene Expression Analysis of the Main Digestive Enzymes during Ontogeny of the Neotropical Catfish Pseudoplatystoma Punctifer (Castelnau, 1855). Aquaculture 2021, 543, 737031. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhao, H. Evolution of Digestive Enzymes and Dietary Diversification in Birds. PeerJ 2019, 2019, e6840. [Google Scholar] [CrossRef] [PubMed]
- Boehlke, C.; Zierau, O.; Hannig, C. Salivary Amylase—The Enzyme of Unspecialized Euryphagous Animals. Arch. Oral Biol. 2015, 60, 1162–1176. [Google Scholar] [CrossRef]
- Verbrugghe, A.; Hesta, M. Cats and Carbohydrates: The Carnivore Fantasy? Vet. Sci. 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Llobat, L.; Soriano, P.; Bordignon, F.; de Evan, T.; Larsen, T.; Marín-García, P.J. Dietary Type (Carnivore, Herbivore and Omnivore) and Animal Species Modulate the Nutritional Metabolome of Terrestrial Species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2024, 272, 110965. [Google Scholar] [CrossRef]
- Dwyer, G.K.; Stoffels, R.J.; Silvester, E.; Rees, G.N. Two Wild Carnivores Selectively Forage for Prey but Not Amino Acids. Sci. Rep. 2023, 13, 3254. [Google Scholar] [CrossRef]
- Kim, S.; Cho, Y.S.; Kim, H.M.; Chung, O.; Kim, H.; Jho, S.; Seomun, H.; Kim, J.; Bang, W.Y.; Kim, C.; et al. Comparison of Carnivore, Omnivore, and Herbivore Mammalian Genomes with a New Leopard Assembly. Genome Biol. 2016, 17, 211. [Google Scholar] [CrossRef]
- Lonnie, M.; Hooker, E.; Brunstrom, J.M.; Corfe, B.M.; Green, M.A.; Watson, A.W.; Williams, E.A.; Stevenson, E.J.; Penson, S.; Johnstone, A.M. Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef]
- Christiansen, P.; Wroe, S. Bite Forces and Evolutionary Adaptations to Feeding Ecology in Carnivores. Ecology 2007, 88, 347–358. [Google Scholar] [CrossRef]
- Zhu, G.; Fang, Q.; Zhu, F.; Huang, D.; Yang, C. Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship with Pathological States. Front. Genet. 2021, 12, 693538. [Google Scholar] [CrossRef]
- De Cuyper, A.; Meloro, C.; Abraham, A.J.; Müller, D.W.H.; Codron, D.; Janssens, G.P.J.; Clauss, M. The Uneven Weight Distribution between Predators and Prey: Comparing Gut Fill between Terrestrial Herbivores and Carnivores. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 243, 110683. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Sgró, C. Climate Change and Evolutionary Adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E. The Behavior of Dietary Fiber in the Gastrointestinal Tract Determines Its Physiological Effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95. [Google Scholar]
- Nutrient Metabolism, Human|Learn Science at Scitable. Available online: https://www.nature.com/scitable/topicpage/dynamic-adaptation-of-nutrient-utilization-in-humans-14232807/ (accessed on 9 March 2025).
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr. Rev. 2018, 39, 489. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Mielgo-Ayuso, J.; Martín-Rodríguez, A.; Ramos-Campo, D.J.; Redondo-Flórez, L.; Tornero-Aguilera, J.F. The Burden of Carbohydrates in Health and Disease. Nutrients 2022, 14, 3809. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. How Cells Obtain Energy Food; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Nelson, D.L.; Cox, M.M. Lehninger Biochemie. 2001. Available online: https://cir.nii.ac.jp/crid/1361137044511668736#citations_container (accessed on 28 June 2025).
- Corsetti, G.; Pasini, E.; Scarabelli, T.M.; Romano, C.; Singh, A.; Scarabelli, C.C.; Dioguardi, F.S. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024, 16, 2417. [Google Scholar] [CrossRef]
- Princiotta, M.F.; Finzi, D.; Qian, S.B.; Gibbs, J.; Schuchmann, S.; Buttgereit, F.; Bennink, J.R.; Yewdell, J.W. Quantitating Protein Synthesis, Degradation, and Endogenous Antigen Processing. Immunity 2003, 18, 343–354. [Google Scholar] [CrossRef]
- Hardie, D.G. AMP-Activated Protein Kinase—An Energy Sensor That Regulates All Aspects of Cell Function. Genes Dev. 2011, 25, 1895. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK—A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research Progress in the Role and Mechanism of Leucine in Regulating Animal Growth and Development. Front. Physiol. 2023, 14, 1252089. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, H.C.; Drummond, M.J.; Pennings, B.; Fujita, S.; Glynn, E.L.; Chinkes, D.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Leucine-Enriched Essential Amino Acid and Carbohydrate Ingestion Following Resistance Exercise Enhances MTOR Signaling and Protein Synthesis in Human Muscle. Am. J. Physiol. Endocrinol. Metab. 2007, 294, E392. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Lipid Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040576. [Google Scholar] [CrossRef]
- Grabner, G.F.; Xie, H.; Schweiger, M.; Zechner, R. Lipolysis: Cellular Mechanisms for Lipid Mobilization from Fat Stores. Nat. Metab. 2021, 3, 1445–1465. [Google Scholar] [CrossRef]
- Edwards, M.; Mohiuddin, S.S. Biochemistry, Lipolysis; StatPearls: Petersburg, FL, USA, 2023. [Google Scholar]
- Panov, A.V.; Mayorov, V.I.; Dikalov, S.I. Role of Fatty Acids β-Oxidation in the Metabolic Interactions Between Organs. Int. J. Mol. Sci. 2024, 25, 12740. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annu. Rev. Nutr. 2021, 41, 49. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends Neurosci. 2013, 36, 587. [Google Scholar] [CrossRef]
- Li, X.; Zhu, X.; Han, D.; Yang, Y.; Jin, J.; Xie, S. Carbohydrate Utilization by Herbivorous and Omnivorous Freshwater Fish Species: A Comparative Study on Gibel Carp (Carassius Auratus Gibelio. Var. CAS III) Grass Carp. (Ctenopharyngodon Idellus). Aquac. Res. 2016, 47, 128–139. [Google Scholar] [CrossRef]
- Hawlena, D.; Schmitz, O.J. Herbivore Physiological Response to Predation Risk and Implications for Ecosystem Nutrient Dynamics. Proc. Natl. Acad. Sci. USA 2010, 107, 15503–15507. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Curiel-Regueros, A.; Rubio-Zarapuz, A.; Tornero-Aguilera, J.F. Impact of Vegan and Vegetarian Diets on Neurological Health: A Critical Review. Nutrients 2025, 17, 884. [Google Scholar] [CrossRef] [PubMed]
- Cellulose in Digestion—Animals, Ruminants, & Herbivores—GeeksforGeeks. Available online: https://www.geeksforgeeks.org/cellulose-in-digestion-herbivores-termites-ruminants/ (accessed on 9 March 2025).
- Sensoy, I. A Review on the Food Digestion in the Digestive Tract and the Used in Vitro Models. Curr. Res. Food Sci. 2021, 4, 308. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.J. Effect of Low Carbohydrate Diets on Insulin Resistance and the Metabolic Syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Ashtary-Larky, D.; Bagheri, R.; Bavi, H.; Baker, J.S.; Moro, T.; Mancin, L.; Paoli, A. Ketogenic Diets, Physical Activity and Body Composition: A Review. Br. J. Nutr. 2021, 127, 1898. [Google Scholar] [CrossRef]
- Galali, Y.; Zebari, S.M.S.; Aj Jabbar, A.; Hashm Balaky, H.; Sadee, B.A.; Hassanzadeh, H. The Impact of Ketogenic Diet on Some Metabolic and Non-Metabolic Diseases: Evidence from Human and Animal Model Experiments. Food Sci. Nutr. 2024, 12, 1444–1464. [Google Scholar] [CrossRef]
- Barber, T.M.; Hanson, P.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients 2021, 13, 1187. [Google Scholar] [CrossRef]
- Tzenios, N.; Lewis, E.D.; Crowley, D.C.; Chahine, M.; Evans, M. Examining the Efficacy of a Very-Low-Carbohydrate Ketogenic Diet on Cardiovascular Health in Adults with Mildly Elevated Low-Density Lipoprotein Cholesterol in an Open-Label Pilot Study. Metab. Syndr. Relat. Disord. 2022, 20, 94–103. [Google Scholar] [CrossRef]
- Wachsmuth, N.B.; Aberer, F.; Haupt, S.; Schierbauer, J.R.; Zimmer, R.T.; Eckstein, M.L.; Zunner, B.; Schmidt, W.; Niedrist, T.; Sourij, H.; et al. The Impact of a High-Carbohydrate/Low Fat vs. Low-Carbohydrate Diet on Performance and Body Composition in Physically Active Adults: A Cross-Over Controlled Trial. Nutrients 2022, 14, 423. [Google Scholar] [CrossRef]
- Santamarina, A.B.; Mennitti, L.V.; de Souza, E.A.; Mesquita, L.M.d.S.; Noronha, I.H.; Vasconcelos, J.R.C.; Prado, C.M.; Pisani, L.P. A Low-Carbohydrate Diet with Different Fatty Acids’ Sources in the Treatment of Obesity: Impact on Insulin Resistance and Adipogenesis. Clin. Nutr. 2023, 42, 2381–2394. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Herbison, C.E.; Jacoby, P.; Ambrosini, G.L.; O’Sullivan, T.A.; Ayonrinde, O.T.; Olynyk, J.K.; Black, L.J.; Beilin, L.J.; Mori, T.A.; et al. The Western Dietary Pattern Is Prospectively Associated with Nonalcoholic Fatty Liver Disease in Adolescence. Am. J. Gastroenterol. 2013, 108, 778–785. [Google Scholar] [CrossRef]
- Belinova, L.; Kahleova, H.; Malinska, H.; Topolcan, O.; Vrzalova, J.; Oliyarnyk, O.; Kazdova, L.; Hill, M.; Pelikanova, T. Differential Acute Postprandial Effects of Processed Meat and Isocaloric Vegan Meals on the Gastrointestinal Hormone Response in Subjects Suffering from Type 2 Diabetes and Healthy Controls: A Randomized Crossover Study. PLoS ONE 2014, 9, e107561. [Google Scholar] [CrossRef] [PubMed]
- Cocate, P.G.; Natali, A.J.; Oliveira, A.D.; Alfenas, R.D.C.G.; Peluzio, M.D.C.G.; Longo, G.Z.; Santos, E.C.D.; Buthers, J.M.; De Oliveira, L.L.; Hermsdorff, H.H.M. Red but Not White Meat Consumption Is Associated with Metabolic Syndrome, Insulin Resistance and Lipid Peroxidation in Brazilian Middle-Aged Men. Eur. J. Prev. Cardiol. 2015, 22, 223–230. [Google Scholar] [CrossRef]
- Fretts, A.M.; Follis, J.L.; Nettleton, J.A.; Lemaitre, R.N.; Ngwa, J.S.; Wojczynski, M.K.; Kalafati, I.P.; Varga, T.V.; Frazier-Wood, A.C.; Houston, D.K.; et al. Consumption of Meat Is Associated with Higher Fasting Glucose and Insulin Concentrations Regardless of Glucose and Insulin Genetic Risk Scores: A Meta-Analysis of 50,345 Caucasians. Am. J. Clin. Nutr. 2015, 102, 1266–1278. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Papandreou, C.; Moré, M.; Bellamine, A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health—Cause or Effect? Nutrients 2020, 12, 1330. [Google Scholar] [CrossRef]
- Wu, W.-K.; Lo, Y.-L.; Chiu, J.-Y.; Hsu, C.-L.; Lo, I.-H.; Panyod, S.; Liao, Y.-C.; Chiu, T.H.T.; Yang, Y.-T.; Kuo, H.-C.; et al. Gut Microbes with the Gbu Genes Determine TMAO Production from L-Carnitine Intake and Serve as a Biomarker for Precision Nutrition. Gut Microbes 2025, 17, 2446374. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Umair Ijaz, M.; Hussain, M.; Ali Khan, I.; Mehmood, N.; Siddiqi, S.M.; Liu, C.; Zhao, D.; Xu, X.; Zhou, G.; et al. High Fat Diet Incorporated with Meat Proteins Changes Biomarkers of Lipid Metabolism, Antioxidant Activities, and the Serum Metabolomic Profile in Glrx1-/- Mice. Food Funct. 2020, 11, 236–252. [Google Scholar] [CrossRef]
- Arage, G.; Dekkers, K.F.; Rašo, L.M.; Hammar, U.; Ericson, U.; Larsson, S.C.; Engel, H.; Baldanzi, G.; Pertiwi, K.; Sayols-Baixeras, S.; et al. Plasma Metabolite Profiles of Meat Intake and Their Association with Cardiovascular Disease Risk: A Population-Based Study in Swedish Cohorts. Metabolism 2025, 168, 156188. [Google Scholar] [CrossRef] [PubMed]
- Lanuza, F.; Meroño, T.; Zamora-Ros, R.; Bondonno, N.P.; Rostgaard-Hansen, A.L.; Sánchez-Pla, A.; Miro, B.; Carmona-Pontaque, F.; Riccardi, G.; Tjønneland, A.; et al. Plasma Metabolomic Profiles of Plant-Based Dietary Indices Reveal Potential Pathways for Metabolic Syndrome Associations. Atherosclerosis 2023, 382, 117285. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dai, J.; Fei, Z.; Liu, X.; Zhu, Y.; Rahman, M.L.; Lu, R.; Mitro, S.D.; Yang, J.; Hinkle, S.N.; et al. Metabolomic Biomarkers of the Mediterranean Diet in Pregnant Individuals: A Prospective Study. Clin. Nutr. 2023, 42, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.B.; Hu, Z.; Lu, C.X.; Luo, S.D.; Chen, Y.; Zhou, Z.P.; Hu, J.J.; Zhang, F.L.; Deng, F.; Liu, K.X. Gut Microbiota-Derived Indole 3-Propionic Acid Partially Activates Aryl Hydrocarbon Receptor to Promote Macrophage Phagocytosis and Attenuate Septic Injury. Front. Cell. Infect. Microbiol. 2022, 12, 1015386. [Google Scholar] [CrossRef]
- Qi, Q.; Li, J.; Yu, B.; Moon, J.Y.; Chai, J.C.; Merino, J.; Hu, J.; Ruiz-Canela, M.; Rebholz, C.; Wang, Z.; et al. Host and Gut Microbial Tryptophan Metabolism and Type 2 Diabetes: An Integrative Analysis of Host Genetics, Diet, Gut Microbiome and Circulating Metabolites in Cohort Evidence. Gut 2022, 71, 324053. [Google Scholar] [CrossRef]
- Baldi, S.; Tristán Asensi, M.; Pallecchi, M.; Sofi, F.; Bartolucci, G.; Amedei, A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. Molecules 2023, 28, 343. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Li, Y.; Hu, Y.; Franke, A.A.; Liang, L.; Hu, F.B.; Chan, A.T.; Mukamal, K.J.; Rimm, E.B.; et al. Gut Microbiota-Derived Metabolites and Risk of Coronary Artery Disease: A Prospective Study among US Men and Women. Am. J. Clin. Nutr. 2021, 114, 238–247. [Google Scholar] [CrossRef]
- Syauqy, A.; Hsu, C.-Y.; Lee, H.-A.; Rau, H.-H.; Chao, J.C.-J. Association between Dietary Patterns and Kidney Function Parameters in Adults with Metabolic Syndrome: A Cross-Sectional Study. Nutrients 2020, 13, 40. [Google Scholar] [CrossRef]
- Mahajan, H.; Mallinson, P.A.C.; Lieber, J.; Bhogadi, S.; Banjara, S.K.; Reddy, V.S.; Reddy, G.B.; Kulkarni, B.; Kinra, S. The Association of Total Meat Intake with Cardio-Metabolic Disease Risk Factors and Measures of Sub-Clinical Atherosclerosis in an Urbanising Community of Southern India: A Cross-Sectional Analysis for the APCAPS Cohort. Nutrients 2024, 16, 746. [Google Scholar] [CrossRef]
- Sholl, J.; Mailing, L.J.; Wood, T.R. Reframing Nutritional Microbiota Evidence to Reflect an Inherent Metabolic Flexibility of the Human Gut: A Narrative Review Focusing on High-Fat Diets. mBio 2021, 12. [Google Scholar] [CrossRef]
- Mostafavi Abdolmaleky, H.; Zhou, J.R. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef] [PubMed]
- Sheflin, A.M.; Melby, C.L.; Carbonero, F.; Weir, T.L. Linking Dietary Patterns with Gut Microbial Composition and Function. Gut Microbes 2016, 8, 113. [Google Scholar] [CrossRef]
- Moeller, A.H.; Sanders, J.G. Roles of the Gut Microbiota in the Adaptive Evolution of Mammalian Species. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190597. [Google Scholar] [CrossRef]
- de Jonge, N.; Carlsen, B.; Christensen, M.H.; Pertoldi, C.; Nielsen, J.L. The Gut Microbiome of 54 Mammalian Species. Front. Microbiol. 2022, 13, 886252. [Google Scholar] [CrossRef] [PubMed]
- Dearing, M.D.; Kohl, K.D. Beyond Fermentation: Other Important Services Provided to Endothermic Herbivores by Their Gut Microbiota. Integr. Comp. Biol. 2017, 57, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Zoelzer, F.; Burger, A.L.; Dierkes, P.W. Unraveling Differences in Fecal Microbiota Stability in Mammals: From High Variable Carnivores and Consistently Stable Herbivores. Anim. Microbiome 2021, 3, 77. [Google Scholar] [CrossRef]
- Milani, C.; Alessandri, G.; Mancabelli, L.; Mangifesta, M.; Lugli, G.A.; Viappiani, A.; Longhi, G.; Anzalone, R.; Duranti, S.; Turroni, F.; et al. Multi-omics Approaches to Decipher the Impact of Diet and Host Physiology on the Mammalian Gut Microbiome. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Schwab, C.; Gänzle, M. Comparative Analysis of Fecal Microbiota and Intestinal Microbial Metabolic Activity in Captive Polar Bears. Can. J. Microbiol. 2011, 57, 177–185. [Google Scholar] [CrossRef]
- Todd, E.C.D. Foodborne Diseases: Overview of Biological Hazards and Foodborne Diseases. Encycl. Food Saf. 2014, 1, 221–242. [Google Scholar] [CrossRef]
- Clostridium Perfringens—GOV.UK. Available online: https://www.gov.uk/guidance/clostridium-perfringens (accessed on 17 March 2025).
- Cheng, J.; Hu, J.; Geng, F.; Nie, S. Bacteroides Utilization for Dietary Polysaccharides and Their Beneficial Effects on Gut Health. Food Sci. Hum. Wellness 2022, 11, 1101–1110. [Google Scholar] [CrossRef]
- Hofstad, T. The Genus Fusobacterium. Prokaryotes 2006, 1016–1027. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Karačić, A.; Dikarlo, P.; Dorst, I.; Renko, I.; Pršo, A.-M.L. The Gut Microbiome Without Any Plant Food? A Case Study on the Gut Microbiome of a Healthy Carnivore. Microbiota Host 2024, 2. [Google Scholar] [CrossRef]
- McInerney, J.O. Evolution: A Four Billion Year Old Metabolism. Nat. Microbiol. 2016, 1, 16139. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.-L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef]
- Betancur-Murillo, C.L.; Aguilar-Marín, S.B.; Jovel, J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022, 11, 1. [Google Scholar] [CrossRef]
- Berry, D. The Emerging View of Firmicutes as Key Fibre Degraders in the Human Gut. Environ. Microbiol. 2016, 18, 2081–2083. [Google Scholar] [CrossRef]
- Fujimori, S. Humans Have Intestinal Bacteria That Degrade the Plant Cell Walls in Herbivores. World J. Gastroenterol. 2021, 27, 7784–7791. [Google Scholar] [CrossRef]
- Tardiolo, G.; La Fauci, D.; Riggio, V.; Daghio, M.; Di Salvo, E.; Zumbo, A.; Sutera, A.M. Gut Microbiota of Ruminants and Monogastric Livestock: An Overview. Animals 2025, 15, 758. [Google Scholar] [CrossRef]
- Mafra, D.; Borges, N.A.; Baptista, B.G.; Martins, L.F.; Borland, G.; Shiels, P.G.; Stenvinkel, P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024, 16, 1789. [Google Scholar] [CrossRef]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, A.; Hannan, A.; Uddin, J.; Pang, M.-G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef]
- Yanagisawa, Y. How Dietary Amino Acids and High Protein Diets Influence Insulin Secretion. Physiol. Rep. 2023, 11, e15577. [Google Scholar] [CrossRef]
- Torres, N.; Noriega, L.; Tovar, A.R. Chapter 9 Nutrient Modulation of Insulin Secretion. Vitam. Horm. 2009, 80, 217–244. [Google Scholar] [CrossRef]
- Kalogeropoulou, D.; LaFave, L.; Schweim, K.; Gannon, M.C.; Nuttall, F.Q. Leucine, When Ingested with Glucose, Synergistically Stimulates Insulin Secretion and Lowers Blood Glucose. Metabolism 2008, 57, 1747–1752. [Google Scholar] [CrossRef]
- Krause, M.S.; McClenaghan, N.H.; Flatt, P.R.; Bittencourt, P.I.H.d.; Murphy, C.; Newsholme, P. l-Arginine is Essential for Pancreatic β-Cell Functional Integrity, Metabolism and Defense from Inflammatory Challenge. J. Endocrinol. 2011, 211, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Halperin, F.; Mezza, T.; Li, P.; Shirakawa, J.; Kulkarni, R.N.; Goldfine, A.B. Insulin Regulates Arginine-Stimulated Insulin Secretion in Humans. Metabolism 2022, 128, 155117. [Google Scholar] [CrossRef]
- Brand-Miller, J.C.; Griffin, H.J.; Colagiuri, S. The Carnivore Connection Hypothesis: Revisited. J. Obes. 2011, 2012, 258624. [Google Scholar] [CrossRef]
- Manninen, A.H. Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood “Villains” of Human Metabolism. J. Int. Soc. Sports Nutr. 2004, 1, 7–11. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Isakov, N.F.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High Red and Processed meat Consumption is Associated with Non-Alcoholic Fatty Liver Disease and Insulin Resistance. J. Hepatol. 2018, 68, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Consumption of Red and Processed Meat and Refined Grains for 4 Weeks Decreases Insulin Sensitivity in Insulin-Resistant adults: A Randomized Crossover Study. Metabolism 2017, 68, 173–183. [Google Scholar] [CrossRef]
- Mendoza-Herrera, K.; Florio, A.A.; Moore, M.; Marrero, A.; Tamez, M.; Bhupathiraju, S.N.; Mattei, J. The Leptin System and Diet: A Mini Review of the Current Evidence. Front. Endocrinol. 2021, 12, 749050. [Google Scholar] [CrossRef] [PubMed]
- Perakakis, N.; Mantzoros, C.S. Evidence from Clinical Evidence of Leptin: Current and Future Clinical Applications in Humans. Metabolism 2024, 161, 156053. [Google Scholar] [CrossRef]
- Weigle, D.S.; A Breen, P.; Matthys, C.C.; Callahan, H.S.; E Meeuws, K.; Burden, V.R.; Purnell, J.Q. A High-Protein Diet Induces Sustained Reductions in Appetite, Ad Libitum Caloric Intake, and Body Weight Despite Compensatory Changes in Diurnal Plasma Leptin and Ghrelin Concentrations. Am. J. Clin. Nutr. 2005, 82, 41–48. [Google Scholar] [CrossRef]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a Gastrointestinal Hormone, Regulates Energy Balance and Lipid Metabolism. Biosci. Rep. 2018, 38, BSR20181061. [Google Scholar] [CrossRef]
- Torres, J.M.; Arias-Gastelum, M.; Almazán, A.M.; Verdezoto-Alvarado, A.; Grijalva-Castro, M.; Martínez, G.; Ochoa-Nogales, B.; Vega-López, S. Associations of Diet Patterns and Cardiometabolic Disease Risk Factors Among Mexican Women in the Sonora-Arizona Transborder Region. Curr. Dev. Nutr. 2022, 6, 929. [Google Scholar] [CrossRef]
- Ewy, M.W.; Patel, A.; Abdelmagid, M.G.; Mohamed Elfadil, O.; Bonnes, S.L.; Salonen, B.R.; Hurt, R.T.; Mundi, M.S. Plant-Based Diet: Is It as Good as an Animal-Based Diet When It Comes to Protein? Curr. Nutr. Rep. 2022, 11, 337–346. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Martens, L.; Pfeiffer, A.F.H. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023, 15, 3913. [Google Scholar] [CrossRef]
- Halton, T.L.; Hu, F.B. The Effects of High Protein Diets on Thermogenesis, Satiety and Weight Loss: A Critical Review. J. Am. Coll. Nutr. 2004, 23, 373–385. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Adams, C.G.; Garcia-Jackson, B.; Koecher, K.; Wilcox, M.L.; Maki, K.C. Effects of Varying Protein Amounts and Types on Diet-Induced Thermogenesis: A Systematic Review and Meta-Analysis. Adv. Nutr. Int. Rev. J. 2024, 15, 100332. [Google Scholar] [CrossRef]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic Review and Meta-Analysis of Protein Intake to Support Muscle Mass and Function in Healthy Adults. J. Cachex-Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Ruiz-Canela, M.; Corella, D.; Estruch, R.; Fitó, M.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; Lapetra, J.; et al. High Dietary Protein Intake is Associated with an Increased Body Weight and Total Death Risk. Clin. Nutr. 2016, 35, 496–506. [Google Scholar] [CrossRef]
- Pesta, D.H.; Samuel, V.T. A High-Protein Diet for Reducing Body fat: Mechanisms and Possible Caveats. Nutr. Metab. 2014, 11, 53. [Google Scholar] [CrossRef]
- Alisson-Silva, F.; Kawanishi, K.; Varki, A. Human Risk of Diseases Associated with Red Meat Intake: Analysis of Current Theories and Proposed Role for Metabolic Incorporation of a Non-Human Sialic Acid. Mol. Asp. Med. 2016, 51, 16–30. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Courtenay, L.A.; Cobo-Sánchez, L.; Baquedano, E.; Mabulla, A. A Case of Hominin Scavenging 1.84 Million Years Ago from Olduvai Gorge (Tanzania). Ann. N. Y. Acad. Sci. 2022, 1510, 121–131. [Google Scholar] [CrossRef]
- Rodríguez, J.; Hölzchen, E.; Caso-Alonso, A.I.; Berndt, J.O.; Hertler, C.; Timm, I.J.; Mateos, A. Computer Simulation of Scavenging by Hominins and Giant Hyenas in the Late Early Pleistocene. Sci. Rep. 2023, 13, 14283. [Google Scholar] [CrossRef]
- Szilágyi, A.; Kovács, V.P.; Czárán, T.; Szathmáry, E. Evolutionary Ecology of Language Origins Through Confrontational Scavenging. Philos. Trans. R. Soc. B Biol. Sci. 2023, 378, 20210411. [Google Scholar] [CrossRef]
- Pobiner, B.L. New Actualistic Data on the Ecology and Energetics of Hominin Scavenging Opportunities. J. Hum. Evol. 2015, 80, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Marean, C.W. A Critique of the Evidence for Scavenging by Neandertals and Early Modern Humans: New Data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 Layer 10 (South Africa). J. Hum. Evol. 1998, 35, 111–136. [Google Scholar] [CrossRef]
- Carlson, K.J.; Pickering, T.R. Intrinsic Qualities of Primate Bones as Predictors of skeletal Element Representation in Modern and Fossil Carnivore Feeding Assemblages. J. Hum. Evol. 2003, 44, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Sánchez, L.; Pizarro-Monzo, M.; Cifuentes-Alcobendas, G.; García, B.J.; Beltrán, N.A.; Courtenay, L.A.; Mabulla, A.; Baquedano, E.; Domínguez-Rodrigo, M. Computer Vision Supports Primary Access to Meat by Early Homo 1.84 Million Years ago. PeerJ 2022, 10, e14148. [Google Scholar] [CrossRef] [PubMed]
- Hanon, R.; Patou-Mathis, M.; Péan, S.; Prat, S.; Cohen, B.F.; Steininger, C. Early Pleistocene Hominin Subsistence Behaviors in South Africa: Evidence from the Hominin-Bearing Deposit of Cooper’s D (Bloubank Valley, South Africa). J. Hum. Evol. 2022, 162, 103116. [Google Scholar] [CrossRef]
- Matsumoto, T. Opportunistic Feeding Strategy in wild Immature Chimpanzees: Implications for Children as Active Foragers in Human Evolution. J. Hum. Evol. 2019, 133, 13–22. [Google Scholar] [CrossRef]
- Matsumoto, T. Developmental Changes in Feeding Behaviors of Infant Chimpanzees at Mahale, Tanzania: Implications for Nutritional Independence Long Before Cessation of Nipple Contact. Am. J. Phys. Anthr. 2017, 163, 356–366. [Google Scholar] [CrossRef]
- Watts, D.P. Scavenging by Chimpanzees at Ngogo and the Relevance of Chimpanzee Scavenging to Early Hominin Behavioral Ecology. J. Hum. Evol. 2008, 54, 125–133. [Google Scholar] [CrossRef]
- Alger, I.; Dridi, S.; Stieglitz, J.; Wilson, M.L. The Evolution of Early Hominin Food Production and Sharing. Proc. Natl. Acad. Sci. USA 2023, 120, e2218096120. [Google Scholar] [CrossRef]
- Lüdecke, T.; Kullmer, O.; Wacker, U.; Sandrock, O.; Fiebig, J.; Schrenk, F.; Mulch, A. Dietary Versatility of Early Pleistocene Hominins. Proc. Natl. Acad. Sci. USA 2018, 115, 13330–13335. [Google Scholar] [CrossRef]
- Quinn, R.L.; Lepre, C.J. Contracting eastern African C4 Grasslands During the Extinction of Paranthropus boisei. Sci. Rep. 2021, 11, 7164. [Google Scholar] [CrossRef] [PubMed]
- Swedell, L.; Plummer, T. Social Evolution in Plio-Pleistocene Hominins: Insights from Hamadryas Baboons and Paleoecology. J. Hum. Evol. 2019, 137, 102667. [Google Scholar] [CrossRef]
- Ungar, P.S. Dental Evidence for the Diets of Plio-Pleistocene Hominins. Am. J. Phys. Anthr. 2011, 146, 47–62. [Google Scholar] [CrossRef]
- Drummond-Clarke, R.C. Bringing trees Back into the Human Evolutionary Story: Recent Evidence from Extant Great apes. Commun. Integr. Biol. 2023, 16, 2193001. [Google Scholar] [CrossRef]
- Romero, M.J.R.H.; Ungar, P.S.; Fried, D.; Lippert, F.; Zero, D.T.; Zunt, S.; Eckert, G.J.; Gossweiler, A.G.; Elkington-Stauss, D.J.; Tamayo-Cabeza, G.; et al. Exploratory Analysis of Objective Outcome Measures for the Clinical Assessment of Erosive Tooth Wear. Diagnostics 2023, 13, 2568. [Google Scholar] [CrossRef]
- Berthaume, M.A.; Kupczik, K. Molar biomechanical function in South African hominins Australopithecus africanus and Paranthropus robustus. Interface Focus 2021, 11, 20200085. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Baquedano, E.; Organista, E.; Cobo-Sánchez, L.; Mabulla, A.; Maskara, V.; Gidna, A.; Pizarro-Monzo, M.; Aramendi, J.; Galán, A.B.; et al. Early Pleistocene Faunivorous Hominins Were Not Kleptoparasitic, and This Impacted the Evolution of Human Anatomy and Socio-Ecology. Sci. Rep. 2021, 11, 16135. [Google Scholar] [CrossRef]
- Borrero, L.A. The Ephemeral Record: The Role of Opportunistic Animal Resources in the Archaeology of Pampa and Patagonia. Proc. Natl. Acad. Sci. USA 2023, 120, e2208971120. [Google Scholar] [CrossRef]
- Palmqvist, P.; Martínez-Navarro, B.; Pérez-Claros, J.A.; Torregrosa, V.; Figueirido, B.; Jiménez-Arenas, J.M.; Espigares, M.P.; Ros-Montoya, S.; De Renzi, M. The Giant Hyena Pachycrocuta Brevirostris: Modelling the Bone-Cracking Behavior of an Extinct Carnivore. Quat. Int. 2011, 243, 61–79. [Google Scholar] [CrossRef]
- Espigares, M.P.; Palmqvist, P.; Rodríguez-Ruiz, M.D.; Ros-Montoya, S.; Pérez-Ramos, A.; Rodríguez-Gómez, G.; Guerra-Merchán, A.; García-Aguilar, J.M.; Granados, A.; Campaña, I.; et al. Sharing Food with Hyenas: A Latrine of Pachycrocuta brevirostris in the Early Pleistocene Assemblage of Fuente Nueva-3 (Orce, Baza Basin, SE Spain). Archaeol. Anthr. Sci. 2023, 15, 81. [Google Scholar] [CrossRef]
- Parkinson, J.A.; Plummer, T.; Hartstone-Rose, A. Characterizing Felid Tooth Marking and Gross Bone Damage Patterns Using GIS Image Analysis: An Experimental Feeding Study with Large Felids. J. Hum. Evol. 2015, 80, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodrigo, M. Flesh Availability and Bone Modifications in Carcasses Consumed by Lions: Palaeoecological Relevance in Hominid Foraging Patterns. Palaeogeogr. Palaeoclim. Palaeoecol. 1999, 149, 373–388. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Sands, J.M. Comparison of High vs. Normal/Low Protein Diets on Renal Function in Subjects without Chronic Kidney Disease: A Systematic Review and Meta-Analysis. PLOS ONE 2014, 9, e97656. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Khonsary, S. Guyton and Hall: Textbook of Medical Physiology. Surg. Neurol. Int. 2017, 8, 275. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 7th ed.; W.H. Freeman and Company: New York, NY, USA, 2017; p. 2. [Google Scholar]
- Frank, H.; Graf, J.; Amann-Gassner, U.; Bratke, R.; Daniel, H.; Heemann, U.; Hauner, H. Effect of Short-Term high-Protein Compared with Normal-Protein Diets on Renal Hemodynamics and Associated Variables in Healthy Young Men. Am. J. Clin. Nutr. 2009, 90, 1509–1516. [Google Scholar] [CrossRef]
- Friedman, A.N.; Ogden, L.G.; Foster, G.D.; Klein, S.; Stein, R.; Miller, B.; Hill, J.O.; Brill, C.; Bailer, B.; Rosenbaum, D.R.; et al. Comparative Effects of Low-Carbohydrate High-Protein Versus Low-Fat Diets on the Kidney. Clin. J. Am. Soc. Nephrol. 2012, 7, 1103–1111. [Google Scholar] [CrossRef]
- Kamper, A.-L.; Strandgaard, S. Long-Term Effects of High-Protein Diets on Renal Function. Annu. Rev. Nutr. 2017, 37, 347–369. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D.; Ingelfinger, J.R. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Ko, G.-J.; Rhee, C.M.; Kalantar-Zadeh, K.; Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020, 31, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S. Intestinal Amino Acid Transport and Metabolic Health. Annu. Rev. Nutr. 2023, 43, 73–99. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, S.; A Burd, N.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant- Versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef]
- Kashyap, S.; Shivakumar, N.; Varkey, A.; Duraisamy, R.; Thomas, T.; Preston, T.; Devi, S.; Kurpad, A.V. Ileal Digestibility of Intrinsically Labeled Hen’s Egg and Meat Protein Determined with the Dual Stable Isotope Tracer Method in Indian Adults. Am. J. Clin. Nutr. 2018, 108, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Horstman, A.M.; Franssen, R.; Crombag, J.J.; Langer, H.; Bierau, J.; Respondek, F.; van Loon, L.J. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial. J. Nutr. 2016, 146, 1651–1659. [Google Scholar] [CrossRef]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and Fast Dietary Proteins Differently Modulate Postprandial Protein Accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef]
- O’hEarn, A. Can a Carnivore diet Provide all Essential Nutrients? Curr. Opin. Endocrinol. Diabetes 2020, 27, 312–316. [Google Scholar] [CrossRef]
- Bolla, A.M.; Caretto, A.; Laurenzi, A.; Scavini, M.; Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients 2019, 11, 962. [Google Scholar] [CrossRef]
- Dyńka, D.; Kowalcze, K.; Charuta, A.; Paziewska, A. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023, 15, 3368. [Google Scholar] [CrossRef]
- Wedekind, R.; Kiss, A.; Keski-Rahkonen, P.; Viallon, V.; A Rothwell, J.; Cross, A.J.; Rostgaard-Hansen, A.L.; Sandanger, T.M.; Jakszyn, P.; A Schmidt, J.; et al. A Metabolomic Study of Red and Processed Meat Intake and Acylcarnitine Concentrations in Human Urine and Blood. Am. J. Clin. Nutr. 2020, 112, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Willett, W.; Townsend, M.K.; Kraft, P.; Ivey, K.L.; Rimm, E.B.; Wilson, K.M.; Costenbader, K.H.; Karlson, E.W.; Poole, E.M.; et al. A Lipid-Related Metabolomic Pattern of Diet Quality. Am. J. Clin. Nutr. 2020, 112, 1613–1630. [Google Scholar] [CrossRef]
- Cahill, G.F., Jr. Fuel Metabolism in Starvation. Annu. Rev. Nutr. 2006, 26, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef]
- Bedi, K.C., Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Aubert, G.; Martin, O.J.; Horton, J.L.; Lai, L.; Vega, R.B.; Leone, T.C.; Koves, T.; Gardell, S.J.; Krüger, M.; Hoppel, C.L.; et al. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 2016, 133, 698–705. [Google Scholar] [CrossRef]
- Bertero, E.; Sequeira, V.; Maack, C. Hungry Hearts. Circ. Hear. Fail. 2018, 11, e005642. [Google Scholar] [CrossRef]
- Cox, P.J.; Kirk, T.; Ashmore, T.; Willerton, K.; Evans, R.; Smith, A.; Murray, A.J.; Stubbs, B.; West, J.; McLure, S.W.; et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016, 24, 256–268. [Google Scholar] [CrossRef]
- Poffé, C.; Hespel, P. Ketone Bodies: Beyond Their Role as a Potential Energy Substrate in Exercise. J. Physiol. 2020, 598, 4749–4750. [Google Scholar] [CrossRef]
- Veneman, T.; Mitrakou, A.; Mokan, M.; Cryer, P.; Gerich, J. Effect of Hyperketonemia and Hyperlacticacidemia on Symptoms, Cognitive Dysfunction, and Counterregulatory Hormone Responses During Hypoglycemia in Normal Humans. Diabetes 1994, 43, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Edmond, J. Energy metabolism in developing brain cells. Can. J. Physiol. Pharmacol. 1992, 70, S118–S129. [Google Scholar] [CrossRef]
- Wentz, A.E.; D’aVignon, D.A.; Weber, M.L.; Cotter, D.G.; Doherty, J.M.; Kerns, R.; Nagarajan, R.; Reddy, N.; Sambandam, N.; Crawford, P.A. Adaptation of Myocardial Substrate Metabolism to a Ketogenic Nutrient Environment. J. Biol. Chem. 2010, 285, 24447–24456. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.; Condro, M.C.; Guo, L.; Braas, D.; Vanderveer-Harris, N.; Kim, K.K.; Pope, W.B.; Divakaruni, A.S.; Lai, A.; Christofk, H.; et al. Glioblastoma Utilizes Fatty Acids and Ketone Bodies for Growth Allowing Progression during Ketogenic Diet Therapy. iScience 2020, 23, 101453. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Kashiwaya, Y.; A Keon, C.; Tsuchiya, N.; King, M.T.; Radda, G.K.; Chance, B.; Clarke, K.; Veech, R.L. Insulin, Ketone Bodies, and Mitochondrial Energy Transduction. FASEB J. 1995, 9, 651–658. [Google Scholar] [CrossRef]
- Samborska, J.; Więckowiak, P.; Stelmaszak, K.; Stencel, K.; Ogiegło-Kowalczyk, A.; Wojtasik, M.; Głodzik, M.; Miśkiewicz, M.; Żak, K.; Łęcka, M. The Impact of the Ketogenic Diet on the Health of Patients with Alzheimer’s Disease. J. Educ. Health Sport 2024, 52, 98–110. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic Diet for Human Diseases: The Underlying Mechanisms and Potential for Clinical Implementations. Signal Transduct. Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef]
- Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; Feinman, R.D. Carbohydrate Restriction has a More Favorable Impact on the Metabolic Syndrome than a Low Fat Diet. Lipids 2008, 44, 297–309. [Google Scholar] [CrossRef]
- Veech, R.L. The therapeutic implications of ketone bodies: The Effects of Ketone Bodies in Pathological Conditions: Ketosis, Ketogenic Diet, Redox States, Insulin Resistance, and Mitochondrial Metabolism. Prostaglandins Leukot. Essent. Fatty Acids 2004, 70, 309–319. [Google Scholar] [CrossRef]
- Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond Weight Loss: A Review of the Therapeutic Uses of Very-Low-Carbohydrate (Ketogenic) Diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef]
- Rho, J.M.; Sankar, R. The Ketogenic Diet in a Pill: Is This Possible? Epilepsia 2008, 49, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Tonouchi, H.; Sasayama, A.; Ashida, K. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice. Nutrients 2018, 10, 206. [Google Scholar] [CrossRef]
- Newman, J.C.; Verdin, E. Ketone Bodies as Signaling Metabolites. Trends Endocrinol. Metab. 2014, 25, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Wu, H.; Bjornson, E.; Zhang, C.; Hakkarainen, A.; Räsänen, S.M.; Lee, S.; Mancina, R.M.; Bergentall, M.; Pietiläinen, K.H.; et al. An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metab. 2018, 27, 559–571.e5. [Google Scholar] [CrossRef]
- Serino, M.; Luche, E.; Gres, S.; Baylac, A.; Bergé, M.; Cenac, C.; Waget, A.; Klopp, P.; Iacovoni, J.; Klopp, C.; et al. Metabolic Adaptation to a High-Fat Diet is associated with a Change in the Gut Microbiota. Gut 2011, 61, 543–553. [Google Scholar] [CrossRef]
- Roberts, M.N.; Wallace, M.A.; Tomilov, A.A.; Zhou, Z.; Marcotte, G.R.; Tran, D.; Perez, G.; Gutierrez-Casado, E.; Koike, S.; Knotts, T.A.; et al. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab. 2017, 26, 539–546.e5. [Google Scholar] [CrossRef]
- Phinney, S.; Bistrian, B.; Evans, W.; Gervino, E.; Blackburn, G. The Human Metabolic Response to Chronic Ketosis Without Caloric Restriction: Preservation of Submaximal Exercise Capability with Reduced Carbohydrate Oxidation. Metabolism 1983, 32, 769–776. [Google Scholar] [CrossRef]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Santer, P.; Miller, J.J.; Faull, O.K.; Magor-Elliott, S.; Hiyama, S.; Stirling, M.; Clarke, K. On the Metabolism of Exogenous Ketones in Humans. Front. Physiol. 2017, 8, 848. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; et al. Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor. Science 2013, 339, 211–214. [Google Scholar] [CrossRef]
- Sumithran, P.; Proietto, J. Ketogenic Diets for Weight Loss: A Review of Their Principles, Safety and Efficacy. Obes. Res. Clin. Pract. 2008, 2, I–II. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Sottotetti, F.; Hruby, C.; Madini, N.; Zelaschi, N.; Zuccotti, G. Low-Calorie Ketogenic Diet: Potential Application in the Treatment of Polycystic Ovary Syndrome in Adolescents. Nutrients 2023, 15, 3582. [Google Scholar] [CrossRef] [PubMed]
- Verboeket-van de Venne, W.P.H.G.; Westerterp, K.R. Frequency of Feeding, Weight Reduction and Energy Metabolism. Int. J. Obes. 1993, 17, 31–36. [Google Scholar]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone Body Metabolism and Cardiovascular Disease. Am. J. Physiol. Circ. Physiol. 2013, 304, H1060–H1076. [Google Scholar] [CrossRef]
- Klement, R.J. Was There a Need for High Carbohydrate Content in Neanderthal Diets? Am. J. Biol. Anthr. 2022, 179, 668–677. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, S.; Miller, J.B.; Mann, N.; Hill, K. The Paradoxical Nature of Hunter-Gatherer Diets: Meat-Based, Yet Non-atherogenic. Eur. J. Clin. Nutr. 2002, 56, S42–S52. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Del Rio, D.; A Mayer, E.; Mena, P. We Are What, When, And How We Eat: The Evolutionary Impact of Dietary Shifts on Physical and Cognitive Development, Health, and Disease. Adv. Nutr. Int. Rev. J. 2024, 15, 100280. [Google Scholar] [CrossRef]
- Williams, A.C.; Hill, L.J. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics. Int. J. Tryptophan Res. 2017, 10, 1178646917704661. [Google Scholar] [CrossRef]
- You, W.; Henneberg, M. Meat Consumption Providing a Surplus Energy in Modern Diet Contributes to Obesity Prevalence: An ecological Analysis. BMC Nutr. 2016, 2, 1257. [Google Scholar] [CrossRef]
- Goh, Y.Q.; Cheam, G.; Wang, Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. J. Agric. Food Chem. 2021, 69, 10774–10789. [Google Scholar] [CrossRef]
- de Menezes, E.V.A.; Sampaio, H.A.d.C.; Carioca, A.A.F.; Parente, N.A.; Brito, F.O.; Moreira, T.M.M.; de Souza, A.C.C.; Arruda, S.P.M. Influence of Paleolithic Diet on Anthropometric Markers in Chronic Diseases: Systematic Review and Meta-Analysis. Nutr. J. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Schurgers, L.; Shiels, P.G.; Stenvinkel, P. A Biomimetic natural Sciences Approach to Understanding the Mechanisms of Ageing in Burden of Lifestyle Diseases. Clin. Sci. 2021, 135, 1251–1272. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Genetic Variation and Nutrition. World Rev. Nutr. Diet 1999, 84, 118–140. [Google Scholar] [CrossRef]
- Singh, A.; Singh, D. The Paleolithic Diet. Cureus 2023, 15, e34214. [Google Scholar] [CrossRef] [PubMed]
- Kakodkar, S.; Mutlu, E.A. Diet as a Therapeutic Option for Adult Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2017, 46, 745–767. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Fatahi, S.; Lari, A.; Lotfi, M.; Seifishahpar, M.; Găman, M.-A.; Rahideh, S.T.; AlBatati, S.K.; AlHossan, A.M.; Alkhalifa, S.A.; et al. The Effect of Paleolithic Diet on Glucose Metabolism and Lipid Profile Among Patients with Metabolic Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2021, 62, 4551–4562. [Google Scholar] [CrossRef]
- Jospe, M.R.; Roy, M.; Brown, R.C.; Haszard, J.J.; Meredith-Jones, K.; Fangupo, L.J.; Osborne, H.; A Fleming, E.; Taylor, R.W. Intermittent Fasting, Paleolithic, or Mediterranean Diets in the Real World: Exploratory Secondary Analyses of a Weight-Loss Trial That Included Choice of Diet and Exercise. Am. J. Clin. Nutr. 2020, 111, 503–514. [Google Scholar] [CrossRef]
- Jamka, M.; Kulczyński, B.; Juruć, A.; Gramza-Michałowska, A.; Stokes, C.S.; Walkowiak, J. The Effect of the Paleolithic Diet vs. Healthy Diets on Glucose and Insulin Homeostasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 296. [Google Scholar] [CrossRef]
- Anderson, K. Popular Fad Diets: An Evidence-Based Perspective. Prog. Cardiovasc. Dis. 2023, 77, 78–85. [Google Scholar] [CrossRef]
- Fontes-Villalba, M.; Granfeldt, Y.; Sundquist, K.; Memon, A.A.; Hedelius, A.; Carrera-Bastos, P.; Jönsson, T. Effects of a Paleolithic Diet Compared to a Diabetes Diet on Leptin Binding Inhibition in Secondary Analysis of a Randomised Cross-Over Study. BMC Endocr. Disord. 2024, 24, 176. [Google Scholar] [CrossRef]
- Lavie, M.; Lavie, I.; Maslovitz, S. Paleolithic Diet During Pregnancy—A Potential Beneficial Effect on Metabolic Indices and Birth Weight. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 242, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Kan, C.; Han, F.; Luo, Y.; Qu, N.; Zhang, K.; Ma, Y.; Hou, N.; Wu, D.; Sun, X.; et al. Metagenomic and Metabolomic Analysis Showing the Adverse Risk–Benefit Trade-Off of the Ketogenic Diet. Lipids Health Dis. 2024, 23, 207. [Google Scholar] [CrossRef]
- Cipryan, L.; Kosek, V.; García, C.J.; Dostal, T.; Bechynska, K.; Hajslova, J.; Hofmann, P. A lipidomic and Metabolomic Signature of a Very Low-Carbohydrate High-Fat Diet and High-Intensity Interval Training: An Additional Analysis of a Randomized Controlled clinical trial. Metabolomics 2023, 20, 10. [Google Scholar] [CrossRef]
- Dilmore, A.H.; Martino, C.; Neth, B.J.; West, K.A.; Zemlin, J.; Rahman, G.; Panitchpakdi, M.; Meehan, M.J.; Weldon, K.C.; Blach, C.; et al. Effects of a Ketogenic and Low-Fat Diet on the Human Metabolome, Microbiome, and Foodome in Adults at Risk for Alzheimer’s disease. Alzheimer’s Dement. 2023, 19, 4805–4816. [Google Scholar] [CrossRef]
- Lennerz, B.S.; Mey, J.T.; Henn, O.H.; Ludwig, D.S. Behavioral Characteristics and Self-Reported Health Status among 2029 Adults Consuming a “Carnivore Diet”. Curr. Dev. Nutr. 2021, 5, nzab133. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef]
- Pitt, C.E. Cutting through the Paleo Hype: The Evidence for the Palaeolithic Diet. Aust. Fam. Physician 2016, 45, 35–38. [Google Scholar] [PubMed]
- Dahl, W.J.; Rivero Mendoza, D.; Lambert, J.M. Diet, Nutrients and the Microbiome. Prog. Mol. Biol. Transl. Sci. 2020, 171, 237–263. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [CrossRef]
- Heianza, Y.; Zhou, T.; Yuhang, C.; Huang, T.; Willett, W.C.; Hu, F.B.; Bray, G.A.; Sacks, F.M.; Qi, L. Starch Digestion–Related Amylase Genetic Variants, Diet, and Changes in Adiposity: Analyses in Prospective Cohort Studies and a Randomized Dietary Intervention. Diabetes 2020, 69, 1917–1926. [Google Scholar] [CrossRef]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes—An Updated Review of the Evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Overvad, K.; Bueno-De-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjønneland, A.; Nailler, L.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F.; Krogh, V.; et al. Meat consumption and mortality—Results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Menni, C.; Berry, S.E.; Valdes, A.M.; Spector, T.D.; Segata, N. Cardiometabolic Health, Diet and the Gut Microbiome: A Meta-Omics Perspective. Nat. Med. 2023, 29, 551–561. [Google Scholar] [CrossRef]
- Zinöcker, M.K.; Lindseth, I.A. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut Microbiome and Serum Metabolome Alterations in Obesity and After Weight-Loss Intervention. Nat. Med. 2017, 23, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.L.; Weir, T.L. The Gut Microbiota at the Intersection of Diet and Human Health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef]
- D’almeida, K.S.M.; Spillere, S.R.; Zuchinali, P.; Souza, G.C. Mediterranean Diet and Other Dietary Patterns in Primary Prevention of Heart Failure and Changes in Cardiac Function Markers: A Systematic Review. Nutrients 2018, 10, 58. [Google Scholar] [CrossRef]
- Lieberman, D.E.; Worthington, S.; Schell, L.D.; Parkent, C.M.; Devinsky, O.; Carmody, R.N. Comparing Measured Dietary Variation Within and Between Tropical Hunter-Gatherer Groups to the Paleo Diet. Am. J. Clin. Nutr. 2023, 118, 549–560. [Google Scholar] [CrossRef]
- Konner, M.; Eaton, S.B. Hunter-Gatherer Diets and Activity as a Model for Health Promotion: Challenges, Responses, and Confirmations. Evol. Anthr. 2023, 32, 206–222. [Google Scholar] [CrossRef]
- Veile, A. Hunter-Gatherer Diets and Human Behavioral Evolution. Physiol. Behav. 2018, 193, 190–195. [Google Scholar] [CrossRef]
- Pontzer, H.; Wood, B.M. Effects of Evolution, Ecology, and Economy on Human Diet: Insights from Hunter-Gatherers and Other Small-Scale Societies. Annu. Rev. Nutr. 2021, 41, 363–385. [Google Scholar] [CrossRef]
- Olmo, B.M.G.; Butler, M.J.; Barrientos, R.M. Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Genoni, A.; Lyons-Wall, P.; Lo, J.; Devine, A. Cardiovascular, Metabolic Effects and Dietary Composition of Ad-Libitum Paleolithic vs. Australian Guide to Healthy Eating Diets: A 4-Week Randomised Trial. Nutrients 2016, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, E.; Mohammadi, M.; Mohammadi, H.; Ramezani-Jolfaie, N.; Malekzadeh, J.; Hosseinzadeh, M.; Salehi-Abargouei, A. Effects of a Paleolithic Diet on Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. Int. Rev. J. 2019, 10, 634–646. [Google Scholar] [CrossRef]
- Vesnina, A.; Prosekov, A.; Atuchin, V.; Minina, V.; Ponasenko, A. Tackling Atherosclerosis via Selected Nutrition. Int. J. Mol. Sci. 2022, 23, 8233. [Google Scholar] [CrossRef]
- Graff, R.; Jennings, K.; Davies, N.; Carrillo, A.; Lavoy, E.; Ryan, E.; Markofski, M. A Short-Term Paleolithic Dietary Intervention Does Not Alter Adipokines Linked to Adiposity. Int. J. Exerc. Sci. 2021, 14, 113–122. [Google Scholar] [CrossRef]
- Shah, S.; Mahamat-Saleh, Y.; Hajji-Louati, M.; Correia, E.; Oulhote, Y.; Boutron-Ruault, M.-C.; Laouali, N. Palaeolithic Diet Score and Risk of Breast Cancer Among Postmenopausal Women Overall and by Hormone Receptor and Histologic Subtypes. Eur. J. Clin. Nutr. 2023, 77, 596–602. [Google Scholar] [CrossRef]
- Stomby, A.; Simonyte, K.; Mellberg, C.; Ryberg, M.; Stimson, R.H.; Larsson, C.; Lindahl, B.; Andrew, R.; Walker, B.R.; Olsson, T. Diet-Induced Weight loss Has Chronic Tissue-Specific Effects on Glucocorticoid Metabolism in Overweight Postmenopausal Women. Int. J. Obes. 2014, 39, 814–819. [Google Scholar] [CrossRef]
- Fadó, R.; Molins, A.; Rojas, R.; Casals, N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022, 14, 4137. [Google Scholar] [CrossRef]
- Fanzo, J.; Davis, C. Can Diets Be Healthy, Sustainable, and Equitable? Curr. Obes. Rep. 2019, 8, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Schoeneck, M.; Iggman, D. The Effects of Foods on LDL Cholesterol Levels: A Systematic Review of the Accumulated Evidence from Systematic Reviews and Meta-Analyses of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef]
- Zhang, X.; Sergin, I.; Evans, T.D.; Jeong, S.-J.; Rodriguez-Velez, A.; Kapoor, D.; Chen, S.; Song, E.; Holloway, K.B.; Crowley, J.R.; et al. High-Protein Diets Increase Cardiovascular Risk by Activating Macrophage mTOR to Suppress Mitophagy. Nat. Metab. 2020, 2, 110–125. [Google Scholar] [CrossRef]
- Berding, K.; Vlckova, K.; Marx, W.; Schellekens, H.; Stanton, C.; Clarke, G.; Jacka, F.; Dinan, T.G.; Cryan, J.F. Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. Int. Rev. J. 2021, 12, 1239–1285. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet–Microbiota Interactions and Personalized Nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Duncanson, K.; Williams, G.; Hoedt, E.C.; Collins, C.E.; Keely, S.; Talley, N.J. Diet-Microbiota Associations in Gastrointestinal Research: A Systematic Review. Gut Microbes 2024, 16, 2350785. [Google Scholar] [CrossRef]
- Tinahones Madueño, F.J. Nutrición y Microbiota. Nutr. Hosp. 2023, 40, 9–11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Yáñez-Sepúlveda, R.; Rubio-Zarapuz, A.; Martín-Rodríguez, A.; Navarro-Jimenez, E.; Tornero-Aguilera, J.F. Human Digestive Physiology and Evolutionary Diet: A Metabolomic Perspective on Carnivorous and Scavenger Adaptations. Metabolites 2025, 15, 453. https://doi.org/10.3390/metabo15070453
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Yáñez-Sepúlveda R, Rubio-Zarapuz A, Martín-Rodríguez A, Navarro-Jimenez E, Tornero-Aguilera JF. Human Digestive Physiology and Evolutionary Diet: A Metabolomic Perspective on Carnivorous and Scavenger Adaptations. Metabolites. 2025; 15(7):453. https://doi.org/10.3390/metabo15070453
Chicago/Turabian StyleClemente-Suárez, Vicente Javier, Laura Redondo-Flórez, Ana Isabel Beltrán-Velasco, Rodrigo Yáñez-Sepúlveda, Alejandro Rubio-Zarapuz, Alexandra Martín-Rodríguez, Eduardo Navarro-Jimenez, and José Francisco Tornero-Aguilera. 2025. "Human Digestive Physiology and Evolutionary Diet: A Metabolomic Perspective on Carnivorous and Scavenger Adaptations" Metabolites 15, no. 7: 453. https://doi.org/10.3390/metabo15070453
APA StyleClemente-Suárez, V. J., Redondo-Flórez, L., Beltrán-Velasco, A. I., Yáñez-Sepúlveda, R., Rubio-Zarapuz, A., Martín-Rodríguez, A., Navarro-Jimenez, E., & Tornero-Aguilera, J. F. (2025). Human Digestive Physiology and Evolutionary Diet: A Metabolomic Perspective on Carnivorous and Scavenger Adaptations. Metabolites, 15(7), 453. https://doi.org/10.3390/metabo15070453