Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods
Abstract
1. Introduction
2. Microbial Fermentation for Sustainable Food Production
2.1. Traditional Fermented Foods: Cultural Heritage and Microbial Ecology
2.2. Controlled and Precision Fermentation
2.3. Valorization of Agro-Industrial Waste Through Fermentation
3. Microbial Biocontrol for Food Safety and Preservation
3.1. Natural Antimicrobials Produced by Microorganisms
3.2. Competitive Exclusion and Protective Cultures
3.3. Phage Therapy and CRISPR-Based Biocontrol
- High specificity, which prevents disruption of non-target microbial communities.
- Self-limiting action, as phages only replicate in the presence of their specific bacterial hosts [51].
- Low risk of cross-resistance with conventional antibiotics.
- Compatibility with mild processing technologies, supporting clean label trends [52].
4. Functional Foods and Health-Promoting Microorganisms
4.1. Probiotics, Prebiotics, Synbiotics, and Postbiotics
4.2. Technological Challenges and Stability of Functional Microbial Ingredients
4.3. Applications in Personalized Nutrition
4.4. Role in Mental Health and the Gut-Brain Axis
4.5. Environmental and Sustainability Perspectives
5. Regulatory and Technological Advances in Microbial Ingredients for Food Innovation
6. Evidence-Based Insights into Microbial Innovations
7. Future Trends and Research Gaps
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Os sistemas alimentares são responsáveis por um terço das emissões antropogênicas globais de GEE. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2021: Making Agrifood Systems More Resilient to Shocks and Stresses; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/documents/card/en/c/cb4476en (accessed on 20 May 2025).
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Alimentos Fermentados, Saúde e o Microbioma Intestinal. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Rani, R.P. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. 2014, 2014, 1–19. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Efeitos de probióticos, prebióticos e simbióticos na saúde humana. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Suez, J.; Suez, J.; Zmora, N.; Segal, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Leite, A.M.d.O.; Miguel, M.A.L.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.F. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Braz. J. Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Kiers, J.L. Tempe fermentation, innovation and functionality: Update into the third millennium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef]
- Tomohiro, W.; Koji, Y.; Minoru, O. Production of miso, soy sauce, and other traditional Japanese seasonings. In Handbook of Food Products Manufacturing: Health, Meat, Milk, Poultry, Seafood, and Vegetables; Hui, Y.H., Ed.; Wiley: Hoboken, NJ, USA, 2007; Volume 2, pp. 545–566. [Google Scholar]
- Spiros, P.; Eleftherios, H.D.; Effie, T. Fermentation of vegetables. In Microbiology and Technology of Fermented Foods, 2nd ed.; Hutkins, R.W., Ed.; Wiley-Blackwell: Ames, IA, USA, 2020; ca11; pp. 311–340. [Google Scholar]
- Thierry, A.; Madec, M.-N.; Chuat, V.; Bage, A.-S.; Picard, O.; Grondin, C.; Rué, O.; Mariadassou, M.; Marché, L.; Valence, F. Microbial communities of a variety of 75 homemade fermented vegetables. Front. Microbiol. 2023, 14, 1323424. [Google Scholar] [CrossRef]
- Louw, N.L.; Lele, K.; Ye, R.; Edwards, C.B.; Wolfe, B.E. Microbiome Assembly in Fermented Foods. Annu. Rev. Microbiol. 2023, 77, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. Declaração de consenso da Associação Científica Internacional para Probióticos e Prebióticos (ISAPP) sobre alimentos fermentados. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.B.; Meyer, A.S.; Arnau, J. The next food revolution is here: Recombinant microbial production of milk and egg proteins by precision fermentation. Annu. Rev. Food Sci. Technol. 2024, 15, 173–187. [Google Scholar] [CrossRef]
- Augustin, M.A.; Hartley, C.J.; Maloney, G.; Tyndall, S. Innovation in precision fermentation for food ingredients. Crit. Rev. Food Sci. Nutr. 2023, 64, 6218–6238. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Rogers, J.K.; Taylor, N.D. Synthetic biology approaches for engineering metabolism and production of value-added compounds. Curr. Opin. Biotechnol. 2021, 67, 1–8. [Google Scholar] [CrossRef]
- Eastham, J.L.; Leman, A.R. Precision fermentation for food proteins: Ingredient innovations, bioprocess considerations, and outlook. Curr. Opin. Food Sci. 2024, 58, 101194. [Google Scholar] [CrossRef]
- Kuhl, E. IA para alimentos: Acelerando e democratizando a descoberta e a inovação. NPJ Sci. Food 2025, 9, 82. [Google Scholar] [CrossRef]
- MarketsandMarkets. Precision Fermentation Ingredients Market by Ingredient (Egg, Dairy Proteins, Collagen, Heme), Microbe (Yeast, Algae, Bacteria, Fungi), Application (Dairy Alternatives, Meat Alternatives, Egg Alternatives), and Region—Global Forecast to 2030. MarketsandMarketsTM. 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/precision-fermentation-market-147520320.html (accessed on 25 May 2025).
- Soccol, C.R.; Pandey, A.; Larroche, C. (Eds.) Current Developments in Biotechnology and Bioengineering: Solid-State Fermentation for Foods and Beverages; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Rana, P.; Inbaraj, B.S.; Gurumayum, S.; Sridhar, K. Produção sustentável de enzimas lignocelulolíticas na fermentação em estado sólido de resíduos agroindustriais: Aplicação na clarificação do suco de abóbora (Cucurbita Maxima). Agron 2021, 11, 2379. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorização de Resíduos de Frutas para Compostos Bioativos e Suas Aplicações na Indústria Alimentícia. Foods 2023, 12, 556. [Google Scholar] [CrossRef]
- Senila, L.; Gál, E.; Kovacs, E.; Cadar, O.; Dan, M.; Senila, M.; Roman, C. Produção de poli(3-hidroxibutirato) a partir de resíduos lignocelulósicos usando Bacillus megaterium ATCC 14581. Polymers 2023, 15, 4488. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, Í.B.S.; Silva, R.K.; Siqueira, J.G.W.; Silva, P.K.N.d.; Sonego, J.L.S.; de Souza, R.B.; Antonino, A.C.D.; Menezes, R.S.C.; Dutra, E.D. Resíduos de Alimentos Brasileiros como Substrato para Produção de Bioetanol. Alimentos 2024, 13, 4032. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Wang, L.; Liu, J.; Wang, Z.; Tang, Y.; Li, M.; Zhou, X.; Hu, X.; Jia, Y.; et al. Valorization of food waste into single-cell protein: An innovative approach for sustainable protein production. NPJ Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Neylon, E.; Nyhan, L.; Zannini, E.; Monin, T.; Münch, S.; Sahin, A.W.; Arendt, E.K. Ingredientes Alimentares para o Futuro: Análise Aprofundada dos Efeitos da Fermentação com Bactérias Ácido-Láticas em Raízes de Cevada Usadas. Fermentation 2023, 9, 78. [Google Scholar] [CrossRef]
- Sorathiya, K.B.; Melo, A.; Hogg, M.C.; Pintado, M. Ácidos orgânicos na preservação de alimentos: Explorando sinergias, insights moleculares e aplicações sustentáveis. Sustentabilidade 2025, 17, 3434. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Nakonechny, F.; Haddis, T.; Khalfin, B.; Dahan, A.; Ben-Shabat, S. Compostos Antimicrobianos Naturais como Conservantes Promissores: Um Olhar para um Problema Antigo sob Novas Perspectivas. Molecules 2024, 29, 5830. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Nakonechny, F.; Haddis, T.; Khalfin, B.; Dahan, A.; Ben-Shabat, S. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Sci. Nutr. 2020, 8, 2555–2568. [Google Scholar] [CrossRef]
- Soni, A.; Brightwell, G. Nature-Inspired Antimicrobial Surfaces and Their Potential Applications in Food Industries. Foods 2022, 11, 844. [Google Scholar] [CrossRef]
- Qian, M.; Ismail, B.B.; He, Q.; Zhang, X.; Yang, Z.; Ding, T.; Ye, X.; Liu, D.; Guo, M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2523–2590. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, D.; Palop, A. Applications of Natural Antimicrobials in Food Packaging and Preservation. Foods 2021, 10, 568. [Google Scholar] [CrossRef]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Kim, G.-B. Inhibition of Listeria monocytogenes in fresh cheese using a bacteriocin-producing Lactococcus lactis CAU2013 strain. Korean J. Food Sci. Anim. Resour. 2022, 42, 1009–1018. Available online: https://www.kosfaj.org/archive/view_article?pid=kosfa-42-6-1009 (accessed on 20 May 2025). [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Hakim, B.; Xuan, N.; Oslan, S. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef]
- Gaggia, F.; Di Gioia, D.; Baffoni, L.; Biavati, B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci. Technol. 2011, 22 (Suppl. S1), S58–S66. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Use of autochthonous starters for safety improvement in minimally processed fruits and vegetables. Trends Food Sci. Technol. 2013, 30, 38–49. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Update of the list of QPS-recommended biological agents for safety risk assessments. EFSA J. 2020, 18, e06266. [Google Scholar] [CrossRef]
- Mélo, E.D.d.; e Silva, P.I.S.; do Oriente, S.F.; Almeida, R.D.; Pessoa, J.M.; França, K.B.; de Gusmão, T.A.S.; de Gusmão, R.P.; Lisboa Oliveira, H.M.; Nascimento, A.P.S. Efeito de culturas lácticas bioprotetoras comerciais nas propriedades físico-químicas, microbiológicas e texturais do iogurte. Fermentação 2024, 10, 585. [Google Scholar] [CrossRef]
- Imran, A.; Shehzadi, U.; Islam, F.; Afzaal, M.; Ali, R.; Ali, Y.A.; Chauhan, A.; Biswas, S.; Khurshid, S.; Usman, I.; et al. Bacteriophages and food safety: An updated overview. Food Sci. Nutr. 2023, 11, 2023–2035. [Google Scholar] [CrossRef] [PubMed]
- Farinati, S.; Devillars, A.; Gabelli, G.; Vannozzi, A.; Scariolo, F.; Palumbo, F.; Barcaccia, G. Quão útil pode ser um sistema baseado em CRISPR/Cas para rastreabilidade de alimentos? Foods 2024, 13, 3397. [Google Scholar] [CrossRef]
- Sturino, J.M.; Klaenhammer, T.R. Engineered bacteriophage-defence systems in bioprocessing. Nat. Rev. Microbiol. 2006, 4, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef]
- Díaz-Muñoz, S.L.; Koskella, B. Bacteria–phage interactions in natural environments. Adv. Appl. Microbiol. 2014, 89, 135–183. [Google Scholar] [CrossRef]
- Mirzaei, M.; Maurice, C. Ménage à trois no intestino humano: Interações entre hospedeiro, bactérias e fagos. Nat. Rev. Microbiol. 2017, 15, 397–408. [Google Scholar] [CrossRef]
- Barrangou, R.; Van Pijkeren, J.-P. Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Curr. Opin. Biotechnol. 2016, 37, 61–68. [Google Scholar] [CrossRef]
- Yosef, I.; Goren, M.G.; Qimron, U. Proteins and DNA elements essential for phage-assisted CRISPR-Cas antibacterial activity. Sci. Rep. 2012, 7, 42581. [Google Scholar] [CrossRef]
- Citorik, R.J.; Mimee, M.; Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 2014, 32, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Polônio, M.L.T.; Peres, F. Consumo de aditivos alimentares e efeitos à saúde: Desafios para a saúde pública brasileira. Cad. De Saúde Pública 2009, 25, 1653–1666. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, H.M.; Pasquali, M.B.; dos Anjos, A.I.; Sarinho, A.M.; de Melo, E.D.; Andrade, R.; Batista, L.; Lima, J.; Diniz, Y.; Barros, A. Técnicas Inovadoras e Sustentáveis de Conservação de Alimentos: Melhorando a Qualidade Alimentar, Segurança e Sustentabilidade Ambiental. Sustentabilidade 2024, 16, 8223. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. The use of biological agents in food production: Risk-based approaches and regulatory perspectives. EFSA J. 2023, 21, e07890. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Declaração de consenso da Associação Científica Internacional para Probióticos e Prebióticos sobre o escopo e o uso apropriado do termo probiótico. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to qualify microorganisms as “probiotic” in food and dietary supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. Declaração de consenso da Associação Científica Internacional de Probióticos e Prebióticos (ISAPP) sobre a definição e o escopo dos pós-bióticos. Nat. Rev. Gastroenterol. Hepatol 2021, 18, 649–667. [Google Scholar] [CrossRef]
- FAO/WHO—Food and Agriculture Organization of the United Nations; World Health Organization. Guidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy; WHO: London, UK, 2002. Available online: https://www.fao.org/home/en (accessed on 20 May 2025).
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Documento de consenso de especialistas: Declaração de consenso da Associação Científica Internacional para Probióticos e Prebióticos (ISAPP) sobre a definição e o escopo dos prebióticos. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. Declaração de consenso da Associação Científica Internacional para Probióticos e Prebióticos (ISAPP) sobre a definição e o escopo dos simbióticos. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Asefa, Z.; Belay, A.; Welelaw, E.; Haile, M. Postbiotics and their biotherapeutic potential for chronic disease and their feature perspective: A review. Front. Microbiomes 2025, 2, 1489339. [Google Scholar] [CrossRef]
- Morazzoni, C.; Sirel, M.; Allesina, S.; Garcia, M.; Kragh, K.; Pane, M.; Beilharz, K. Proof of concept: Real-time viability and metabolic profiling of probiotics with isothermal microcalorimetry. Front. Microbiol. 2024, 15, 1391688. [Google Scholar] [CrossRef]
- Li, H.; Zhou, D.; Gan, R.; Huang, S.; Zhao, C.; Shang, A.; Xu, X.; Li, H. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Muthuramalingam, K.; Kim, Y.; Park, S.; Kim, S.; Lee, J.; Hyun, C.; Unno, T.; Cho, M. Synbiotic supplementation with prebiotic Schizophyllum commune derived β-(1,3/1,6)-glucan and probiotic concoction benefits gut microbiota and its associated metabolic activities. Appl. Biol. Chem. 2021, 64, 1–10. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Franks, A.F.; Haas, K.N.; Cohen, S.E.; Livingston, R.; Varma, Y.; Gardner, C.D.; Sonnenburg, E.D.; Sonnenburg, J.L. Gut-microbiota-targeted diets modulate human immune status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Dhaneshwar, S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J. Gastroenterol. 2023, 29, 2078–2100. [Google Scholar] [CrossRef]
- Sergeev, I.; Aljutaily, T.; Walton, G.; Huarte, E. Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity. Nutrients 2020, 12, 222. [Google Scholar] [CrossRef]
- Olas, B. Probiotics, Prebiotics and Synbiotics—A Promising Strategy in Prevention and Treatment of Cardiovascular Diseases? Int. J. Mol. Sci. 2020, 21, 9737. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P. Probiotics, Prebiotics, Synbiotics, and Fermented Foods as Potential Biotics in Nutrition Improving Health via Microbiome-Gut-Brain Axis. Fermentation 2022, 8, 303. [Google Scholar] [CrossRef]
- Morales-Torres, R.; Carrasco-Gubernatis, C.; Grasso-Cladera, A.; Cosmelli, D.; Parada, F.; Palacios-García, I. Psychobiotic Effects on Anxiety Are Modulated by Lifestyle Behaviors: A Randomized Placebo-Controlled Trial on Healthy Adults. Nutrients 2023, 15, 1706. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Simões, I.; Cordeiro, C.; Martins, P. Hidden role of gut microbiome in mental health. Eur. Psychiatry 2022, 65, S695. [Google Scholar] [CrossRef]
- Dziedzic, A.; Maciak, K.; Bliźniewska-Kowalska, K.; Gałecka, M.; Kobierecka, W.; Saluk, J. The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota–Gut–Brain Axis: A Literature Review. Nutrients 2024, 16, 1054. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, T.; Al-Ansi, W.; Qian, H.; Fan, M.; Li, Y.; Wang, L. Functional microbiome assembly in food environments: Addressing sustainable development challenges. Comprehens. Rev. Food Sci. Food Saf. 2025, 24, e70074. [Google Scholar] [CrossRef]
- Jahn, L.; Rekdal, V.; Sommer, M. Microbial foods for improving human and planetary health. Cell 2023, 186, 469–478. [Google Scholar] [CrossRef]
- Frontiers Production Office. Erratum: Microbiome-based solutions to address new and existing threats to food security, nutrition, health, and agrifood systems’ sustainability. Front. Sustain. Food Syst. 2023, 7, 1143808. [Google Scholar] [CrossRef]
- Verma, D.K.; Thakur, M.; Singh, S.; Tripathy, S.; Gupta, A.K.; Baranwal, D.; Patel, A.R.; Shah, N.; Utama, G.L.; Niamah, A.K.; et al. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Biosci. 2022, 46, 101594. [Google Scholar] [CrossRef]
- Abedin, M.M.; Chourasia, R.; Phukon, L.C.; Sarkar, P.; Ray, R.C.; Singh, S.P.; Rai, A.K. Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10730–10748. [Google Scholar] [CrossRef]
- Mahmud, N.; Taiwo, K.; Usack, J. Decarbonizing the Food System with Microbes and Carbon-Neutral Feedstocks. Annu. Rev. Food Sci. Technol. 2024, 16, 81–104. [Google Scholar] [CrossRef]
- Jin, R.; Song, J.; Liu, C.; Lin, R.; Liang, D.; Aweya, J.; Weng, W.; Zhu, L.; Shang, J.; Yang, S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compreh. Rev. Food Sci. Food Saf. 2024, 23, e13388. [Google Scholar] [CrossRef] [PubMed]
- Praveen, M.; Brogi, S. Microbial Fermentation in Food and Beverage Industries: Innovations, Challenges, and Opportunities. Foods 2025, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J. 2024, 22, e8912. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Rahikainen, M.; Lonkila, A.; Yang, B. Alternative proteins and EU food law. Food Control. 2021, 130, 108336. [Google Scholar] [CrossRef]
- Cruz, J.; Vasconcelos, V. Legal Aspects of Microalgae in the European Food Sector. Foods 2023, 13, 124. [Google Scholar] [CrossRef]
- FDA—U.S. Food and Drug Administration. GRAS Notices Inventory and Guidance for Industry; FDA: Silver Spring, MA, USA, 2023. Available online: https://www.fda.gov (accessed on 22 May 2025).
- Salinas, N.; Gomes, L. Open Exceptions: Why Does the Brazilian Health Regulatory Agency (ANVISA) Exempt RIA and Ex Post Reviews? J. Benefit-Cost Anal. 2024, 15, 87–104. [Google Scholar] [CrossRef]
- Danielski, R.; Da Silva, C.; Camargo, A. The gap between scientific evidence and food regulation: Analyzing the updated Brazilian normative on the use of bioactives in food supplements. J. Food Bioact. 2020, 12, 12247. [Google Scholar] [CrossRef]
- Ferrocino, I.; Rantsiou, K.; McClure, R.; Kostić, T.; De Souza, R.; Lange, L.; FitzGerald, J.; Kriaa, A.; Cotter, P.; Maguin, E.; et al. The need for an integrated multi-OMICs approach in microbiome science in the food system. Compreh. Rev. Food Sci. Food Saf. 2023, 22, 1082–1103. [Google Scholar] [CrossRef]
- Shankar, A.; Sharma, K. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl. Microbiol. Biotechnol. 2022, 106, 3465–3488. [Google Scholar] [CrossRef]
- Grand View Research. Probiotics Market Size Report, 2023–2030; Grand View Research: San Francisco, CA, USA, 2023; Available online: https://www.grandviewresearch.com (accessed on 22 May 2025).
- Fanhani, F.C. Emerging Technologies in the Food Industry. Master’s Thesis, Federal University of Paraná, Curitiba, Brazil, 2023. [Google Scholar]
- Graham, A.; Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Pereira, A.; Yaverino-Gutiérrez, M.; Monteiro, M.; Souza, B.; Bachheti, R.; Chandel, A. Precision fermentation in the realm of microbial protein production: State-of-the-art and future insights. Food Res. Int. 2024, 200, 115527. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Qiao, M. Towards microbial consortia in fermented foods for metabolic engineering and synthetic biology. Food Res. Int. 2025, 201, 115677. [Google Scholar] [CrossRef]
- Kim, Y.; Huang, L.; Nitin, N. Bio-based antimicrobial compositions and sensing technologies to improve food safety. Curr. Opin. Biotechnol. 2023, 79, 102871. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Canonico, L.; Agarbati, A.; Ciani, M. Biocontrol and probiotic function of non-Saccharomyces yeasts: New insights in agri-food industry. Microorganisms 2023, 11, 1450. [Google Scholar] [CrossRef]
- Bukvički, D.; D’Alessandro, M.; Rossi, S.; Siroli, L.; Gottardi, D.; Braschi, G.; Patrignani, F.; Lanciotti, R. Essential oils and their combination with lactic acid bacteria and bacteriocins to improve the safety and shelf life of foods: A review. Foods 2023, 12, 3288. [Google Scholar] [CrossRef]
- Al-Habsi, N.; Al-Khalili, M.; Haque, S.; Elias, M.; Olqi, N.; Uraimi, T. Health benefits of prebiotics, probiotics, synbiotics, and postbiotics. Nutrients 2024, 16, 3955. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, C.; Patil, S.; Dong, S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front. Nutr. 2024, 11, 1355542. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Tarantini, S.; Csizmadia, Z.; Varga, J. Exploring the influence of gut–brain axis modulation on cognitive health: A comprehensive review of prebiotics, probiotics, and symbiotics. Nutrients 2024, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Sampara, P.; Lawson, C.; Scarborough, M.; Ziels, R. Advancing environmental biotechnology with microbial community modeling rooted in functional ‘omics. Curr. Opin. Biotechnol. 2024, 88, 103165. [Google Scholar] [CrossRef]
- Jacob, S.; Rajeswari, G.; Rai, A.; Tripathy, S.; Gopal, S.; Das, E.; Kumar, V.; Kumar, S.; Aminabhavi, T.; Garlapati, V. Paradigm of integrative OMICS of microbial technology towards biorefinery prospects. Biocatal. Agric. Biotechnol. 2024, 58, 103226. [Google Scholar] [CrossRef]
- McElhinney, J.; Catacutan, M.; Mawart, A.; Hasan, A.; Dias, J. Interfacing machine learning and microbial omics: A promising means to address environmental challenges. Front. Microbiol. 2022, 13, 851450. [Google Scholar] [CrossRef] [PubMed]
- Avourez, U.; Matassa, S.; Vlaeminck, S.; Verstraete, W. Ruminations on sustainable and safe food: Championing for open symbiotic cultures ensuring resource efficiency, eco-sustainability and affordability. Microb. Biotechnol. 2024, 17, e14436. [Google Scholar] [CrossRef] [PubMed]
- Macori, G.; Fanning, S. The next-generation tools for risk assessment and precision food safety in the One Health continuum. Eur. J. Public Health 2023, 33, e1032. [Google Scholar] [CrossRef]
- Mitra, D.; Kumar, R.; Kamboj, N. Microbial innovations in agriculture: Interdisciplinary approaches to leveraging microbes for food sustainability and security. Indian J. Microbiol. Res. 2024, 11, 129–139. [Google Scholar] [CrossRef]
- Carlino, N.; Blanco-MígUEZ, A.; Punčochář, M.; Mengoni, C.; Segata, N.; Pasolli, E. Unexplored microbial diversity from 2500 food metagenomes and links with the human microbiome. Cell 2024, 187, 5775–5795.e15. [Google Scholar] [CrossRef]
- Shi, H.; An, F.; Lin, H.; Li, M.; Wu, J.; Wu, R. Advances in fermented foods revealed by multi-omics: A new direction toward precisely clarifying the roles of microorganisms. Front. Microbiol. 2022, 13, 1044820. [Google Scholar] [CrossRef]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -Omics approaches: A perspective for the environment, food quality and human safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef]
- Borges, F.; Briandet, R.; Callon, C.; Champomier-Vergès, M.; Christieans, S.; Chuzeville, S.; Denis, C.; Desmasures, N.; Desmonts, M.; Feurer, C.; et al. Contribution of omics to biopreservation: Toward food microbiome engineering. Front. Microbiol. 2022, 13, 951182. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Liu, Y. Artificial Intelligence for Microbiology and Microbiome Research. arXiv 2024, arXiv:2411.01098. [Google Scholar] [CrossRef]
- Papoutsoglou, G.; Tarazona, S.; Lopes, M.; Klammsteiner, T.; Ibrahimi, E.; Eckenberger, J.; Novielli, P.; Tonda, A.; Simeon, A.; Shigdel, R.; et al. Machine learning approaches in microbiome research: Challenges and best practices. Front. Microbiol. 2023, 14, 1261889. [Google Scholar] [CrossRef]
- Cheng, X.; Joe, B. Artificial Intelligence in Medicine: Microbiome-Based Machine Learning for Phenotypic Classification. Methods Mol. Biol. 2023, 2649, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Xu, C.; Kumar, A. Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification. Front. Med. Technol. 2025, 6, 1434799. [Google Scholar] [CrossRef] [PubMed]
- Silva-Andrade, C.; Rodriguez-Fernandez, M.; Garrido, D.; Martin, A. Using metabolic networks to predict cross-feeding and competition interactions between microorganisms. Microbiol. Spectr. 2024, 12, e0228723. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Han, W.; Han, M.; Liu, X.; Dai, J.; Dong, Y.; Sun, T.; Xu, J. Intratumoral and fecal microbiota reveals microbial markers associated with gastric carcinogenesis. Front. Cell. Infect. Microbiol. 2024, 14, 1397466. [Google Scholar] [CrossRef]
- Zhang, X.; Borjigin, Q.; Gao, J.; Yu, X.; Hu, S.; Zhang, B.; Han, S. Community succession and functional prediction of microbial consortium with straw degradation during subculture at low temperature. Sci. Res. 2022, 12, 20163. [Google Scholar] [CrossRef]
- Pannerchelvan, S.; Rios-Solis, L.; Wasoh, H.; Sobri, M.; Wong, F.; Mohamed, M.; Mohamad, R.; Halim, M. Functional yogurt: A comprehensive review of its nutritional composition and health benefits. Food Funct. 2024, 15, 10927–10955. [Google Scholar] [CrossRef]
- Marquez-Paradas, E.; Torrecillas-López, M.; Barrera-Chamorro, L.; Del Rio-Vazquez, J.; La Rosa, T.; La Paz, M. Microbiota-derived extracellular vesicles: Current knowledge, gaps, and challenges in precision nutrition. Front. Immunol. 2025, 16, 1514726. [Google Scholar] [CrossRef]
- Medeiros, W.; Hidalgo, K.; Leão, T.; De Carvalho, L.; Ziemert, N.; Oliveira, V. Unlocking the biosynthetic potential and taxonomy of the Antarctic microbiome along temporal and spatial gradients. Microbiol. Spectr. 2024, 12, e0024424. [Google Scholar] [CrossRef]
- De Freitas, P.; Jacinavicius, F.; Passos, L.; De Souza, A.; Dextro, R.; Pinto, E. Exploring the biodiversity of Antarctic cyanobacteria: A review of secondary metabolites and their applications. Algal Res. 2024, 82, 103617. [Google Scholar] [CrossRef]
- Rawat, M.; Chauhan, M.; Pandey, A. Extremophiles and their expanding biotechnological applications. Arch. Microbiol. 2024, 206, 247. [Google Scholar] [CrossRef]
- Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2021, 409, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jordan, H.; Older, C.; Griffin, M.; Allen, P.; Wise, D.; Goodman, P.; Reifers, J.; Yamamoto, F. Lactococcus lactis MA5 is a potential autochthonous probiotic for nutrient digestibility enhancement and bacterial pathogen inhibition in hybrid catfish (Ictalurus punctatus × I. furcatus). J. Fish Dis. 2024, 47, e13997. [Google Scholar] [CrossRef]
- Persson, K.; Onyema, V.; Nwafor, I.; Peri, K.; Otti, C.; Nnaemeka, P.; Onyishi, C.; Okoye, S.; Moneke, A.; Amadi, O.; et al. Lactose-assimilating yeasts with high fatty acid accumulation uncovered by untargeted bioprospecting. Appl. Environ. Microbiol. 2024, 91, e0161524. [Google Scholar] [CrossRef]
- Goswami, D.; Mondal, S.; Hor, P.; Santra, S.; Jana, H.; Gauri, S.; Halder, S.; Mondal, K. Bioprospecting of probiotic bacteria from traditional food of high-altitude Himalayan region. Food Biosci. 2023, 57, 103257. [Google Scholar] [CrossRef]
- Brasil. Lei nº 13.123, de 20 de maio de 2015. In Regulamenta o Acesso ao Patrimônio Genético e aos Conhecimentos Tradicionais Associados; Diário Oficial da União: Brasília, DF, Brasil, 2015. [Google Scholar]
- Silvestri, L.; Mason, P. Improved access to biological control genetic resources: Navigating through the Convention on Biological Diversity and the Nagoya Protocol. BioControl 2023, 68, 299–310. [Google Scholar] [CrossRef]
- Mason, P.; Hill, M.; Smith, D.; Silvestri, L.; Weyl, P.; Brodeur, J.; Vitorino, M. Best practices in the use and exchange of microorganism biological control genetic resources. BioControl 2023, 68, 311–327. [Google Scholar] [CrossRef]
- Hirai, T.; Yasuda, S.; Umezawa, A.; Sato, Y. Country-specific regulation and international standardization of cell-based therapeutic products derived from pluripotent stem cells. Stem Cell Rep. 2023, 18, 1573–1591. [Google Scholar] [CrossRef]
- Heijer, J.; Heuberger, J.; Hijma, H.; Kruithof, A.; Van Smeden, J.; Groeneveld, G.; Burggraaf, J.; Cohen, A. Good Clinical Trials by removing defensive interpretation of Good Clinical Practice guidelines. Br. J. Clin. Pharmacol. 2021, 87, 4552–4559. [Google Scholar] [CrossRef]
- Sedgwick, H.; Gibson, G.; Adams, J.; Wijeyesekera, A. Seaweed-derived bioactives: Gut microbiota targeted interventions for immune function. J. Funct. Foods 2025, 125, 106696. [Google Scholar] [CrossRef]
- Mishra, N.; Garg, A.; Ashique, S.; Bhatt, S. Potential of postbiotics for the treatment of metabolic disorders. Drug Discov. Today 2024, 29, 103921. [Google Scholar] [CrossRef]
- Seidler, Y.; Rimbach, G.; Lüersen, K.; Vinderola, G.; Ipharraguerre, I. The postbiotic potential of Aspergillus oryzae—A narrative review. Front. Microbiol. 2024, 15, 1452725. [Google Scholar] [CrossRef] [PubMed]
- Clagnan, E.; Costanzo, M.; Visca, A.; Di Gregorio, L.; Tabacchioni, S.; Colantoni, E.; Sevi, F.; Sbarra, F.; Bindo, A.; Nolfi, L.; et al. Culturomics- and metagenomics-based insights into the soil microbiome preservation and application for sustainable agriculture. Front. Microbiol. 2024, 15, 1473666. [Google Scholar] [CrossRef] [PubMed]
- Glockow, T.; Kaster, A.; Rabe, K.; Niemeyer, C. Sustainable agriculture: Leveraging microorganisms for a circular economy. Appl. Microbiol. Biotechnol. 2024, 108, 452. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zeng, Z.; Contreras, A.; Cui, C. Editorial: Innovative microbial technologies for future and sustainable food science. Front. Microbiol. 2023, 14, 1215775. [Google Scholar] [CrossRef]
- Niamah, A.K.; Al-Sahlany, S.T.G.; Abdul-Sada, H.K.; Prabhakar, P.; Tripathy, S.; Dadrwal, B.K.; Singh, S.; Verma, D.K.; Gupta, A.K.; Shukla, R.M.; et al. Phytophagous Probiotic Foods: Exploring the Intersection of Characteristics, Quality Implications, Health Benefits, and Market Dynamics. Trends Food Sci. Technol. 2024, 154, 104795. [Google Scholar] [CrossRef]
Fermented Product | Main Microorganisms | Fermentation Type | Country of Origin | Key Metabolic Products |
---|---|---|---|---|
Kefir | Lactobacillus spp., Kluyveromyces marxianus | Spontaneous | Caucasus region | Organic acids, ethanol, CO2 |
Tempeh | Rhizopus oligosporus | Controlled | Indonesia | Bioactive peptides, hydrolytic enzymes |
Miso | Aspergillus oryzae, Zygosaccharomyces rouxii | Controlled | Japan | Free amino acids, vitamins, aromatic compounds |
Kimchi | Lactobacillus spp., Leuconostoc spp. | Spontaneous | Korea | Organic acids, phenolic compounds |
Sauerkraut | Leuconostoc mesenteroides, Lactiplantibacillus plantarum | Spontaneous | Germany | Lactic acid, bacteriocins |
Strategy/Technology | Main Mechanisms | Microorganisms or Agents Involved | Food Applications | Advantages | Challenges/Limitations |
---|---|---|---|---|---|
Section 3.1. Natural Antimicrobials Produced by Microorganisms | Bacteriocins, organic acids, hydrogen peroxide, biotransformation of phenolics | Lactic Acid Bacteria (LAB), e.g., Lactococcus lactis, L. plantarum, P. acidilactici | Cheeses, processed meats, ready-to-eat vegetables, refrigerated juices | Natural alternative to synthetic preservatives, “clean label”, microbial safety | Thermal instability, limited spectrum of activity, variable efficacy across food matrices |
Section 3.2. Competitive Exclusion and Protective Cultures | Nutrient and niche competition, production of antimicrobial metabolites | L. plantarum, L. rhamnosus, P. acidilactici, Leuconostoc mesenteroides, L. sakei, C. maltaromaticum | Fresh cheeses, fermented meats, refrigerated dairy products, minimally processed vegetables | Antibiotic-free, safe (GRAS/QPS), preservation of sensory characteristics | Need for standardization, compatibility with starter cultures, stability during storage |
Section 3.3. Phage Therapy and CRISPR-based Biocontrol | Targeted bacterial lysis, gene editing of virulence/resistance factors | Bacteriophages (e.g., ListShieldTM, EcoShieldTM), CRISPR-Cas systems (via engineered phages) | Ready-to-eat meats, fresh vegetables, dairy products, seafood | High specificity, preserves beneficial microbiota, no sensory alteration | Narrow host range, inactivation in complex food matrices, regulatory and consumer acceptance barriers |
Category | Definition | Key Components | Mechanisms of Action | Applications | Challenges/Advantages |
---|---|---|---|---|---|
Probiotics | Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. | Lactobacillus, Bifidobacterium, Saccharomyces, Streptococcus, Lactococcus | Modulate gut microbiota, improve barrier function, stimulate immune system, inhibit pathogens | GI health, metabolic disorders, immune modulation, brain-gut axis, functional foods | Require viability; need encapsulation for stability during processing and storage |
Prebiotics | Substrates selectively utilized by host microorganisms conferring health benefits. | FOS, GOS, inulin, XOS, polyphenols from grapes, cocoa, green tea | Promote growth of beneficial bacteria; increase SCFA production (acetate, propionate, butyrate) | Gut health, mineral absorption, modulation of inflammation | Selectivity of fermentation; often fiber-based ingredients; stable during processing |
Synbiotics | Combination of probiotics and prebiotics that beneficially affect the host by improving microbial survival/activity | Complementary (independent action) or synergistic (prebiotic enhances co-administered probiotic) | Enhance colonization and metabolic activity of beneficial microbes | IBD, dysbiosis, nutrition for elderly and children, clinical and dietary interventions | Must ensure compatibility between strains and substrates; growing personalized formulations |
Postbiotics | Preparations of inactivated microorganisms and/or their metabolites that confer health benefits to the host. | SCFAs, organic acids, antimicrobial peptides, vitamins, exopolysaccharides, enzymes | Provide anti-inflammatory, antioxidant, immunomodulatory, and barrier-protective effects without requiring viability | Stable functional foods, clinical nutrition, safer alternatives to live probiotics | High stability; suitable for thermally processed foods; reduced regulatory concerns compared to live microbes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, A.P.S.; Barros, A.N. Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods. Foods 2025, 14, 2320. https://doi.org/10.3390/foods14132320
Nascimento APS, Barros AN. Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods. Foods. 2025; 14(13):2320. https://doi.org/10.3390/foods14132320
Chicago/Turabian StyleNascimento, Amanda Priscila Silva, and Ana Novo Barros. 2025. "Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods" Foods 14, no. 13: 2320. https://doi.org/10.3390/foods14132320
APA StyleNascimento, A. P. S., & Barros, A. N. (2025). Sustainable Innovations in Food Microbiology: Fermentation, Biocontrol, and Functional Foods. Foods, 14(13), 2320. https://doi.org/10.3390/foods14132320