Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = gum alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1231 KiB  
Interesting Images
A Personalized 3D-Printed CAD/CAM Functional Space Maintainer Following the Premature Loss of a Primary First Molar in a Five-Year-Old Child
by Rasa Mladenovic, Andrija Nedeljkovic, Ljiljana Vujacic, Marko Stevanovic, Vladan Djordjevic, Srbislav Pajic and Kristina Mladenovic
Reports 2025, 8(3), 125; https://doi.org/10.3390/reports8030125 - 29 Jul 2025
Viewed by 267
Abstract
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of [...] Read more.
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of permanent teeth. To preserve space, the fabrication of a space maintainer is necessary. Since conventional space maintainers do not restore masticatory function, this study presents an innovative solution for space preservation following the extraction of the first primary molar through the design of the functional space maintainer KOS&MET (Key Orthodontic System and Materials Enhanced Therapy). The space maintainer was designed using the 3Shape Dental Designer 2023 version software tool and manufactured via additive 3D printing, utilizing a metal alloy with high resistance to masticatory forces. The crown is supported by the primary canine, while an intraoral window is created to monitor the eruption of the successor tooth. This design does not interfere with occlusion and enables bilateral chewing. Masticatory performance was assessed using two-color chewing gum, and the results showed improvement after cementing the space maintainer. This innovative approach not only preserves space for permanent teeth but also enhances masticatory function, contributing to the proper growth and development of the jaws and teeth. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

17 pages, 3940 KiB  
Article
Energy Storage and Dissipation in Consecutive Tensile Load-Unload Cycles of Gum Metal
by Karol Marek Golasiński, Maria Staszczak and Elżbieta Alicja Pieczyska
Materials 2023, 16(9), 3288; https://doi.org/10.3390/ma16093288 - 22 Apr 2023
Cited by 9 | Viewed by 2122
Abstract
Multifunctional β-titanium alloy Gum Metal, characterized by a relatively low elastic modulus, superelastic-like behavior and high strength, was subjected to cyclic tensile loadings. The characteristics of macroscopic scale energy storage and dissipation in the consecutive loading–unloading cycles were studied. Various kinds of energy [...] Read more.
Multifunctional β-titanium alloy Gum Metal, characterized by a relatively low elastic modulus, superelastic-like behavior and high strength, was subjected to cyclic tensile loadings. The characteristics of macroscopic scale energy storage and dissipation in the consecutive loading–unloading cycles were studied. Various kinds of energy components related to the alloy deformation process were determined experimentally and analyzed using thermodynamic relations. The values of the entire work needed to deform the alloy Wext, the work used for recoverable deformation Wrec consisting of the elastic deformation energy Wel , the superelastic-like energy Wpt , and the energy of thermoelastic effect Eth , were derived from the Gum Metal stress and temperature vs. strain curves. The irrecoverable mechanical energy Wir expended on plastic deformation, the dissipation energy Q, and finally the stored energy Es  were estimated. The stored energy represents a change in the internal energy of the deformed material and is an essential measure of cold-worked state. The Es value turned out to be not large for the Gum Metal, which confirms the alloy low hardening property. The energy components determined for each of the 24 loading cycles enabled us to analyze various stages of the Gum Metal deformation process, including necking and damage. Full article
Show Figures

Figure 1

11 pages, 5754 KiB  
Article
Modeling of Severe Plastic Deformation by HSHPT of As-Cast Ti-Nb-Zr-Ta-Fe-O Gum Alloy for Orthopedic Implant
by Dan Cătălin Bîrsan, Carmela Gurău, Florin-Bogdan Marin, Cristian Stefănescu and Gheorghe Gurău
Materials 2023, 16(8), 3188; https://doi.org/10.3390/ma16083188 - 18 Apr 2023
Cited by 2 | Viewed by 1466
Abstract
The High Speed High Pressure Torsion (HSHPT) is the severe plastic deformation method (SPD) designed for the grain refinement of hard-to-deform alloys, and it is able to produce large, rotationally complex shells. In this paper, the new bulk nanostructured Ti-Nb-Zr-Ta-Fe-O Gum metal was [...] Read more.
The High Speed High Pressure Torsion (HSHPT) is the severe plastic deformation method (SPD) designed for the grain refinement of hard-to-deform alloys, and it is able to produce large, rotationally complex shells. In this paper, the new bulk nanostructured Ti-Nb-Zr-Ta-Fe-O Gum metal was investigated using HSHPT. The biomaterial in the as-cast state was simultaneously compressed up to 1 GPa and torsion was applied with friction at a temperature that rose as a pulse in less than 15 s. The interaction between the compression, the torsion, and the intense friction that generates heat requires accurate 3D finite element simulation. Simufact Forming was employed to simulate severe plastic deformation of a shell blank for orthopedic implants using the advancing Patran Tetra elements and adaptable global meshing. The simulation was conducted by applying to the lower anvil a displacement of 4.2 mm in the z-direction and applying a rotational speed of 900 rpm to the upper anvil. The calculations show that the HSHPT accumulated a large plastic deformation strain in a very short time, leading to the desired shape and grain refinement. Full article
Show Figures

Figure 1

16 pages, 7626 KiB  
Article
The Use of Hydrogels in the Treatment of Metal Cultural Heritage Objects
by Elodie Guilminot
Gels 2023, 9(3), 191; https://doi.org/10.3390/gels9030191 - 2 Mar 2023
Cited by 16 | Viewed by 4198
Abstract
Currently gels are widely used in the restoration of paintings, graphic arts, stuccowork and stonework, but their use in metal restoration is less widespread. In this study, several polysaccharide-based hydrogels (agar, gellan and xanthan gum) were selected for use in metal treatments. The [...] Read more.
Currently gels are widely used in the restoration of paintings, graphic arts, stuccowork and stonework, but their use in metal restoration is less widespread. In this study, several polysaccharide-based hydrogels (agar, gellan and xanthan gum) were selected for use in metal treatments. The use of hydrogels allows to localize a chemical or electrochemical treatment. This paper presents several examples of treatment of metal objects of cultural heritage, i.e., historical or archaeological objects. The advantages, disadvantages and limits of hydrogel treatments are discussed. The best results are obtained for the cleaning of copper alloys via associating an agar gel with a chelating agent (EDTA (ethylenediaminetetraacetic acid) or TAC (tri-ammonium citrate)). The hot application allows to obtain a peelable gel, particularly adapted for historical objects. Electrochemical treatments using hydrogels have been successful for the cleaning of silver and for the dechlorination of ferrous or copper alloys. The use of hydrogels for the cleaning of painted aluminum alloys is possible but it has to be coupled with mechanical cleaning. However, for the cleaning of archaeological lead, the cleaning using hydrogels was not very effective. This paper shows the new possibilities of using hydrogels for the treatment of metal cultural heritage objects: agar is the most promising hydrogel. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption)
Show Figures

Figure 1

9 pages, 2204 KiB  
Article
Tooth Movement Efficacy of Retraction Spring Made of a New Low Elastic Modulus Material, Gum Metal, Evaluated by the Finite Element Method
by Naohiko Tamaya, Jun Kawamura and Yoshinobu Yanagi
Materials 2021, 14(11), 2934; https://doi.org/10.3390/ma14112934 - 29 May 2021
Cited by 6 | Viewed by 4059
Abstract
The aim of this study was to evaluate the tooth movement efficacy of retraction springs made of a new β-titanium alloy, “gum metal”, which has a low Young’s modulus and nonlinear super elasticity. Using double loop springs incorporated into an archwire made of [...] Read more.
The aim of this study was to evaluate the tooth movement efficacy of retraction springs made of a new β-titanium alloy, “gum metal”, which has a low Young’s modulus and nonlinear super elasticity. Using double loop springs incorporated into an archwire made of gum metal (GUM) and titanium molybdenum alloy (TMA), the maxillary anterior teeth were moved distally to close an extraction space. The long-term movements were simulated by the finite element method. Its procedure was constructed of two steps, with the first step being the calculation of the initial tooth movement produced by elastic deformation of the periodontal ligament, and in the second step, the alveolar socket was moved by the initial tooth movement. By repeating these steps, the tooth moved by accumulating the initial tooth movement. The number of repeating calculations was equivalent to an elapsed time. In the GUM and TMA springs, the anterior teeth firstly tipped lingually, and then became upright. As a result of these movements, the canine could move bodily. The amount of space closure in GUM spring was 1.5 times that in TMA spring. The initial tipping angle of the canine in the GUM spring was larger than that in the TMA spring. The number of repeating calculations required for the bodily movement in the GUM spring was about two times that in the TMA spring. It was predicted that the speed of space closure in the GUM spring was smaller than that in the TMA spring. Full article
(This article belongs to the Special Issue New Materials and Techniques for Orthodontics)
Show Figures

Figure 1

15 pages, 35396 KiB  
Article
The Influence of Severe Plastic Deformation on Microstructure and In Vitro Biocompatibility of the New Ti-Nb-Zr-Ta-Fe-O Alloy Composition
by Carmela Gurau, Gheorghe Gurau, Valentina Mitran, Alexandru Dan and Anisoara Cimpean
Materials 2020, 13(21), 4853; https://doi.org/10.3390/ma13214853 - 29 Oct 2020
Cited by 15 | Viewed by 2681
Abstract
In this work, severe plastic deformation (SPD) of the newly designed Ti-Nb-Zr-Ta-Fe-O GUM metal was successfully conducted at room temperature using high speed high pressure torsion (HSHPT) followed by cold rolling (CR) to exploit the suitability of the processed alloy for bone staples. [...] Read more.
In this work, severe plastic deformation (SPD) of the newly designed Ti-Nb-Zr-Ta-Fe-O GUM metal was successfully conducted at room temperature using high speed high pressure torsion (HSHPT) followed by cold rolling (CR) to exploit the suitability of the processed alloy for bone staples. The Ti-31.5Nb-3.1Zr-3.1Ta-0.9Fe-0.16O GUM alloy was fabricated in a levitation melting furnace using a cold crucible and argon protective atmosphere. The as-cast specimens were subjected to SPD, specifically HSHPT, and then processed by the CR method to take the advantages of both grain refinement and larger dimensions. This approach creates the opportunity to obtain temporary orthopedic implants nanostructured by SPD. The changes induced by HSHPT technology from the coarse dendrite directly into the ultrafine grained structure were examined by optical microscopy, scanning electron microscopy and X-ray diffraction. The structural investigations showed that by increasing the deformation, a high density of grain boundaries is accumulated, leading gradually to fine grain size. In addition, the in vitro biocompatibility studies were conducted in parallel on the GUM alloy specimens in the as-cast state, and after HSHPT- and HSHPT+CR- processing. For comparative purposes, in vitro behavior of the bone-derived MC3T3-E1 cells on the commercially pure titanium has also been investigated regarding the viability and proliferation, morphology and osteogenic differentiation. The results obtained support the appropriateness of the HSHPT technology for developing compression staples able to ensure a better fixation of bone fragments. Full article
(This article belongs to the Special Issue The Synthesis and Characterization of Biocompatible Materials)
Show Figures

Figure 1

22 pages, 4909 KiB  
Review
Cutting Edge of High-Entropy Alloy Superconductors from the Perspective of Materials Research
by Jiro Kitagawa, Shusuke Hamamoto and Naoki Ishizu
Metals 2020, 10(8), 1078; https://doi.org/10.3390/met10081078 - 10 Aug 2020
Cited by 83 | Viewed by 9295
Abstract
High-entropy alloys (HEAs) are a new class of materials which are being energetically studied around the world. HEAs are characterized by a multicomponent alloy in which five or more elements randomly occupy a crystallographic site. The conventional HEA concept has developed into simple [...] Read more.
High-entropy alloys (HEAs) are a new class of materials which are being energetically studied around the world. HEAs are characterized by a multicomponent alloy in which five or more elements randomly occupy a crystallographic site. The conventional HEA concept has developed into simple crystal structures such as face-centered-cubic (fcc), body-centered-cubic (bcc) and hexagonal-closed packing (hcp) structures. The highly atomic-disordered state produces many superior mechanical or thermal properties. Superconductivity has been one of the topics of focus in the field of HEAs since the discovery of the bcc HEA superconductor in 2014. A characteristic of superconductivity is robustness against atomic disorder or extremely high pressure. The materials research on HEA superconductors has just begun, and there are open possibilities for unexpectedly finding new phenomena. The present review updates the research status of HEA superconductors. We survey bcc and hcp HEA superconductors and discuss the simple material design. The concept of HEA is extended to materials possessing multiple crystallographic sites; thus, we also introduce multisite HEA superconductors with the CsCl-type, α-Mn-type, A15, NaCl-type, σ-phase and layered structures and discuss the materials research on multisite HEA superconductors. Finally, we present the new perspectives of eutectic HEA superconductors and gum metal HEA superconductors. Full article
Show Figures

Figure 1

13 pages, 5711 KiB  
Article
Architectured Cu–TNTZ Bilayered Coatings Showing Bacterial Inactivation under Indoor Light and Controllable Copper Release: Effect of the Microstructure on Copper Diffusion
by Akram Alhussein, Sofiane Achache, Regis Deturche and Sami Rtimi
Coatings 2020, 10(6), 574; https://doi.org/10.3390/coatings10060574 - 19 Jun 2020
Cited by 1 | Viewed by 2888
Abstract
A Ti–23Nb–0.7Ta–2Zr–1.2O alloy (at %), called “gum metal”, was deposited by direct-current magnetron sputtering (DCMS) on an under layer of copper. By varying the working pressure during the deposition, columnar TNTZ (Ti–Nb–Ta–Zr) nanoarchitectures were obtained. At low working pressures, the upper layer was [...] Read more.
A Ti–23Nb–0.7Ta–2Zr–1.2O alloy (at %), called “gum metal”, was deposited by direct-current magnetron sputtering (DCMS) on an under layer of copper. By varying the working pressure during the deposition, columnar TNTZ (Ti–Nb–Ta–Zr) nanoarchitectures were obtained. At low working pressures, the upper layer was dense with a coarse surface (Ra = 12 nm) with a maximum height of 163 nm; however, the other samples prepared at high working pressures showed columnar architectures with voids and an average roughness of 4 nm. The prepared coatings were characterized using atomic force microscopy (AFM) for surface topography, energy dispersive X-ray spectroscopy (EDX) for atomic mapping, scanning electron microscopy (SEM) for cross-section imaging, contact angle measurements for hydrophilic/hydrophobic balance of the prepared surfaces, and X-ray diffraction (XRD) for the crystallographic structures of the prepared coatings. The morphology and the density of the prepared coatings were seen to influence the hydrophilic properties of the surface. The antibacterial activity of the prepared coatings was tested in the dark and under low-intensity indoor light. Bacterial inactivation was seen to happen in the dark from samples presenting columnar nanoarchitectures. This was attributed to the diffusion of copper ions from the under layer. To verify the copper release from the prepared samples, an inductively coupled plasma mass spectrometer (ICP-MS) was used. Additionally, the atomic depth profiling of the elements was carried out by X-ray photoelectron spectroscopy (XPS) for the as-prepared samples and for the samples used for bacterial inactivation. The low amount of copper in the bulk of the TNTZ upper layer justifies its diffusion to the surface. Recycling of the antibacterial activity was also investigated and revealed a stable activity over cycles. Full article
(This article belongs to the Special Issue Advances in Antimicrobial Coatings)
Show Figures

Figure 1

4 pages, 842 KiB  
Proceeding Paper
Development of Strain Localization in a Beta-Titanium Alloy Gum Metal Analyzed by Infrared Camera and Digital Image Correlation for Various Strain Rates
by Elżbieta Pieczyska, Karol Golasiński, Michał Maj, Tadahiko Furuta and Shigeru Kuramoto
Proceedings 2019, 27(1), 51; https://doi.org/10.3390/proceedings2019027051 - 6 Dec 2019
Cited by 1 | Viewed by 1378
Abstract
Effects of thermomechanical couplings were studied in a new beta Ti alloy by IR and DIC techniques. The obtained stress-strain curves confirmed low Young’s modulus and high strength of the alloy. The determined values of yield strength increases and values of elongation till [...] Read more.
Effects of thermomechanical couplings were studied in a new beta Ti alloy by IR and DIC techniques. The obtained stress-strain curves confirmed low Young’s modulus and high strength of the alloy. The determined values of yield strength increases and values of elongation till rupture decreases with increasing strain rate. It was found, by using fast and sensitive infrared camera, that the large limit of the Gum Metal reversible nonlinear deformation originates from mechanisms of dissipative nature, probably exothermic stress-induced transition of nanodomains. Full article
Show Figures

Figure 1

13 pages, 19351 KiB  
Article
Thermomechanical Studies of Yielding and Strain Localization Phenomena of Gum Metal under Tension
by Elżbieta A. Pieczyska, Michał Maj, Karol Golasiński, Maria Staszczak, Tadahiko Furuta and Shigeru Kuramoto
Materials 2018, 11(4), 567; https://doi.org/10.3390/ma11040567 - 7 Apr 2018
Cited by 25 | Viewed by 4970
Abstract
This paper presents results of investigation of multifunctional β-Ti alloy Gum Metal subjected to tension at various strain rates. Digital image correlation was used to determine strain distributions and stress-strain curves, while infrared camera allowed for us to obtain the related temperature characteristics [...] Read more.
This paper presents results of investigation of multifunctional β-Ti alloy Gum Metal subjected to tension at various strain rates. Digital image correlation was used to determine strain distributions and stress-strain curves, while infrared camera allowed for us to obtain the related temperature characteristics of the specimen during deformation. The mechanical curves completed by the temperature changes were applied to analyze the subsequent stages of the alloy loading. Elastic limit, recoverable strain, and development of the strain localization were studied. It was found that the maximal drop in temperature, which corresponds to the yield limit of solid materials, was referred to a significantly lower strain value in the case of Gum Metal in contrast to its large recoverable strain. The temperature increase proves a dissipative character of the process and is related to presence of ω and α″ phases induced during the alloy fabrication and their exothermic phase transformations activated under loading. During plastic deformation, both the strain and temperature distributions demonstrate that strain localization for higher strain rates starts nucleating just after the yield limit leading to specimen necking and rupture. Macroscopically, it is exhibited as softening of the stress-strain curve in contrast to the strain hardening observed at lower strain rates. Full article
Show Figures

Graphical abstract

Back to TopTop