Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = grouting materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5094 KiB  
Article
Dynamic Life Cycle Assessment of Low-Carbon Transition in Asphalt Pavement Maintenance: A Multi-Scale Case Study Under China’s Dual-Carbon Target
by Luyao Zhang, Wei Tian, Bobin Wang and Xiaomin Dai
Sustainability 2025, 17(14), 6540; https://doi.org/10.3390/su17146540 - 17 Jul 2025
Viewed by 389
Abstract
Against the backdrop of China’s “dual-carbon” initiative, this study innovatively applies a process-based life cycle assessment (PLCA) methodology, meticulously tracking energy and carbon flows across material production, transportation, and maintenance processes. By comparing six asphalt pavement maintenance technologies in Xinjiang, the research reveals [...] Read more.
Against the backdrop of China’s “dual-carbon” initiative, this study innovatively applies a process-based life cycle assessment (PLCA) methodology, meticulously tracking energy and carbon flows across material production, transportation, and maintenance processes. By comparing six asphalt pavement maintenance technologies in Xinjiang, the research reveals that milling and resurfacing (MR) exhibits the highest energy consumption 250,809 MJ/103 m2) and carbon emissions (15,095.67 kg CO2/103 m2), while preventive techniques like hot asphalt grouting reduce emissions by up to 87%. The PLCA approach uncovers a critical insight: 40–60% of total emissions originate from the raw material production phase, with cement and asphalt identified as primary contributors. This granular analysis, unique in regional road maintenance research, challenges traditional assumptions and emphasizes the necessity of upstream intervention. By contrasting reactive and preventive strategies, the study validates that early-stage maintenance aligns seamlessly with circular economy principles. Tailored to a local arid climate and vast transportation network, the study concludes that prioritizing preventive maintenance, adopting low-carbon materials, and optimizing logistics can significantly decarbonize road infrastructure. These region-specific strategies, underpinned by the novel application of PLCA, not only provide actionable guidance for local policymakers but also offer a replicable framework for sustainable road development worldwide, bridging the gap between scientific research and practical decarbonization efforts. Full article
Show Figures

Figure 1

26 pages, 7471 KiB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 315
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

21 pages, 5153 KiB  
Article
Macro- and Micro-Analysis of Factors Influencing the Performance of Sustained-Release Foamed Cement Materials
by Yijun Chen, Shengyu Wang, Yu Zhao, Pan Guo, Lei Zhang, Yingchun Cai, Jiandong Wei and Heng Liu
Materials 2025, 18(14), 3330; https://doi.org/10.3390/ma18143330 - 15 Jul 2025
Viewed by 307
Abstract
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic [...] Read more.
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic mechanism analysis, the study systematically investigates the performance modulation mechanisms of controlled-release foamed cement using additives such as heavy calcium powder (0–20%), calcium chloride (0.2–1.2%), latex powder (0.2–1.2%), and polypropylene fiber (0.2–0.8%). The study innovatively employs a titanium silicate coupling agent coating technique (with the coating agent amounting to 25% of the catalyst’s mass) to delay foaming by 40 s. Scanning electron microscopy (SEM) and pore structure analysis reveal the microscopic essence of material performance optimization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 2751 KiB  
Article
Experimental Study on Grouting Visualization of Cover Layer Based on Transparent Soil
by Pengfei Guo and Weiquan Zhao
Appl. Sci. 2025, 15(14), 7854; https://doi.org/10.3390/app15147854 - 14 Jul 2025
Viewed by 205
Abstract
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature [...] Read more.
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature of geotechnical media, the diffusion mechanism of slurry in the cover layers remains insufficiently understood. To investigate this, a visual grouting model device was designed and fabricated, and grouting tests were conducted using transparent soil materials to simulate the cover layers. The slurry diffusion patterns and the velocity field within the transparent soil were analyzed. The results show that, based on refractive-index matching, fused quartz sand of specific gradation and white mineral oil were selected as simulation materials for the cover layers. A stable slurry suitable for transparent grouting was also chosen to satisfy visualization requirements. The transparent soil grouting model, integrated with a Digital Image Correlation (DIC) monitoring system, has the advantages of demonstrating simple operation, real-time monitoring, and high precision. These tests verify the feasibility of visualizing slurry diffusion in cover layers. Furthermore, step-pressure grouting tests preliminarily reveal the dynamic mechanism of slurry diffusion. The results suggest that, in the cover layer, the cover layer in this grouting test is mainly splitting grouting, accompanied by compaction grouting. These methods offer new insights and methods for model testing of cover layer grouting mechanisms. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

32 pages, 5792 KiB  
Article
Special Cement-Based Grouting Material for Subway Structure Repair During Operation Performance Sensitivity Analysis
by Wei Song, Xiaokai Niu, Zhitian Xie, He Wang, Jie Su and Chentao Xu
Buildings 2025, 15(14), 2396; https://doi.org/10.3390/buildings15142396 - 8 Jul 2025
Viewed by 187
Abstract
This study uses ordinary Portland–sulfate–silicate composite cement as the matrix and investigates the effects of water–cement ratio, HPMC dosage, and PCS dosage on the performance of specialized grouting materials for subway structure repair during operation through single-factor experiments and orthogonal experiments. Multifactorial variance [...] Read more.
This study uses ordinary Portland–sulfate–silicate composite cement as the matrix and investigates the effects of water–cement ratio, HPMC dosage, and PCS dosage on the performance of specialized grouting materials for subway structure repair during operation through single-factor experiments and orthogonal experiments. Multifactorial variance analysis was employed to quantitatively evaluate the sensitivity of each factor and their interactions to slurry flowability, setting time, anti-dispersibility, and compressive strength. The results show that the water–cement ratio is the most critical factor affecting the performance of the grouting material, with extremely significant impacts on all performance indicators; HPMC dosage significantly affects flowability, setting time, and anti-dispersibility; PCS dosage primarily influences 2 h compressive strength; the interaction between water–cement ratio and HPMC dosage has a significant impact on anti-dispersibility. Principal component analysis revealed the trade-off relationship between flowability, setting time, and strength. The study established a sensitivity ranking for the performance of specialized grouting materials: water–cement ratio > HPMC dosage > PCS dosage > interaction, providing a theoretical basis and methodological reference for the formulation optimization of specialized grouting materials for subway structure repair during operation. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 2172 KiB  
Article
Engineering Properties and Microscopic Mechanisms of Permeable and Flexible Polymer-Improved Sand
by Yang Zeng, Yongli Xie and Jiaxiang Liu
Polymers 2025, 17(13), 1856; https://doi.org/10.3390/polym17131856 - 2 Jul 2025
Viewed by 287
Abstract
Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, [...] Read more.
Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, flexible polymer (PFP) as the grouting material. The influences of the PFP content, curing time, and dry density on the mechanical and impermeable properties of PFP-improved sand were systematically analyzed via unconfined compressive tests, split tensile tests, and variable head permeability tests. Moreover, the section morphology and pore characteristics of the PFP-improved sand were qualitatively described and quantitatively analyzed by scanning electron microscopy (SEM) and image processing software. The results indicated that the mechanical properties and impermeability of the test sand were significantly improved by adding the PFP, and the improvement effect continued to increase with increasing PFP content, curing time, and dry density. The compressive strength and splitting tensile strength of PFP30 (PFP content of 30%, curing time of 28 d, dry density of 1.5 g/cm3) reached 8.3 MPa and 1.4 MPa, respectively. The permeability coefficient reduced to 5.41 × 10−6 cm/s. The microscopic results revealed that the PFP effectively cemented the isolated sand particles through bridging, filling, and encapsulation as well as substantially filled the internal pores of the test sand. The percentage of the pore area, the total number of pores, and the maximum pore diameter of the test sand were significantly reduced. The pore area percentage, the total number of pores, and the maximum pore diameter of PFP30 were reduced to 0.124, 30, and 213.84 μm, respectively. This study reveals that PFP has potential for application in the grouting construction of poor strata, such as sand layers. Full article
(This article belongs to the Special Issue Polymers Reinforced Civil Engineering Materials and Components)
Show Figures

Figure 1

16 pages, 3633 KiB  
Article
Evaluation of Grouting Effectiveness on Cracks in Cement-Stabilized Macadam Layer Based on Pavement Mechanical Response Using FBG Sensors
by Min Zhang, Hongbin Hu, Cheng Ren, Zekun Shang and Xianyong Ma
Appl. Sci. 2025, 15(13), 7312; https://doi.org/10.3390/app15137312 - 28 Jun 2025
Viewed by 286
Abstract
Cracking in semi-rigid cement-stabilized macadam bases constitutes a prevalent distress in asphalt pavements. While extensive research exists on grouting materials for crack rehabilitation, quantitative assessment methodologies for treatment efficacy remain underdeveloped. This study proposes a novel evaluation framework integrating fiber Bragg grating (FBG) [...] Read more.
Cracking in semi-rigid cement-stabilized macadam bases constitutes a prevalent distress in asphalt pavements. While extensive research exists on grouting materials for crack rehabilitation, quantitative assessment methodologies for treatment efficacy remain underdeveloped. This study proposes a novel evaluation framework integrating fiber Bragg grating (FBG) technology to monitor pavement mechanical responses under traffic loads. Conducted on the South China Expressway project, the methodology encompassed (1) a method for back-calculating the modulus of the asphalt layer based on Hooke’s Law; (2) a sensor layout plan with FBG sensors buried at the top of the pavement base in seven sections; (3) statistical analysis of the asphalt modulus based on the mechanical response when a large number of vehicles passed; and (4) comparative analysis of modulus variations to establish quantitative performance metrics. The results demonstrate that high-strength geopolymer materials significantly enhanced the elastic modulus of the asphalt concrete layer, achieving 34% improvement without a waterproofing agent versus 19% with a waterproofing agent. Polymer-treated sections exhibited a mean elastic modulus of 676.15 MPa, substantially exceeding untreated pavement performance. Low-strength geopolymers showed marginal improvements. The modulus hierarchy was as follows: high-strength geopolymer (without waterproofing agent) > polymer > high-strength geopolymer (with waterproofing agent) > low-strength geopolymer (without waterproofing agent) > low-strength geopolymer (with waterproofing agent) > intact pavement > untreated pavement. These findings demonstrate that a high-strength geopolymer without a waterproofing agent and high-polymer materials constitute optimal grouting materials for this project. The developed methodology provides critical insights for grout material selection, construction process optimization, and post-treatment maintenance strategies, advancing quality control protocols in pavement rehabilitation engineering. Full article
(This article belongs to the Special Issue Recent Advances in Pavement Monitoring)
Show Figures

Figure 1

20 pages, 13285 KiB  
Article
Anchorage Performance of an Innovative Assembled Joint with Large-Diameter Steel Bar Grout Lapping in Concrete Reserved Hole
by Qi Chen, Xiaoyong Luo, Chao Deng, Tai Zhou and Xutong Zheng
Materials 2025, 18(13), 2950; https://doi.org/10.3390/ma18132950 - 22 Jun 2025
Viewed by 313
Abstract
To investigate the anchorage performance of an innovative assembled joint with large-diameter steel bar grout lapping in a concrete reserved hole, the effects of anchorage length and high-strength grouting material types on the failure mode, load–displacement curve, ultimate bond strength and strain variation [...] Read more.
To investigate the anchorage performance of an innovative assembled joint with large-diameter steel bar grout lapping in a concrete reserved hole, the effects of anchorage length and high-strength grouting material types on the failure mode, load–displacement curve, ultimate bond strength and strain variation were analyzed through the pull-out tests of 15 specimens. On this basis, the calculation formulae of critical and ultimate anchorage length were established and the applicability was verified, and then the recommended value of minimum anchorage length was provided. The results showed that the failure modes included splitting-steel bar pull-out failure and UHPC-concrete interface failure. With the increase in anchorage length, the bond strength showed a trend of increasing first and then decreasing. Increasing the grouting material strength can effectively improve the bond performance. When the anchored steel bar is HRB400 with a diameter not less than 20 mm, the recommended minimum anchorage length is 15.0d~18.3d. When the grouting material strength is larger than or equal to 100 MPa, the anchorage length should not be less than 15.0d. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 3461 KiB  
Article
The Plasticization of Alkali-Activated Cement System Na2O-CaO-Al2O3-SiO2-H2O: Problems and Decisions
by Pavlo Kryvenko, Igor Rudenko and Oleksandr Konstantynovskyi
Appl. Sci. 2025, 15(12), 6928; https://doi.org/10.3390/app15126928 - 19 Jun 2025
Viewed by 357
Abstract
The paper is devoted to the plasticization mechanisms of alkali-activated cement system Na2O-CaO-Al2O3-SiO2-H2O. The fundamentals and basic factors determining the effectiveness of plasticizing surfactants for alkali-activated cement materials are discussed. The factors under [...] Read more.
The paper is devoted to the plasticization mechanisms of alkali-activated cement system Na2O-CaO-Al2O3-SiO2-H2O. The fundamentals and basic factors determining the effectiveness of plasticizing surfactants for alkali-activated cement materials are discussed. The factors under consideration in the study were alkali-activated cement basicity (the content of granulated blast furnace slag), the anion of the alkaline component or activator, and the degree of dispersing of the cement particles in the system. The action effect of plasticizers was determined by finding the interrelation between the stability of its molecular structure, degree of adsorption, and molecular weight depending on mentioned basic factors. A systematic approach to the systematization of surfactants and their choice to be taken into consideration to control technology-related and physico-mechanical properties of alkali-activated cement-based heavyweight concretes, building mortars, and lightened grouts has been proposed. Full article
Show Figures

Figure 1

21 pages, 1929 KiB  
Article
Economic Superiority of PIP Slip Joint Compared to Conventional Tubular Joints
by Md Ariful Islam, Sajid Ali, Hongbae Park and Daeyong Lee
Appl. Sci. 2025, 15(12), 6464; https://doi.org/10.3390/app15126464 - 8 Jun 2025
Cited by 1 | Viewed by 567
Abstract
This paper examines the costs associated with installing PIP (Pile-in-Pile) slip joints compared to traditional tubular joints, focusing on investment, installation processes, and long-term benefits. Previous studies have indicated that the structural performance of PIP slip joints is superior to that of traditional [...] Read more.
This paper examines the costs associated with installing PIP (Pile-in-Pile) slip joints compared to traditional tubular joints, focusing on investment, installation processes, and long-term benefits. Previous studies have indicated that the structural performance of PIP slip joints is superior to that of traditional joints. By utilizing the frictional interfaces between conventional structural steel components and the simplest installation methods, PIP slip joints maximize structural integrity and ease of maintenance. As a result, they can lead to lower lifecycle costs, provided they are installed correctly. Quantitatively, the PIP slip joint achieved the highest internal rate of return (IRR) at 43.42%, the lowest Levelized Cost of Energy (LCOE) at 0.013589 EUR/kWh, and the shortest payback period at 2.92 years—outperforming grouted and bolted flange joints across all key financial metrics. The analysis also addresses logistical challenges and workforce requirements, highlighting that significant economic benefits can be realized when implemented appropriately. Furthermore, the PIP slip joint promotes sustainability goals by minimizing material usage, which ultimately leads to reduced carbon emissions through more efficient fabrication and installation, as well as enabling faster deployment. A comprehensive financial assessment of these joint systems in offshore wind monopiles reveals that PIP slip joints are the most cost-effective and financially advantageous option, outperforming key metrics like IRR, LCOE, and payback period due to lower initial investments and operational costs. As PIP slip joints yield a higher net present value (NPV), a shorter payback period, and a lower LCOE, they can enhance profitability and reduce financial risk, and are suitable for streamlined implementation. While grouted and bolted flange joints exhibit similar financial performance, PIP slip joints’ minimal expenditure and consistent superiority make them the optimal choice for sustainable and economically viable offshore wind projects. Full article
Show Figures

Figure 1

20 pages, 6006 KiB  
Article
Development of Grouting Materials from Shield Sludge via Alkaline Hydrothermal Activation: A Resource Utilization Approach
by Lianjun Chen, Meiyue Liu, Penghui Li, Junxiang Wang and Xiaoqiang Cao
Materials 2025, 18(12), 2673; https://doi.org/10.3390/ma18122673 - 6 Jun 2025
Viewed by 413
Abstract
Frequently, the viscous mixture from shield operations is disposed of because its significant water ratio and the presence of polymers like foaming agents result in subpar structural qualities, contributing to the unnecessary consumption of land and the squandering of soil assets. Therefore, these [...] Read more.
Frequently, the viscous mixture from shield operations is disposed of because its significant water ratio and the presence of polymers like foaming agents result in subpar structural qualities, contributing to the unnecessary consumption of land and the squandering of soil assets. Therefore, these problems urgently need to be solved economically and effectively. This study relies on the shield sludge produced by Qingdao Metro Line 6 project, and sand and shield sludge were used as the raw materials for synchronous grouting. By applying the basic principles of geopolymerization, ingredients like shield sludge and ground granulated blast furnace slag (GGBS) were mixed with sodium hydroxide, serving as the activating agent, in the preparation of the simultaneous grout formulas. A broad range of laboratory tests was conducted to evaluate the performance of these grout formulations. The effects of varying material ratios on key performance indicators—namely, fluidity, water secretion rate, setting time, and 3-day unconfined compressive strength (UCS)—were systematically analyzed. Based on these findings, the optimal material ratios for shield sludge-based synchronous grouting materials were proposed. Subsequently, component geopolymer was prepared from the activated shield sludge and shield sludge without adding any additional alkaline activators by simply adding water. A geopolymer with a 28-day compressive strength of 51.08 MPa was obtained when the shield sludge dosing was 60 wt%. This study aims to provide a reference for the preparation of synchronous grouting materials for the resource utilization of shield sludge. Full article
Show Figures

Graphical abstract

17 pages, 21516 KiB  
Article
Study on the Fire Prevention and Extinguishing Performance of Ammonium Polyphosphate-Reinforced Coal Cangue Slurry for Goaf Grouting and Filling
by Rui Wu, Xiangyu Liu, Shi Wang, Xuepeng Song, Haigen Yu and Zhiguo Guo
Fire 2025, 8(6), 213; https://doi.org/10.3390/fire8060213 - 26 May 2025
Viewed by 595
Abstract
To investigate the fire prevention and suppression characteristics of coal gangue slurry grouting in goafs and the enhanced regulatory mechanisms of additives, the slurry-forming performance of coal gangue slurry was tested. The effects of heating temperature, grouting thickness, and heating duration on the [...] Read more.
To investigate the fire prevention and suppression characteristics of coal gangue slurry grouting in goafs and the enhanced regulatory mechanisms of additives, the slurry-forming performance of coal gangue slurry was tested. The effects of heating temperature, grouting thickness, and heating duration on the surface temperature distribution characteristics were analyzed. Temperature-programmed experiments were conducted to examine the influence of various additives on the spontaneous combustion propensity of coal gangue, with a comparative analysis of the inhibitory effects between ammonium polyphosphate (APP) and other additives. The results demonstrate that the prepared coal gangue slurry exhibited no segregation or sedimentation, with a plasticity index consistent with standard grouting material requirements, confirming its superior stability. The central, maximum, and minimum surface temperatures of the slurry showed polynomial functional relationships with heating temperature. Surface temperature initially increased and then decreased with grouting thickness, with 10 cm identified as the critical thickness for temperature transition. Overall, the central, maximum, and minimum surface temperatures increased progressively with rising heating temperatures. In addition, under all tested conditions, the average surface temperature remained below 80 °C for slurries with >5 cm grouting thickness, meeting fire prevention requirements. However, the CO and CO2 concentrations increased significantly as heating temperatures rose from 100 °C to 300 °C. At grouting thicknesses of 9–12 cm, CO and CO2 emissions occurred only at 300 °C and decreased with increasing thickness. The coal gangue slurry modified with ammonium polyphosphate (APP) additives exhibited optimal antioxidant performance, significantly suppressing CO and CO2 emissions, which further diminished with higher additive dosages. The findings of this study provide critical insights into the fire prevention performance of coal gangue slurry grouting and the application of additives in this field. Full article
Show Figures

Figure 1

16 pages, 4296 KiB  
Article
Numerical Analysis of Slurry–Crack Coupling in Grouting Repair Process of Multiple Cracks in Concrete Material
by Xiaochen Wang, Wei Li, Mingxiang Shen and Hongtao Wang
Materials 2025, 18(11), 2472; https://doi.org/10.3390/ma18112472 - 24 May 2025
Viewed by 536
Abstract
The interaction between slurry and concrete cracks influences the grouting diffusion process during the grouting repair engineering of cracked concrete material. Compared to a single-cracked concrete material, the slurry–concrete crack interaction mechanism of a multi-cracked concrete material is more complicated. This study employs [...] Read more.
The interaction between slurry and concrete cracks influences the grouting diffusion process during the grouting repair engineering of cracked concrete material. Compared to a single-cracked concrete material, the slurry–concrete crack interaction mechanism of a multi-cracked concrete material is more complicated. This study employs the Monte Carlo method to generate a crack group with a certain probability distribution for characterizing the random cracks in the concrete material. The cracked concrete material is simplified as a pore–crack medium model, and the continuity equation of the slurry in the model is derived. Furthermore, based on the modified interface layer theory, the coupling effect of the slurry–concrete crack is elucidated, and the variation law of each crack opening in the concrete material under different grouting pressures is examined. When the slurry diffuses in a multi-cracked concrete material, the crack opening changes mainly stem from the crack distribution position and crack tendency. Under the same grouting pressure, four main forms of changes occur in the crack opening: gradual increase along the crack distribution, slow decrease, first increasing and then decreasing, and, basically, unchanged. When the grouting pressure increases, crack groups with the same distribution form have similar crack opening change rules, but the change range varies. Under the same grouting pressure, as the number of cracks in the concrete material increases, the coupling effect of the concrete material becomes increasingly obvious. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

22 pages, 5676 KiB  
Article
Research on Rheological Behavior and Strength Characteristics of Cement-Based Grouting Materials
by Xuewei Liu, Hao Qu, Bin Liu, Yuan Zhou, Jinlan Li, Wei Deng and Weilong Tao
Buildings 2025, 15(11), 1796; https://doi.org/10.3390/buildings15111796 - 23 May 2025
Viewed by 385
Abstract
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical [...] Read more.
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical characteristics of a composite cement-based grouting material (HGC), ordinary Portland cement (OPC), and sulfated aluminum cement (SAC) slurry and their cured grouts. The HGC (High-performance Grouting Composite) slurry is formulated with 15.75% sulfated aluminum cement (SAC), 54.25% ordinary Portland cement (OPC), 10% fly ash, and 20% mineral powder, achieving a water/cement ratio of 0.26. The results indicate that HGC slurry more closely follows power-law flow characteristics, while OPC and SAC slurries fit better with the Bingham model. The structural recovery time for HGC slurry after high-strain disturbances is 52 s, significantly lower than the 312 s for OPC and 121 s for SAC, indicating that HGC can quickly produce hydration products that re-bond the flocculated structure. NMR T2 spectra show that HGC cured grouts have the lowest porosity, predominantly featuring inter-nanopores, whereas OPC and SAC have more super-nanopores. Uniaxial compression tests show that the uniaxial compressive strength of HGC, SAC, and OPC samples at various curing ages gradually decreases. Compared to traditional cementitious materials, HGC exhibits a rapid increase in uniaxial compressive strength within the first seven days, with an increase rate of approximately 77.97%. Finally, the relationship between micropore distribution and strength is analyzed, and the micro-mechanisms underlying the strength differences of different grouting materials are discussed. This study aids in developing a comparative analysis system of mechanical properties for deep surrounding rock grouting materials, providing a reference for selecting grouting materials for various engineering fractured rock masses. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

20 pages, 4783 KiB  
Article
Prediction of the Ultimate Impact Response of Concrete Strengthened with Polyurethane Grout as the Repair Material
by Sadi I. Haruna, Yasser E. Ibrahim and Sani I. Abba
Infrastructures 2025, 10(6), 128; https://doi.org/10.3390/infrastructures10060128 - 23 May 2025
Viewed by 458
Abstract
The monolithic composite action of structures relies on the interface bond strength between concrete and the repair material. This study uses explainable deep learning techniques to evaluate the ultimate strength capacity (Us) of U-shaped normal concrete (NC) strengthened with polyurethane grouting [...] Read more.
The monolithic composite action of structures relies on the interface bond strength between concrete and the repair material. This study uses explainable deep learning techniques to evaluate the ultimate strength capacity (Us) of U-shaped normal concrete (NC) strengthened with polyurethane grouting (PUG) materials. Machine learning algorithms (ML) such as Long Short-Term Memory (LSTM), Random Forest (RF), and Wide Neural Network (WNN) models were developed to estimate Us by considering five input parameters: the initial crack strength (Cs), thickness of the grouting materials (T), mid-span deflection (λ), and peak applied load (P). The results indicated that LSTM models, particularly LSTM-M2 and LSTM-M3, demonstrated superior predictive accuracy and consistency in both the calibration and verification phases, as evidenced by high Pearson’s correlation coefficients (PCC = 0.9156 for LSTM-M2) and Willmott indices (WI = 0.7713 for LSTM-M2), and low error metrics (MSE = 0.0017, RMSE = 0.0418). The SHAP (SHapley Additive exPlanations) analysis showed that the thickness of the grouting materials and maximum load were the most significant parameters affecting the ultimate capacity of the composite U-shaped specimen. The RF model showed moderate improvements, with RF-M3 performing better than RF-M1 and RF-M2. The WNN models displayed varied performance, with WNN-M2 performing poorly due to significant scatter and deviation. The findings highlight the potential of LSTM models for the accurate and reliable prediction of the ultimate strength of composite U-shaped specimens. Full article
Show Figures

Figure 1

Back to TopTop