Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = grouted sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2751 KiB  
Article
Experimental Study on Grouting Visualization of Cover Layer Based on Transparent Soil
by Pengfei Guo and Weiquan Zhao
Appl. Sci. 2025, 15(14), 7854; https://doi.org/10.3390/app15147854 - 14 Jul 2025
Viewed by 209
Abstract
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature [...] Read more.
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature of geotechnical media, the diffusion mechanism of slurry in the cover layers remains insufficiently understood. To investigate this, a visual grouting model device was designed and fabricated, and grouting tests were conducted using transparent soil materials to simulate the cover layers. The slurry diffusion patterns and the velocity field within the transparent soil were analyzed. The results show that, based on refractive-index matching, fused quartz sand of specific gradation and white mineral oil were selected as simulation materials for the cover layers. A stable slurry suitable for transparent grouting was also chosen to satisfy visualization requirements. The transparent soil grouting model, integrated with a Digital Image Correlation (DIC) monitoring system, has the advantages of demonstrating simple operation, real-time monitoring, and high precision. These tests verify the feasibility of visualizing slurry diffusion in cover layers. Furthermore, step-pressure grouting tests preliminarily reveal the dynamic mechanism of slurry diffusion. The results suggest that, in the cover layer, the cover layer in this grouting test is mainly splitting grouting, accompanied by compaction grouting. These methods offer new insights and methods for model testing of cover layer grouting mechanisms. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 2172 KiB  
Article
Engineering Properties and Microscopic Mechanisms of Permeable and Flexible Polymer-Improved Sand
by Yang Zeng, Yongli Xie and Jiaxiang Liu
Polymers 2025, 17(13), 1856; https://doi.org/10.3390/polym17131856 - 2 Jul 2025
Viewed by 289
Abstract
Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, [...] Read more.
Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, flexible polymer (PFP) as the grouting material. The influences of the PFP content, curing time, and dry density on the mechanical and impermeable properties of PFP-improved sand were systematically analyzed via unconfined compressive tests, split tensile tests, and variable head permeability tests. Moreover, the section morphology and pore characteristics of the PFP-improved sand were qualitatively described and quantitatively analyzed by scanning electron microscopy (SEM) and image processing software. The results indicated that the mechanical properties and impermeability of the test sand were significantly improved by adding the PFP, and the improvement effect continued to increase with increasing PFP content, curing time, and dry density. The compressive strength and splitting tensile strength of PFP30 (PFP content of 30%, curing time of 28 d, dry density of 1.5 g/cm3) reached 8.3 MPa and 1.4 MPa, respectively. The permeability coefficient reduced to 5.41 × 10−6 cm/s. The microscopic results revealed that the PFP effectively cemented the isolated sand particles through bridging, filling, and encapsulation as well as substantially filled the internal pores of the test sand. The percentage of the pore area, the total number of pores, and the maximum pore diameter of the test sand were significantly reduced. The pore area percentage, the total number of pores, and the maximum pore diameter of PFP30 were reduced to 0.124, 30, and 213.84 μm, respectively. This study reveals that PFP has potential for application in the grouting construction of poor strata, such as sand layers. Full article
(This article belongs to the Special Issue Polymers Reinforced Civil Engineering Materials and Components)
Show Figures

Figure 1

24 pages, 5864 KiB  
Article
Deformation Characteristics and Base Stability of a Circular Deep Foundation Pit with High-Pressure Jet Grouting Reinforcement
by Xiaoliang Zhu, Wenqing Zhao, Junchen Zhao, Guoliang Dai, Ruizhe Jin, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(12), 6825; https://doi.org/10.3390/app15126825 - 17 Jun 2025
Cited by 1 | Viewed by 465
Abstract
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses [...] Read more.
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses layered and partitioned top-down excavation combined with lining construction. Through field monitoring (deep horizontal displacement of the diaphragm wall, vertical displacement at the wall top, and earth pressure) and numerical simulations (PLAXIS Strength Reduction Method), we systematically analyzed the deformation evolution and failure mechanisms during construction. The results indicate the following: (1) Under the synergistic effect of the circular diaphragm wall, lining, and pit bottom reinforcement, the maximum horizontal displacement at the wall top was less than 30 mm and the vertical displacement was 0.04%H, both significantly below code-specified thresholds, verifying the effectiveness of the support system and pit bottom reinforcement. (2) Earth pressure exhibited a “decrease-then-increase” trend during the excavation proceeds. High-pressure jet grouting pile reinforcement at the pit base significantly enhanced basal constraints, leading to earth pressure below the Rankine active limit during intermediate stages and converging toward theoretical values as deformation progressed. (3) Without reinforcement, hydraulic uplift failure manifested as sand layer suspension and soil shear. After reinforcement, failure modes shifted to basal uplift and wall-external soil sliding, demonstrating that high-pressure jet grouting pile reinforcement had positive contribution basal heave stability by improving soil shear strength. (4) Improved stability verification methods for anti-heave and anti-hydraulic-uplift were proposed, incorporating soil shear strength contributions to overcome the underestimation of reinforcement effects in traditional pressure equilibrium and Terzaghi bearing capacity models. This study provides theoretical and practical references for similar deep foundation pit projects and offers systematic solutions for the safety design and deformation characteristics of circular diaphragm walls with pit bottom reinforcement. Full article
Show Figures

Figure 1

20 pages, 6006 KiB  
Article
Development of Grouting Materials from Shield Sludge via Alkaline Hydrothermal Activation: A Resource Utilization Approach
by Lianjun Chen, Meiyue Liu, Penghui Li, Junxiang Wang and Xiaoqiang Cao
Materials 2025, 18(12), 2673; https://doi.org/10.3390/ma18122673 - 6 Jun 2025
Viewed by 421
Abstract
Frequently, the viscous mixture from shield operations is disposed of because its significant water ratio and the presence of polymers like foaming agents result in subpar structural qualities, contributing to the unnecessary consumption of land and the squandering of soil assets. Therefore, these [...] Read more.
Frequently, the viscous mixture from shield operations is disposed of because its significant water ratio and the presence of polymers like foaming agents result in subpar structural qualities, contributing to the unnecessary consumption of land and the squandering of soil assets. Therefore, these problems urgently need to be solved economically and effectively. This study relies on the shield sludge produced by Qingdao Metro Line 6 project, and sand and shield sludge were used as the raw materials for synchronous grouting. By applying the basic principles of geopolymerization, ingredients like shield sludge and ground granulated blast furnace slag (GGBS) were mixed with sodium hydroxide, serving as the activating agent, in the preparation of the simultaneous grout formulas. A broad range of laboratory tests was conducted to evaluate the performance of these grout formulations. The effects of varying material ratios on key performance indicators—namely, fluidity, water secretion rate, setting time, and 3-day unconfined compressive strength (UCS)—were systematically analyzed. Based on these findings, the optimal material ratios for shield sludge-based synchronous grouting materials were proposed. Subsequently, component geopolymer was prepared from the activated shield sludge and shield sludge without adding any additional alkaline activators by simply adding water. A geopolymer with a 28-day compressive strength of 51.08 MPa was obtained when the shield sludge dosing was 60 wt%. This study aims to provide a reference for the preparation of synchronous grouting materials for the resource utilization of shield sludge. Full article
Show Figures

Graphical abstract

17 pages, 1665 KiB  
Article
Evolution Mechanism of Filtration Characteristics of Cement Grouting Materials in Sandy Medium
by Xiao Feng, Shilei Zhang, Zhenzhong Shi, Qingsong Zhang, Meiling Li, Wenda Yang, Wen Sun and Benao Hou
Materials 2025, 18(10), 2385; https://doi.org/10.3390/ma18102385 - 20 May 2025
Viewed by 402
Abstract
The seepage diffusion of cement grouting materials into a sandy medium is influenced by the skeleton’s adsorption and the pore channels’ tortuosity, resulting in heterogeneous retention of cement particles during migration. This study established a theoretical model for the filtration coefficient based on [...] Read more.
The seepage diffusion of cement grouting materials into a sandy medium is influenced by the skeleton’s adsorption and the pore channels’ tortuosity, resulting in heterogeneous retention of cement particles during migration. This study established a theoretical model for the filtration coefficient based on the mass balance equation and linear filtration law. Grouting tests were conducted to determine the density of the cement slurry at various diffusion positions, and the filtration coefficient was calculated using the theoretical model. Results indicate that the filtration coefficient varies dynamically along the diffusion distance rather than remaining constant. The surface filtration range of Grade 42.5 Portland Cement slurry in sample S1 is approximately 30 cm, with a final diffusion distance of 190 cm. In contrast, the surface filtration ranges for the 800 mesh superfine cement in S2 and the 1250 mesh superfine cement in S3 are less than 10 cm, resulting in final diffusion distances of 69 cm and 87 cm, respectively. This demonstrates that a longer surface filtration range in the sand sample corresponds to a farther final diffusion distance of the slurry. Additionally, a larger ratio of sand pore diameter to cement particle size results in a smaller filtration coefficient and a greater slurry diffusion distance. Under a constant water–cement ratio, smaller cement particle sizes are associated with decreased slurry fluidity, which reduces the diffusion of cement slurry within the sandy medium. The research findings provide valuable insights for designing borehole spacing in grouting treatment for sandy media. Full article
Show Figures

Figure 1

21 pages, 4111 KiB  
Article
The Optimization Study of Karst-Filling Clay-Cement Grout Based on Orthogonal Experiment and Regression Analysis
by Wenqin Yan, Chao Deng, Yuehui Cai, Aikun Chu, Shifan Shen and Xuanyu Wu
Materials 2025, 18(9), 1943; https://doi.org/10.3390/ma18091943 - 24 Apr 2025
Viewed by 361
Abstract
During shield tunnel construction, karst development along the tunnel axis and in the surrounding area frequently poses a significant threat to engineering safety. To address this challenge, this study proposes multiple grouting systems and systematically analyzes the key mechanical properties of five grout [...] Read more.
During shield tunnel construction, karst development along the tunnel axis and in the surrounding area frequently poses a significant threat to engineering safety. To address this challenge, this study proposes multiple grouting systems and systematically analyzes the key mechanical properties of five grout formulations through orthogonal experiments, identifying the optimal formulations for engineering applications. A predictive model was established using linear regression, and its accuracy was validated through independent single-factor experiments. The results indicate the following: (1) Water content is the primary factor influencing fluidity, with its significance varying by system composition. The lake mud-cement grout exhibits the highest compressive pstrength. Moderate sand addition enhances strength, but excessive amounts significantly reduce fluidity. Additives demonstrate system dependency: HY-4 effectively improves fluidity, while sodium silicate significantly increases strength but reduces fluidity. (2) The developed model demonstrates good goodness of fit, with coefficients of determination (R2) ranging from 0.74 to 0.95, without significant autocorrelation or multicollinearity. Validation experiments confirm the model’s high predictive accuracy, with overall trends consistent with the measured data. (3) The lake mud-cement grout (A3B1C3) is recommended for reinforcement projects prioritizing stability, achieving a 28-day compressive strength of 4.74 MPa. The on-site wet clay-cement grout (A2B3C1) is suitable for high-permeability formations, with a strength of 1.1 MPa and a fluidity of 292.5 mm, both exceeding standard requirements. The findings provide optimized formulations and theoretical references for grouting reinforcement in karst tunnel projects. Full article
Show Figures

Figure 1

22 pages, 12922 KiB  
Article
Theoretical Approach for Micro-Settlement Control in Super-Large Cross-Section Tunnels Under Sensitive Environments
by Zhongsheng Tan, Zhengquan Ding, Zhenliang Zhou and Zhanxian Li
Appl. Sci. 2025, 15(8), 4375; https://doi.org/10.3390/app15084375 - 15 Apr 2025
Viewed by 450
Abstract
The rapid development of urban transportation renovation and transportation networks in China has driven the construction of an increasing number of large-span, large cross-section tunnels under sensitive environments, such as airport runways, critical infrastructure, and high-speed railways. These projects often require strict settlement [...] Read more.
The rapid development of urban transportation renovation and transportation networks in China has driven the construction of an increasing number of large-span, large cross-section tunnels under sensitive environments, such as airport runways, critical infrastructure, and high-speed railways. These projects often require strict settlement control within a millimeter-level tolerance range, thus theoretical methods and key technologies for micro-settlement control have been developed. This study first derives a calculation formula for surface settlement associated with large cross-section tunnels and elucidates its correlations with factors such as pipe-roof stiffness, support system stiffness, pipe-roof construction procedures, and groundwater level changes. Theoretical approaches for controlling micro-settlement are introduced, including increasing pipe-roof stiffness, reinforcing the support system, mitigating group pipe effects, maintaining pressure and reducing resistance around the pipe, and controlling groundwater levels. A method is proposed for determining the appropriate stiffness of the pipe roof and support system. The stiffness should be selected from the transition segment between the steep decline and the gentle slope on the stiffness-settlement curves of the pipe roof and the support system. If the stiffness of the pipe roof and primary support combined with temporary support fails to meet the micro-settlement control requirements, an integrated support system with greater stiffness can be adopted. A reasonable pressure-regulating grouting technique for maintaining pressure and reducing resistance around the pipe is proposed. It is recommended that the spacing for simultaneous jacking of pipes be greater than half the width of the settlement trough. For over-consolidation-sensitive strata such as medium or coarse sands, water-blocking measures, including freezing, grouting, or a combination of both, are recommended. For over-consolidation-insensitive strata like gravels and cobbles with strong permeability, water-blocking treatments are generally unnecessary. The proposed theoretical approaches have been successfully implemented in projects such as the tunnel beneath Beijing Capital Airport runways and Taiyuan Railway Station, demonstrating their reliability. The research findings provide valuable insights into surface micro-settlement control for similar projects. Full article
Show Figures

Figure 1

15 pages, 16494 KiB  
Article
Experimental Analysis of the Slurry Diffusion Behavior Characteristics of Point Source Grouting and Perforated Pipe Grouting in Sandy Soil
by Liuxi Li, Chao Deng, Yuan Chen, Zhichao Xu, Wenqin Yan and Yi Zhou
Buildings 2025, 15(7), 1133; https://doi.org/10.3390/buildings15071133 - 31 Mar 2025
Viewed by 386
Abstract
Grouting technology is widely used in foundation treatment to achieve the uplifting and correction of buildings. In this context, analyzing the slurry diffusion mechanism and the resulting behavioral characteristics is crucial for guiding precise engineering design practices. This study utilized an independently developed [...] Read more.
Grouting technology is widely used in foundation treatment to achieve the uplifting and correction of buildings. In this context, analyzing the slurry diffusion mechanism and the resulting behavioral characteristics is crucial for guiding precise engineering design practices. This study utilized an independently developed grouting model testing system to conduct grouting experiments on sandy soil employing diverse grouting methodologies and infiltration diffusion patterns. The objectives were to elucidate the characteristics of grouting pressure, lifting displacement, and stress variations within the sandy soil. The findings indicate that slurry diffusion in sandy soil typically progresses through three distinct stages, exhibiting a cyclic pattern of “compaction–splitting–compaction”. We observed that the slurry diffusion pattern closely aligns with the trend of uplift displacement changes. Furthermore, a general downward trend was observed in the stress attenuation of sand during the grouting process. Marked disparities exist in the slurry diffusion mechanism and stress characteristics between point source and perforated pipe grouting. These research outcomes contribute significantly to advancing the theoretical understanding and experimental design of grouting techniques in sandy soil. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

18 pages, 5670 KiB  
Article
Optimization of Water Plugging Characteristics and Mechanical Properties of Acrylate Grouting Materials Based on Composite Crosslinking Strategy
by Fengxian Yu, Langtian Qin, Deqiang Han and Feng Huang
Polymers 2025, 17(6), 827; https://doi.org/10.3390/polym17060827 - 20 Mar 2025
Viewed by 441
Abstract
Traditional acrylate grouting materials often suffer from mechanical performance degradation and interfacial bonding failure under long-term water immersion, significantly limiting their application in pressurized water environments. This study proposes a composite crosslinking synergistic strategy to address these challenges. By constructing a dual-network structure [...] Read more.
Traditional acrylate grouting materials often suffer from mechanical performance degradation and interfacial bonding failure under long-term water immersion, significantly limiting their application in pressurized water environments. This study proposes a composite crosslinking synergistic strategy to address these challenges. By constructing a dual-network structure through polyethylene glycol diacrylate (PEG500DA) and a monofunctional crosslinker (PEG-MA), and systematically optimizing the material formulation by regulating the triethanolamine content to control gelation time, the mechanical and hydraulic stability of the material was significantly enhanced. Increasing the acrylate concentration to 35% achieved an optimal balance between a slurry viscosity (8.3 mPa·s) and mechanical performance, with tensile strength reaching 76 kPa and the compressive strength of the sand-solidified body measuring 440 kPa. At a PEG500DA/PEG-MA ratio of 2:3, the material exhibited both high tensile strength (78 kPa) and exceptional ductility (elongation at break > 407%), with a compressive strength of 336 kPa for the sand-solidified body. When the total crosslinker content exceeded 5%, the 28-day water absorption and volume expansion rates were effectively reduced to 12% and 11%, respectively. Under simulated pressurized water conditions, the modified material demonstrated a water-pressure resistance of 300 kPa after 1 day, stabilizing at 350 kPa after 56 days—a 75% improvement over commercial products. This study provides an innovative solution for long-term anti-seepage applications in complex hydrogeological environments, offering significant advancements in material design and engineering reliability. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 5841 KiB  
Article
Comparative Analysis of Soft Clay Improvement Using Ordinary and Grouted Sand Columns with Geosynthetic Reinforcement
by Mohammed Y. Fattah, Muthanna A. Al-Khafaji, Makki K. Mohsen and Mohamed Hafez
Infrastructures 2025, 10(3), 62; https://doi.org/10.3390/infrastructures10030062 - 13 Mar 2025
Viewed by 811
Abstract
Soft clay soil is known for its high compressibility and low bearing capacity, making it one of the most challenging soil types. Sand columns and sand layers reinforced with geosynthetics are effective techniques to enhance the performance of foundations built on soft clay. [...] Read more.
Soft clay soil is known for its high compressibility and low bearing capacity, making it one of the most challenging soil types. Sand columns and sand layers reinforced with geosynthetics are effective techniques to enhance the performance of foundations built on soft clay. Stone or sand columns improve load-bearing capacity by utilizing the natural lateral confinement of the soil. However, in very soft soil, a significant design challenge arises due to bulging in the stone columns, as the surrounding soil may not provide adequate confinement to support the required load capacity. This issue has been addressed by grouting the columns, resulting in highly stable and solid structures. Additionally, the grouting pressure enhances frictional resistance and fills any voids within the soil, contributing to increased overall stability. In the current study, soil improvement methods using ordinary sand columns and grouted sand columns were investigated and then compared with adding sand layers with geogrid reinforcement. The study demonstrated that grouted sand columns improved the bearing capacity by 90% over untreated clay. With geogrid reinforcement, sand columns achieved a 180% increase, while grouted columns with geogrid reinforcement reached a 260% improvement. Increasing the thickness of reinforced sand (H/B = 1.5) further raised capacity improvements to 300% for ungrouted and 420% for grouted columns. Full article
Show Figures

Figure 1

17 pages, 7699 KiB  
Article
Effect of Different Static Load Test Methods on the Performance of Combined Post-Grouted Piles: A Case Study in the Dongting Lake Area
by Yu Du, Kai Qi, Run-Ze Zhang, Feng Zhou and Zhi-Hui Wan
Buildings 2025, 15(2), 179; https://doi.org/10.3390/buildings15020179 - 9 Jan 2025
Cited by 1 | Viewed by 1019
Abstract
To investigate the effect of combined end-and-shaft post-grouting on the vertical load-bearing performance of bridge-bored piles in the Dongting Lake area of Hunan, two post-grouted piles were subjected to bi-directional O-cell and top-down load tests before and after combined end-and-shaft grouting, based on [...] Read more.
To investigate the effect of combined end-and-shaft post-grouting on the vertical load-bearing performance of bridge-bored piles in the Dongting Lake area of Hunan, two post-grouted piles were subjected to bi-directional O-cell and top-down load tests before and after combined end-and-shaft grouting, based on the Wushi to Yiyang Expressway project. A comparative analysis was conducted on the bearing capacity, deformation characteristics, and load transfer behavior of the piles before and after grouting. This study also examined the conversion coefficient γ values of different soil layers obtained from the bi-directional O-cell test for bearing capacity calculations. Additionally, the characteristic values of the end bearing capacity, obtained from the bi-directional O-cell and top-down load tests, were compared with the values calculated using the relevant formulas in the current standards, which validated the accuracy of existing regulations and traditional loading methods. The results indicate that the stress distribution along the pile shaft differed between the two test methods. In the bi-directional O-cell test, the side resistance developed from the end to the head, while in the top-down load test, it developed from the head to the end. After combined post-grouting, the ultimate bearing capacity of the piles significantly increased, with side resistance increasing by up to 81.03% and end resistance by up to 105.66%. The conversion coefficients for the side resistance in silty sand and gravel before and after grouting are 0.86 and 0.80 and 0.81 and 0.69, respectively. The characteristic values of the end bearing capacity, as measured by the bi-directional O-cell and top-down load tests, were substantially higher than those calculated using the current highway bridge and culvert standards, showing increases of 133.63% and 86.15%, respectively. These findings suggest that the current standard formulas are overly conservative. Additionally, the measured values from the top-down load test may underestimate the actual bearing capacity of piles in engineering projects. Therefore, it is recommended that future pile foundation designs incorporate both bi-directional O-cell testing and combined post-grouting techniques to optimize design solutions. Full article
Show Figures

Figure 1

22 pages, 4783 KiB  
Article
Enhancement of Air-Entrained Grout-Enriched Vibrated Cemented Sand, Gravel and Rock (GECSGR) for Improving Frost and Thawing Resistance in CSGR Dams
by Wambley Adomako Baah, Jinsheng Jia, Cuiying Zheng, Baozhen Jia, Yue Wang and Yangfeng Wu
Materials 2025, 18(1), 155; https://doi.org/10.3390/ma18010155 - 2 Jan 2025
Viewed by 829
Abstract
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due [...] Read more.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative. Despite its potential, GECSGR has limited use due to concerns about freeze–thaw resistance. This project addresses these concerns by developing an air-entrained GECSGR grout formulation and construction technique. The study follows a five-phase approach: mix proportioning of C1806 CSGR; optimization of the grout formulation; determination of grout addition rate; evaluation of small-scale lab samples of GECSGR; and field application. The results indicate that combining 8–12% of 223 kg/m3 cement grout with 2–2.23 kg/m3 of admixtures, mud content of 15%, a marsh time of 26–31 s. and a water/cement ratio of 0.5–0.6 with the C1806 parent CSGR mixture achieved a post-vibration in situ air content of 4–6%, excellent freeze–thaw resistance (F300: mass loss <5% or initial dynamic modulus ≥60%), and permeability resistance (W12: permeability coefficient of 0.13 × 10−10 m/s). The development of a 2-in-1 slurry addition and vibration equipment eliminated performance risks and enhanced efficiency in field applications, such as the conversion of the C1804 CSGR mixture into air-entrained GECSGR grade C9015W6F50 for the 2.76 km Qianwei protection dam. Economic analysis revealed that the unit cost of GECSGR production is 18.3% and 6.33% less than CVC and GERCC, respectively, marking a significant advancement in sustainable cement-based composite materials in the dam industry. Full article
Show Figures

Figure 1

30 pages, 17875 KiB  
Article
Design and Performance Evaluation of a Cementitious Repair Grouting Mortar for Cement Pavement Slab Cavity
by Sibo Huang, Chong Li and Zejie Zhang
Buildings 2024, 14(12), 4083; https://doi.org/10.3390/buildings14124083 - 23 Dec 2024
Viewed by 1048
Abstract
To address the severe damage caused by voids beneath cement concrete pavement slabs, which compromise pavement performance and lifespan, there is an urgent need to develop an economical and efficient grouting material for slab void repair. This study employed a two-step orthogonal experiment [...] Read more.
To address the severe damage caused by voids beneath cement concrete pavement slabs, which compromise pavement performance and lifespan, there is an urgent need to develop an economical and efficient grouting material for slab void repair. This study employed a two-step orthogonal experiment design (OED) method to optimize the composition of grouting material. Results show that the plain cement mortar achieves the best flowability, setting time, compressive strength, or flexural strength when the water-to-binder ratio is 0.375, with 20% quartz sand, 2% coal ash, and 5% ground calcium carbonate. For the high-performance cement mortar developed, the optimal water-to-binder ratio is 0.35, with 0.5% redispersible latex powder, 0.2% polypropylene fiber, 0.6% water-reducing agent, 0.8% early-strength agent, and 2.0% expansion agent. Under these optimal conditions, the grouting material with a flowability of 15 s has a compressive strength and flexural strength of 76.98 MPa and 11.89 MPa, respectively, and achieves 77.4% of its 28-day compressive strength and 94.0% of its 28-day flexural strength by day 3. This grouting material also possesses a slight expansion within 0.1% at 3, 7, and 28 days, categorizing it as a micro-expansion mortar. The bond strength at the mortar-concrete interface exceeds the tensile strength of the mortar itself, ensuring no debonding at the interface before grouting material failure. The XRD, SEM, and infrared spectra results explain the early strength development mechanism of this cement mortar. Full article
(This article belongs to the Special Issue Research on Advanced Materials in Road Engineering)
Show Figures

Figure 1

18 pages, 6076 KiB  
Article
Durability of Two-Component Grout in Tunneling Applications: A Laboratory Test Campaign
by Carmine Todaro, Andrea Carigi and Daniele Peila
Geosciences 2024, 14(11), 302; https://doi.org/10.3390/geosciences14110302 - 10 Nov 2024
Cited by 1 | Viewed by 1211
Abstract
Today, two-component grout is the most widely used backfilling technology in shielded mechanized tunneling. Despite its intensive use, however, very scant information pertaining to the durability of this material is available in the scientific literature. In this work, the aging of two-component grout [...] Read more.
Today, two-component grout is the most widely used backfilling technology in shielded mechanized tunneling. Despite its intensive use, however, very scant information pertaining to the durability of this material is available in the scientific literature. In this work, the aging of two-component grout is studied by curing grout samples using three different modalities. Furthermore, the action of air on two-component grout is studied by assessing the dehydration process, which is a phenomenon that occurs when the material is cured without being completely embedded in soil/rock. Uniaxial compression tests and three-point flexural tests have been carried out for mechanical characterization. The results reveal that in a curing environment made of sand, a moisture of 5% is sufficient to guarantee correct curing of the grout and extend the mechanical performance to three years, whereas the action of air is potentially dangerous, since the grout suffers strongly from dehydration. Despite this dehydration process, however, the mechanical performance of the grout also tends to increase for samples cured under the action of air until a very high level of cracking and shrinkage is reached. A discussion of the limitations on the uniaxial compression strength as the main mechanical parameter for the characterization of two-component grout concludes the work. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

21 pages, 44323 KiB  
Article
Study on Crushed-Stone Cementation Properties and Bottom Stope Stability of Goaf by Open Stope Mining in Inclined Ore Bodies
by Qinqiang Guo, Wenbing Guo, Weiqiang Yang, Longxiang Li and Chaoqun Hu
Appl. Sci. 2024, 14(21), 9945; https://doi.org/10.3390/app14219945 - 30 Oct 2024
Cited by 1 | Viewed by 854
Abstract
The mining of the part of the inclined ore body below a goaf is crucial for improving resource extraction and safe production. In this study, the cementation properties of crushed stone during the mining of the inclined ore body were investigated by means [...] Read more.
The mining of the part of the inclined ore body below a goaf is crucial for improving resource extraction and safe production. In this study, the cementation properties of crushed stone during the mining of the inclined ore body were investigated by means of laboratory experiments, theoretical analysis, and numerical simulation. Additionally, orthogonal experiments were performed to assess how factors like water–cement ratio, crushed-stone particle size, and cement–sand ratio affect the strength of the grouting concretion body (GCB). Furthermore, the fluidity of the slurry under different ratios was also measured. Considering both the fluidity of the slurry and the strength of the GCB, the optimal ratios of the slurry were determined to be a water–cement ratio of 2.5:1 and a cement–sand ratio of 1:4. This ratio was then used for crushed-stone cementing under the poorest crushed-stone particle size conditions, based on which mechanical parameters were obtained from experiments. Theoretical analysis equated the problem of the grouting range to the width of the plastic zone of surrounding rock, and a conclusion was reached that the width of the GCB should be at least 29 m. The numerical simulation results reveal that among 30 mining rooms formed below the GCB, 24 mining rooms are in a stable state and 6 mining rooms are partially damaged on a small scale. As a whole, the GCB formed by grout filling into the goaf manages to effectively support the stope below, and it is verified that the theoretical calculation method of the width of the GCB is feasible. Full article
Show Figures

Figure 1

Back to TopTop