Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = groundwater quality awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5062 KiB  
Article
Groundwater Characteristics and Quality in the Coastal Zone of Lomé, Togo
by Koko Zébéto Houédakor, Djiwonou Koffi Adjalo, Benoît Danvide, Henri Sourou Totin Vodounon and Ernest Amoussou
Water 2025, 17(12), 1813; https://doi.org/10.3390/w17121813 - 17 Jun 2025
Viewed by 479
Abstract
The unprecedented development of coastal cities in West Africa is marked by anarchic urbanization accompanied by ineffective environmental management, leading to water pollution. This study is conducted in the southern districts of Lomé, Togo, an area built on sandbars where inappropriate attitudes, behaviors, [...] Read more.
The unprecedented development of coastal cities in West Africa is marked by anarchic urbanization accompanied by ineffective environmental management, leading to water pollution. This study is conducted in the southern districts of Lomé, Togo, an area built on sandbars where inappropriate attitudes, behaviors, and inadequate hygiene and sanitation practices prevail. The objective of this study is to characterize the quality of groundwater in the study area. Bacteriological and physicochemical analyses were carried out on 11 wells in 10 districts in the southern districts during the four seasons of the year. The analysis shows that the groundwater is polluted in all seasons. Nitrate concentrations exceed 50 mg/L in 65% of the samples, while chloride levels surpassed 250 mg/L in 18% of the cases. Regardless of the season, the dominant facies is sodium chloride and potassium chloride. In all districts, the analysis of microbiological parameters including total germs (30 °C, 100/mL), total coliforms (30 °C, 0/mL), Escherichia coli (44 °C, 2/250 mL), fecal streptococci (0/100 mL), and anaerobic sulfite reducers (44 °C, 2/20 mL) reveals values exceeding the European Union standards (2007). Groundwater contamination is facilitated by the sandy nature of the soil, which increases its vulnerability to various pollutants. Togo continues to experience cholera outbreaks, aggravated by poor sanitation infrastructure and limited vaccination coverage. Public health efforts are directed toward improving sanitation and raising awareness about waterborne and non-communicable diseases. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 7994 KiB  
Article
Hydrogeochemical and Geospatial Insights into Groundwater Contamination: Fluoride and Nitrate Risks in Western Odisha, India
by Subhasmita Barad, Rakesh Ranjan Thakur, Debabrata Nandi, Dillip Kumar Bera, Pramod Chandra Sahu, Priyanka Mishra, Kshyana Prava Samal and Bojan Ðurin
Water 2025, 17(10), 1514; https://doi.org/10.3390/w17101514 - 16 May 2025
Cited by 1 | Viewed by 1060
Abstract
Fresh groundwater is essential for sustaining life and socio-economic development, particularly in regions with limited safe drinking water alternatives. However, contamination from natural and anthropogenic sources poses severe health and environmental risks. This research examines the health risks linked to groundwater quality in [...] Read more.
Fresh groundwater is essential for sustaining life and socio-economic development, particularly in regions with limited safe drinking water alternatives. However, contamination from natural and anthropogenic sources poses severe health and environmental risks. This research examines the health risks linked to groundwater quality in the agroeconomic region of Boudh district, Odisha, India, where residents depend on untreated groundwater due to limited access to alternative sources. A total of 82 groundwater samples were analyzed during pre- and post-monsoon of the year 2023 using multivariate statistical methods (PCA, correlation analysis) to determine pollutant sources and regulatory factors, while XRD was employed to characterize fluoride-bearing minerals in associated rock samples. Fluoride concentrations range from 0.14 to 4.6 mg/L, with 49% of samples exceeding the WHO limit of 1.5 mg/L, which raises significant health concerns. Nitrate levels fluctuate between 1.57 and 203.51 mg/L, primarily due to agricultural fertilizers. A health risk assessment (hazard quotient and hazard index) indicates that 63% of samples fall into the low-risk category, 21% into moderate-risk, and 16% into high-risk. Children (HI = 29.23) and infants (HI = 19.51) are at the greatest health risk, surpassing that of adult males (HI = 12.2) and females (HI = 11.2). Findings provide scientific evidence for policymakers to implement groundwater protection and remediation strategies. Immediate interventions, including water quality monitoring, defluoridation measures, and community awareness programs, are essential for ensuring long-term water security and public health. Full article
Show Figures

Figure 1

12 pages, 630 KiB  
Article
Environmental Risk Assessment of Glyphosate and Aminomethylphosphonic Acid (AMPA) in Portuguese Groundwater Ecosystems
by Santos Inês, Lopes Ana and Emília Silva
Environments 2024, 11(11), 258; https://doi.org/10.3390/environments11110258 - 19 Nov 2024
Cited by 1 | Viewed by 1287
Abstract
The aim of the present study was to assess the risk related to the exposure of groundwater ecosystems to herbicide glyphosate and its non-relevant metabolite aminomethylphosphonic acid (AMPA) based on the quotient between measured concentrations gathered from the Water Resources Information System of [...] Read more.
The aim of the present study was to assess the risk related to the exposure of groundwater ecosystems to herbicide glyphosate and its non-relevant metabolite aminomethylphosphonic acid (AMPA) based on the quotient between measured concentrations gathered from the Water Resources Information System of Portugal, and groundwater quality standards set in legislation and estimated from environmental quality standards in surface waters. Glyphosate was analyzed in 103 groundwater samples collected from 80 wells located in 21 aquifer systems from the four hydrogeological units of mainland Portugal, between 2019 and 2021. It was detected in 14% of the total samples; however, only 10% presented concentration levels above 0.1 µg/L, the groundwater quality standard, and none of these values exceeded the value of 8.67 μg/L estimated from the annual average environmental quality standard proposed for glyphosate in surface waters. In comparison, AMPA was detected in only 5% of 63 groundwater samples, in four dug wells. In both compounds, the maximum concentration level was quantified in a dug well located in the O25-Torres Vedras aquifer system, from the Western unit, with 4.69 and 4.24 μg/L for glyphosate and AMPA, respectively. The results of this study demonstrate that it is extremely important to raise awareness and offer training to farmers on the sustainable use of plant protection products and good agricultural practices, in order to prevent groundwater contamination and improve its quality. There is also an urgent need to carry out ecotoxicological tests with further groundwater species from different functional groups in order to obtain a quality standard that accurately represents the groundwater communities. Full article
Show Figures

Figure 1

12 pages, 576 KiB  
Review
Implications of Vegetal Protein Hydrolysates for Improving Nitrogen Use Efficiency in Leafy Vegetables
by Michele Ciriello, Emanuela Campana, Stefania De Pascale and Youssef Rouphael
Horticulturae 2024, 10(2), 132; https://doi.org/10.3390/horticulturae10020132 - 30 Jan 2024
Cited by 7 | Viewed by 2575
Abstract
Climate change and the degradation of ecosystems is an urgent issue to which the agricultural sector contributes through the overuse of productive inputs such as chemical fertilizers. A disproportionate use of nitrogenous fertilizers combined with low efficiency inevitably results in worsening environmental problems [...] Read more.
Climate change and the degradation of ecosystems is an urgent issue to which the agricultural sector contributes through the overuse of productive inputs such as chemical fertilizers. A disproportionate use of nitrogenous fertilizers combined with low efficiency inevitably results in worsening environmental problems (greenhouse gas emissions, soil degradation, water eutrophication, and groundwater pollution). Nevertheless, increasing population growth puts additional pressure on the already struggling agricultural world. Awareness of these problems has pushed the world of research towards the development of more sustainable but equally efficient strategies in terms of production. The use of biostimulant substances and/or micro-organisms promoting yield, resilience to abiotic stresses in plants, and increasing the functional quality of products have been indicated as a valid strategy to improve the sustainability of agricultural practices. In modern horticulture, the use of vegetable–protein hydrolysates (V-PHs) is gaining more and more interest. These biostimulants could influence plants directly by stimulating carbon and nitrogen metabolism and interfering with hormonal activity, but also indirectly as V-PHs could improve nutrient availability in plant growth substrates and increase nutrient uptake and utilization efficiency. By exploiting this aspect, it would be possible to reduce the use of chemical fertilizers without affecting potential yields. After a brief introduction to the issues related to the intensive use of nitrogen fertilizers, this review focuses on the use of V-PHs as a strategy to increase nitrogen use efficiency (NUE). Starting with their heterogeneous origins and compositions, their effects on nitrogen metabolism, as well as the physiological and biochemical processes involved in these products, this review concludes with an in-depth discussion of the effects of V-PHs on major leafy vegetables. Full article
(This article belongs to the Special Issue Sustainable Strategies and Practices for Soil Fertility Management)
Show Figures

Figure 1

21 pages, 10959 KiB  
Article
Hydrochemical Appraisal and Driving Forces of Groundwater Quality and Potential Health Risks of Nitrate in Typical Agricultural Area of Southwestern China
by Jiawei Liu, Chang Yang, Si Chen, Yangshuang Wang, Xingjun Zhang, Wulue Kang, Junyi Li, Ying Wang, Qili Hu and Xingcheng Yuan
Water 2023, 15(23), 4095; https://doi.org/10.3390/w15234095 - 25 Nov 2023
Cited by 6 | Viewed by 2017
Abstract
Elucidating the hydrogeochemical processes and quality assessment of groundwater holds significant importance for its sustainable development. In this paper, 53 groundwater samples were collected from a typical agricultural area in the northeastern Chongqing municipality in SW China. The integration of multivariate statistical analysis, [...] Read more.
Elucidating the hydrogeochemical processes and quality assessment of groundwater holds significant importance for its sustainable development. In this paper, 53 groundwater samples were collected from a typical agricultural area in the northeastern Chongqing municipality in SW China. The integration of multivariate statistical analysis, ion ratio analysis, geomodelling analysis, the entropy water quality index, health risks assessment, and sensitivity analysis was carried out to explore the hydrochemical processes and quality assessment of groundwater in this study. The statistical results reveal that the cationic concentrations followed the order of Ca2+ > Mg2+ > Na+ > K+, while the anionic components were in the order of HCO3 > SO42− > NO3 > Cl. Based on the Piper trilinear diagram, the hydrochemical types were shown as Ca-HCO3 and Ca-Mg-HCO3 types. Hierarchical cluster analysis indicated that the groundwater samples could be categorized into three groups. The hydrochemical compositions were primarily influenced by water–rock interactions (e.g., carbonate dissolution and silicate weathering). In terms of irrigation suitability, the sodium adsorption ratios (SARs) ranged from 0.05 to 1.82, and the electrical conductivity (EC) varied from 116 to 1094 μs/cm, indicating that most groundwater samples were suitable for irrigation. The entropy-weighted water quality index ranged from 15 to 94, suggesting that the groundwater samples were suitable for drinking purposes. Non-carcinogenic human health risks followed the order of children > adult females > adult males, within the average values of 0.30, 0.21, and 0.18, respectively. Sensitivity analysis showed that the parameters had the weight order of NO3 > body weight (BW) > ingestion rate (IR) > exposure frequency (EF). Hence, we recommend prioritizing the management of areas with high salinity levels, while avoiding the excessive use of nitrogen fertilizers, raising awareness among local residents about safe groundwater, and providing robust support for the sustainable development of groundwater in typical agricultural areas. Full article
(This article belongs to the Topic Groundwater Pollution Control and Groundwater Management)
Show Figures

Figure 1

16 pages, 7092 KiB  
Article
Evaluation of Groundwater Quality and Contamination Using the Groundwater Pollution Index (GPI), Nitrate Pollution Index (NPI), and GIS
by Hefdhallah S. Al-Aizari, Fatima Aslaou, Ali R. Al-Aizari, Abdel-Basit Al-Odayni and Abdul-Jaleel M. Al-Aizari
Water 2023, 15(20), 3701; https://doi.org/10.3390/w15203701 - 23 Oct 2023
Cited by 24 | Viewed by 4545
Abstract
Groundwater is an essential and indispensable resource, meeting dire needs for drinking and irrigation purposes. The aim of this study is to assess the suitability of groundwater quality for drinking purposes. This evaluation will be conducted using the Groundwater Pollution Index (GPI), the [...] Read more.
Groundwater is an essential and indispensable resource, meeting dire needs for drinking and irrigation purposes. The aim of this study is to assess the suitability of groundwater quality for drinking purposes. This evaluation will be conducted using the Groundwater Pollution Index (GPI), the nitrate pollution index (NPI), and the geographic information system (GIS) in Sidi Slimane, Morocco. In this study, a comprehensive collection of 20 samples was obtained from various locations for analysis and evaluation. Hadrochemical facies of this study area showed that out of 20 samples, 90% belonged to a type (Na+-K+-Cl-SO42−), while only 10% fell into a category (Ca2+-Mg2+-Cl-SO42−). The Groundwater Pollution Index values ranged from 0.7 to 10.8, with an average of 7.03; about 60% of the groundwater samples analyzed in this study area were classified as highly polluted and unsuitable for drinking purposes. Nitrate index values ranged from −0.9 to 10.5. Approximately 80% of the sampled sites require treatment before consumption. According to the Nitrate Pollution Index (NPI), it is essential to regularly monitor 16 well sites to prevent nitrate contamination resulting from human activities, including waste disposal in open areas and sewage infiltration. This study recommends raising farmers’ awareness of the use of slow-release natural fertilizers made from nitrogen rather than nitrogen-based fertilizers, reducing waste disposal by residents, and maintaining an appropriate sewage network to minimize sewage flow leakage. This study plays a vital role in identifying the polluted areas and highlighting the need to take appropriate measures to control the sources of pollution in this study area in order to protect water resources and ensure the provision of safe water to the local population. Full article
Show Figures

Figure 1

26 pages, 11608 KiB  
Article
Assessment of Ground Water Quality of Lucknow City under GIS Framework Using Water Quality Index (WQI)
by Nazmu Saqib, Praveen Kumar Rai, Shruti Kanga, Deepak Kumar, Bojan Đurin and Suraj Kumar Singh
Water 2023, 15(17), 3048; https://doi.org/10.3390/w15173048 - 25 Aug 2023
Cited by 25 | Viewed by 9848
Abstract
Continuous groundwater quality monitoring is crucial for ensuring safe drinking and irrigation by mitigating risks from geochemical contaminants through appropriate treatment methods. Therefore, the primary objective of this study was to assess the suitability of groundwater collected from Lucknow, India, for both drinking [...] Read more.
Continuous groundwater quality monitoring is crucial for ensuring safe drinking and irrigation by mitigating risks from geochemical contaminants through appropriate treatment methods. Therefore, the primary objective of this study was to assess the suitability of groundwater collected from Lucknow, India, for both drinking and irrigation. Forty samples were collected from different sites within the study area to evaluate groundwater quality. Various parameters such as pH, turbidity, total dissolved solids (TDS), chlorides (Cl), total alkalinity, total hardness, sulphate (SO42), nitrate (NO3), fluorides (F), iron (Fe), arsenic (As), magnesium (Mg2+), and calcium (Ca2+) were analyzed. The weighted arithmetic water quality index (WAWQI), a vital rating system representing overall water quality, was employed to classify the water into different categories, such as very good, good, moderate, poor, and unfit for drinking. This classification is invaluable for public awareness and decision-making to make informed decisions regarding effective management, treatment, and sustainable societal development on a broader scale. A correlation matrix was generated and analyzed to observe correlations between the various parameters. Additionally, spatial distribution maps for the analyzed parameters and WQI were prepared using the inverse distance weighted (IDW) method. The study found that WQI values in the area ranged from 2.64 to 168.68, indicating good water quality in most places except for the Kukrail region, where the water quality is unfit for drinking purposes. The water quality map shows that 86% of the area falls under the very good category, 14.63% under good to moderate quality, and 0.37% is categorized as unfit for drinking. Consequently, the findings suggest that the groundwater in the studied area is safe and suitable for drinking and irrigation purposes. Full article
(This article belongs to the Special Issue Advances in Hydrology: Flow and Velocity Analysis in Rivers)
Show Figures

Figure 1

14 pages, 1317 KiB  
Article
Monitoring of Microbial Contamination of Groundwater in the Upper Choluteca River Basin, Honduras
by Keylin Mendoza, Bryan Ortiz, Luis Rivera, Tania Peña, Marcio Chirinos-Escobar, Lourdes Enríquez, Victoria Maldonado and Gustavo Fontecha
Water 2023, 15(11), 2116; https://doi.org/10.3390/w15112116 - 2 Jun 2023
Cited by 6 | Viewed by 3725
Abstract
Water can act as a vector for several microbes with significant pathogenic potential for both humans and animals. Waterborne infections are a critical public health concern as they cause more than 3.4 million deaths annually. Total and thermotolerant coliforms and intestinal enterococci have [...] Read more.
Water can act as a vector for several microbes with significant pathogenic potential for both humans and animals. Waterborne infections are a critical public health concern as they cause more than 3.4 million deaths annually. Total and thermotolerant coliforms and intestinal enterococci have traditionally been used to assess the quality and suitability of drinking water. The aim of this study was to evaluate the microbiological quality of groundwater from six sub-basins located in the upper Choluteca River basin in Honduras and to determine the E. coli phylogroups isolated in these samples. Our findings show high rates of fecal contamination, which suggests that the groundwater in the basin is unsafe for human consumption. Phylogroups B1 and D were the most frequent among 99 E. coli isolates, while C and F were the least frequent phylogroups. Measures must be taken to raise awareness about sanitation and good practices for the management of household waste as well as the waste generated by agro-industrial activity and livestock. Full article
(This article belongs to the Topic Aquatic Environment Research for Sustainable Development)
Show Figures

Figure 1

20 pages, 1409 KiB  
Article
Screening and Prioritization of Pesticide Application for Potential Human Health and Environmental Risks in Largescale Farms in Western Kenya
by Zedekiah Odira Onyando, Elizabeth Omukunda, Patrick Okoth, Sandra Khatiebi, Solomon Omwoma, Peter Otieno, Odipo Osano and Joseph Lalah
Agriculture 2023, 13(6), 1178; https://doi.org/10.3390/agriculture13061178 - 31 May 2023
Cited by 9 | Viewed by 2935
Abstract
Pesticide application in agricultural and residential areas is a worldwide practice. However, human pesticide poisoning and environmental pollution through pesticide residues remain a challenge in the developing world. The present study investigated the intensity of pesticide application in large-scale farms in Trans-Nzoia County [...] Read more.
Pesticide application in agricultural and residential areas is a worldwide practice. However, human pesticide poisoning and environmental pollution through pesticide residues remain a challenge in the developing world. The present study investigated the intensity of pesticide application in large-scale farms in Trans-Nzoia County to screen and prioritize the pesticides for potential human health and environmental risks. A cross-sectional survey involving 348 farmers was conducted in the study area, and data was analyzed using SPSS. Environmental Exposure Potential (EEP) and Toxicity Potentials (TP) were analyzed from the Pesticide Properties Database (PPDB). Majority (99.4%) of the farms surveyed apply various pesticide classes that include: organophosphates (34.78%), neonicotinoids (15.22%), carbamates (10.87%), pyrethroids (10.87%), organochlorines (8.7%), triazoles (6.5%), copper-based (4.34%), avermectines (2.17%), triazines (2.17%), and amidines (2.17%), with the use of organic manures (26.3%). Despite the high prevalence of pesticide application, only 48.28% of farms conduct soil quality monitoring, 77.3% of whom do not have clear records and schedules for conducting periodic soil analyses. There was a strong positive correlation between the acreage of operation and the use of herbicides in weed management (r = 0.77; p ≤ 0.05). In relation to degradation in the environment, 18.42% of the pesticides applied in the study area were persistent in soil sub-systems while 31.58% are persistent in water. Of the pesticides applied, 18.42% had high chances of bioconcentration in living tissues, 10.53% and 13.16% had the potential of contaminating groundwater and surface water resources, respectively. The ranked-order human toxicity potential associated with the used pesticides were teratogenicity (31.58%), neurotoxicity (28.95%), endocrine disruption (7.9%), carcinogenicity (7.9%), and mutagenicity (2.63%). However, 10.53% of the pesticides possess multiple toxicity potentials. Some farmers (53.70%) surveyed were not aware of the negative environmental impacts of pesticides with 59.50% having prior training on the use and handling of pesticides. Despite the availability of Personal Protective Equipment (PPEs) on larger farms, 31.9% of the farm workers do not adhere to their use during pesticide application. In conclusion, there is low awareness among farmers of human health and environmental risks associated with pesticide application. The study recommends training of farm managers, farm owners, and farm workers on pesticide handling and associated health and environmental effects. Full article
Show Figures

Figure 1

14 pages, 7500 KiB  
Article
Research on the Capacity of Underground Reservoirs in Coal Mines to Protect the Groundwater Resources: A Case of Zhangshuanglou Coal Mine in Xuzhou, China
by Chenghang Zhang, Bin Luo, Zhimin Xu, Yajun Sun and Lin Feng
Water 2023, 15(8), 1468; https://doi.org/10.3390/w15081468 - 9 Apr 2023
Cited by 15 | Viewed by 3224
Abstract
This study analyzes the ability of coal mine underground reservoirs to protect groundwater resources. As the demand for coal mining continues to increase, the potential impact on groundwater resources around mines has become a growing problem. Underground water reservoirs, also known as coal [...] Read more.
This study analyzes the ability of coal mine underground reservoirs to protect groundwater resources. As the demand for coal mining continues to increase, the potential impact on groundwater resources around mines has become a growing problem. Underground water reservoirs, also known as coal mine underground reservoirs, have been constructed as a solution to protect water wastage in mining operations. However, there is a lack of awareness related to the ability of underground water reservoirs in mines to protect groundwater resources. In this study, we used FLAC3D software to analyze the formation process, water storage volume, and central storage location of the underground water reservoir in Zhangshuanglou Coal Mine. The results show that the damaged volume is 3.39 × 106 m3, and the groundwater resources that can be protected by coal mine underground reservoirs in the study area amount to 1.98 × 105 m3. We found that the storage capacity of underground reservoirs is more significantly affected by the extent of mining, which can be expressed as y = 49,056.44 + 255.75x + 1.46x2 (R2 = 0.995) (x ≠ 0). Additionally, the water storage location obtained through simulation can provide a reference for the construction of underground reservoir regulation and water storage projects. The results of the water quality analysis indicate that the concentrations of SO42− decreased by 42% with the closure of the mining area, and the pH also gradually converged to neutral. This highlights the significant role of underground water reservoirs in coal mines in promoting green production and protecting water resources and the environment. Full article
(This article belongs to the Special Issue Mine Water Safety and Environment)
Show Figures

Figure 1

18 pages, 2785 KiB  
Article
Current Status and Conservation of Springs in Taiwan: Water Quality Assessment and Species Diversity of Aquatic Animals
by Yuh-Wen Chiu, Da-Ji Huang, Bao-Sen Shieh, Ye-Chen Gan, Yi-Chih Chen, Chia-Hung Jen, Lin-Lee Lee and Shih-Hsiung Liang
Diversity 2023, 15(3), 332; https://doi.org/10.3390/d15030332 - 24 Feb 2023
Cited by 1 | Viewed by 2997
Abstract
Even though spring ecosystems are ecologically unique and socio-culturally important worldwide, they hardly attract research attention. The aims of this study were to evaluate the environmental status of water quality, and to inventory the species diversity of aquatic animals in 65 springs in [...] Read more.
Even though spring ecosystems are ecologically unique and socio-culturally important worldwide, they hardly attract research attention. The aims of this study were to evaluate the environmental status of water quality, and to inventory the species diversity of aquatic animals in 65 springs in Taiwan from 2012 to 2017, of which seven springs were unable to be sampled due the fact that they were dried or sealed up. The environmental status of 58 springs with complete water quality data was assessed by the River Pollution Index (RPI). Based on the RPI, the water quality of these 58 sampled springs was mainly non-/mildly polluted (26 springs, 44.8%) and lightly polluted (23 spring, 39.6%), and nine (15.5%) springs were moderately polluted. However, when applied to springs, the RPI may intensify the pollution rankings because dissolved oxygen is an assessing factor, and hypoxia may naturally be observed in the springs. To avoid this concern, we suggest choosing the concentration of coliform instead of dissolved oxygen content in the RPI when it is applied to springs. During the 6 years of the study period, we collected 48 fish species in 44 springs, 24 gastropoda and bivalve species in 46 springs, 16 shrimp species in 34 springs, and 14 crab species in 18 springs. Within the species collected, 31 fish, 20 gastropoda and bivalves, 12 shrimps, and 14 crabs are native species of Taiwan. They totaled 27.2 to 35% of the known aquatic native species of the island. Thus, springs in Taiwan may be considered to be a conservation hotspot of aquatic animals. Other than native species, exotic aquatic animals also represent threats, as seventeen fishes (35.4%), four gastropoda and bivalves (16.6%), and two shrimps (12.5%) were found in the springs of Taiwan. The springs in Taiwan show diverse and vital ecosystem services, such as delivering social, cultural, and economic value, conserving native and endangered freshwater animals, developing new academic theories, and supplying habitat refugees from climate change. Unfortunately, springs in Taiwan currently are also threatened by multiple anthropogenic disturbances, such as the overconsumption of groundwater by land development and urbanization, deterioration of water quality by agricultural, domestic, and industrial pollution, and inappropriate tourism and management tactics. To restore and sustain the springs in Taiwan, effective strategies and practical measures are urgently required to minimize human-caused threats and revitalize social awareness of springs. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

17 pages, 3834 KiB  
Review
Pertinent Water-Saving Management Strategies for Sustainable Turfgrass in the Desert U.S. Southwest
by Desalegn D. Serba, Reagan W. Hejl, Worku Burayu, Kai Umeda, Bradley Shaun Bushman and Clinton F. Williams
Sustainability 2022, 14(19), 12722; https://doi.org/10.3390/su141912722 - 6 Oct 2022
Cited by 10 | Viewed by 3270
Abstract
Drought and heat stresses are major challenges for turfgrass management in the desert southwest of the United States where rainfall is insufficient to support managed turfgrass growth. Irrigation water availability and its quality are increasingly strained due to diminishing surface water supplies. Unprecedented [...] Read more.
Drought and heat stresses are major challenges for turfgrass management in the desert southwest of the United States where rainfall is insufficient to support managed turfgrass growth. Irrigation water availability and its quality are increasingly strained due to diminishing surface water supplies. Unprecedented drought conditions threaten the reliance on groundwater supplies that are heavily scrutinized for irrigation practices on landscape and recreational turfgrass. Therefore, development of drought tolerant cultivars, lower input turf management strategies that sustains turfgrass appearance and performance with less irrigation water, and tolerance to higher seasonal temperatures will be critically important. Sustainability of acceptable quality turfgrass can be accomplished through harnessing the natural genetic variation, genetic manipulation using modern genomic technology, and optimizing turfgrass management practices for improved drought tolerance. Besides persistent efforts of varietal development and improved turfgrass management for drought tolerance and performance, redefining the quality of irrigated turfgrass for consumers to align with the environmental conditions is envisioned to foster a sustainable golf, sports fields, and landscape turfgrass industry in the region. A comprehensive study encompassing different turfgrass species and enhancing management practices to achieve acceptable performing turfgrass as well as outreach education to improve public perception of realities for a “green” environment will be critically important. The recent developments in turfgrass science and contemporary communication platforms are instrumental in increasing awareness for a sustainable turfgrass paradigm and sustain eco-tourism of the region. Full article
Show Figures

Figure 1

24 pages, 4064 KiB  
Review
Groundwater-Based Drinking Water Supply in Sri Lanka: Status and Perspectives
by Suresh Indika, Yuansong Wei, Titus Cooray, Tharindu Ritigala, K. B. S. N. Jinadasa, Sujithra K. Weragoda and Rohan Weerasooriya
Water 2022, 14(9), 1428; https://doi.org/10.3390/w14091428 - 29 Apr 2022
Cited by 22 | Viewed by 21563
Abstract
Drinking water is largely from groundwater in Sri Lanka, so quality management is of great concern. In order to achieve the 6th goal of United Nations (UN) Sustainable Development Goals (SDG), more efforts are being undertaken to secure drinking water quality. In this [...] Read more.
Drinking water is largely from groundwater in Sri Lanka, so quality management is of great concern. In order to achieve the 6th goal of United Nations (UN) Sustainable Development Goals (SDG), more efforts are being undertaken to secure drinking water quality. In this paper, the current status, challenges and opportunities of groundwater quality management and improvement in Sri Lanka were reviewed and discussed, based on previous studies. There are Ca-HCO3 type, Ca–Mg-HCO3 type and Na–SO4–Cl type groundwater dominated in the wet zone, intermediate and the dry zone, respectively. Elevated levels of hardness, fluoride, DOC, and alkalinity, and salinity are reported in the groundwater in the dry zone controlled by geology and arid climate. Although groundwater in some regions contain significant levels of nitrates, arsenic, cadmium and lead, the majority remain at acceptable levels for drinking purposes. As for treatment technologies, existing membrane-based drinking water treatment technologies such as RO (Reverse Osmosis) stations can produce safe and clean drinking water to the community, but this has still a limited coverage. To achieve a safe drinking water supply for all, especially in rural communities of Sri Lanka under the 6th goal of the UN SDG, more efforts in building up the infrastructure and man power are needed to monitor and assess groundwater quality regularly so as to develop management strategies. Research and development can be directed towards more cost-effective water treatment technologies. Protection of groundwater from being polluted, and educational and awareness programs for the stakeholders are also essential tasks in the future. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

21 pages, 3293 KiB  
Article
Assessing Groundwater Level Declination in Dhaka City and Identifying Adaptation Options for Sustainable Water Supply
by Mehanaz Moshfika, Subir Biswas and M. Shahjahan Mondal
Sustainability 2022, 14(3), 1518; https://doi.org/10.3390/su14031518 - 28 Jan 2022
Cited by 24 | Viewed by 9459
Abstract
Dhaka city, having a population of about 18 million, depends heavily on groundwater as a source of quality water. However, the city is encountering a rapid depletion of groundwater, and its groundwater-based water supply is at risk of failure. This study was carried [...] Read more.
Dhaka city, having a population of about 18 million, depends heavily on groundwater as a source of quality water. However, the city is encountering a rapid depletion of groundwater, and its groundwater-based water supply is at risk of failure. This study was carried out to analyze the groundwater depletion scenarios occurring from 1970 to 2019 in the city and to find suitable options to sustain its water supply. The trends in groundwater levels (GWLs) were quantified by the non-parametric Sen’s slope and their significances were assessed by the modified Mann-Kendall test. Contour maps of GWL were generated to develop the contemporary GWL scenario in the city. Key informant interviews (KIIs) with the Dhaka Water Supply and Sewerage Authority (DWASA) officials, groundwater experts and researchers, in addition to semi-structured interviews with the DWASA consumers were conducted to assess current adaptation practices and to develop potential adaptation options. The effectiveness of the options was assessed by strengths, weaknesses, opportunities and threats (SWOT) analysis and the options were ranked through a normalization process of the weights given by the KIIs for future adaptabilities. The GWLs were found to be decreasing all over the city, varying from 0.6–2.4 m/year. The contour maps demonstrated that the groundwater of the central area had depleted more than the peripheral areas. The locations vulnerable to severe groundwater depletion were identified to be the Khilgaon, Sobujbagh, Motijheel, Dhanmondi, and Sutrapur areas and some parts of the Cantonment and Mirpur areas. Potential options identified were adopting more surface water treatment plants, rainwater harvesting, implementing a block tariff system, reducing non-revenue water, metering water consumption, and promoting public awareness. Spatially-varying adaptation strategies were also suggested for different zones. Some measures adopted by DWASA were not supported by the respondents. Full article
(This article belongs to the Special Issue Prospects in Sustainable Water Management)
Show Figures

Figure 1

19 pages, 715 KiB  
Review
Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution
by Susanne Galster and Brigitte Helmreich
Water 2022, 14(3), 291; https://doi.org/10.3390/w14030291 - 19 Jan 2022
Cited by 15 | Viewed by 6292
Abstract
Stormwater runoff from metal roofs has been a significant subject of discussion, especially when it comes to its treatment and the target concentrations that need to be achieved prior to discharge into the aquatic environment. To raise further awareness on this issue, occurrence, [...] Read more.
Stormwater runoff from metal roofs has been a significant subject of discussion, especially when it comes to its treatment and the target concentrations that need to be achieved prior to discharge into the aquatic environment. To raise further awareness on this issue, occurrence, characterization, and also mitigation measures for metal roof runoff were analyzed using the example of copper and zinc roofs. These stormwater runoffs were found to contain metals in significant concentrations, mainly due to the wash-off of corrosion products by precipitation. Factors influencing metal corrosion and runoff concentrations were compiled. As Cu and Zn mainly occur in dissolved and thus bioavailable forms in roof runoff, harmful effects on the environment were detected. Therefore, adequate treatment of the runoff before discharge to groundwater or surface water is necessary to protect the aquatic environment. Vegetated infiltration swales as an sustainable urban drainage system enable a reduction in pollution loads. However, especially in densely built-up urban areas, stormwater quality improvement devices (SQIDs) offer an attractive alternative for pre-treating metal roof runoff, as they are mostly located underground. There is not yet a uniform legal approval system for SQIDs in Germany, but the German state of Bavaria has approved four types of SQIDs according to its own developed test criteria. Full article
Show Figures

Figure 1

Back to TopTop