Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (710)

Search Parameters:
Keywords = groundwater ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1477 KiB  
Review
Bioinformation and Monitoring Technology for Environmental DNA Analysis: A Review
by Hyo Jik Yoon, Joo Hyeong Seo, Seung Hoon Shin, Mohamed A. A. Abdelhamid and Seung Pil Pack
Biosensors 2025, 15(8), 494; https://doi.org/10.3390/bios15080494 - 1 Aug 2025
Viewed by 269
Abstract
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, [...] Read more.
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, soil, groundwater, sediment, and aquatic environments. Advances in molecular biology, high-throughput sequencing, bioinformatics tools, and field-deployable detection systems have significantly improved eDNA detection sensitivity, allowing for early identification of invasive species, monitoring ecosystem health, and tracking pollutant degradation processes. Airborne eDNA monitoring has demonstrated potential for assessing microbial shifts due to air pollution and tracking pathogen transmission. In terrestrial environments, eDNA facilitates soil and groundwater pollution assessments and enhances understanding of biodegradation processes. In aquatic ecosystems, eDNA serves as a powerful tool for biodiversity assessment, invasive species monitoring, and wastewater-based epidemiology. Despite its growing applicability, challenges remain, including DNA degradation, contamination risks, and standardization of sampling protocols. Future research should focus on integrating eDNA data with remote sensing, machine learning, and ecological modeling to enhance predictive environmental monitoring frameworks. As technological advancements continue, eDNA-based approaches are poised to revolutionize environmental assessment, conservation strategies, and public health surveillance. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

21 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 234
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

16 pages, 3327 KiB  
Article
Development and Evaluation of Selenium-Enriched Compound Fertilizers for Remediation of Mercury-Contaminated Agricultural Soil
by Yuxin Li, Guangpeng Pei, Yanda Zhang, Shuyun Guan, Yingzhong Lv, Zhuo Li and Hua Li
Agronomy 2025, 15(8), 1842; https://doi.org/10.3390/agronomy15081842 - 30 Jul 2025
Viewed by 305
Abstract
Agricultural soil contaminated with mercury (Hg) poses a serious threat to ecosystems and human health. Although adding an appropriate amount of selenium (Se) can reduce the toxicity and mobility of Hg in soil, Se alone is prone to leaching into groundwater through soil [...] Read more.
Agricultural soil contaminated with mercury (Hg) poses a serious threat to ecosystems and human health. Although adding an appropriate amount of selenium (Se) can reduce the toxicity and mobility of Hg in soil, Se alone is prone to leaching into groundwater through soil runoff. Therefore, Se-enriched compound fertilizers were developed, and their remediation effect on Hg-contaminated agricultural soil was determined. The Se-enriched compound fertilizers were prepared by combining an organic fertilizer (vinegar residue, biochar, and potassium humate), inorganic fertilizer (urea, KH2PO4, ZnSO4, and Na2SeO3), and a binder (attapulgite and bentonite). A material proportioning experiment showed that the optimal granulation rate, organic matter content, and compressive strength were achieved when using 15% attapulgite (Formulation 1) and 10% bentonite (Formulation 2). An analysis of Se-enriched compound fertilizer particles showed that the two Se-enriched compound fertilizers complied with the standard for organic–inorganic compound fertilizers (China GB 18877-2002). Compared with the control, Formulation 1 and Formulation 2 significantly reduced the Hg content in bulk and rhizosphere soil following diethylenetriaminepentaacetic acid (DTPA) extraction by 40.1–47.3% and 53.8–56.0%, respectively. They also significantly reduced the Hg content in maize seedling roots and shoots by 26.4–29.0% and 57.3–58.7%, respectively, effectively limiting Hg uptake, transport, and enrichment. Under the Formulation 1 and Formulation 2 treatments, the total and DTPA-extractable Se contents in soil and maize seedlings were significantly increased. This study demonstrated that Se-enriched compound fertilizer effectively remediates Hg-contaminated agricultural soil and can promote the uptake of Se by maize. The results of this study are expected to positively contribute to the sustainable development of the agro-ecological environment. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

19 pages, 4896 KiB  
Article
Calculation of Connectivity Between Surface and Underground Three-Dimensional Water Systems in the Luan River Basin
by Jingyao Wang, Zhixiong Tang, Belay Z. Abate, Zhuoxun Wu and Li He
Sustainability 2025, 17(15), 6913; https://doi.org/10.3390/su17156913 - 30 Jul 2025
Viewed by 225
Abstract
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for [...] Read more.
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for optimizing spatial water distribution, maintaining ecohydrological equilibrium, and enhancing flood–drought regulation efficacy is important. Focusing on the regulated reaches of the Panjiakou, Daheiting, and Taolinkou reservoirs in the Luan River Basin, this study established and integrated a three-dimensional assessment framework that synthesizes hydrological processes, hydraulic structural effects, and human activities as three fundamental drivers, and employed the Analytic Hierarchy Process (AHP) to develop a quantitative connectivity evaluation system. Results indicate that water conservancy projects significantly altered basin connectivity: surface water connectivity decreased by 0.40, while groundwater connectivity experienced a minor reduction (0.25) primarily through reservoir seepage. Consequently, the integrated surface–groundwater system declined by 0.39. Critically, project scale governs surface connectivity attenuation intensity, which substantially exceeds impacts on groundwater systems. The comprehensive assessment system developed in this study provides theoretical and methodological support for diagnosing river connectivity, formulating ecological restoration strategies, and protecting basin ecosystems. Full article
Show Figures

Figure 1

24 pages, 5270 KiB  
Article
Ecophysiological Keys to the Success of a Native-Expansive Mediterranean Species in Threatened Coastal Dune Habitats
by Mario Fernández-Martínez, Carmen Jiménez-Carrasco, Mari Cruz Díaz Barradas, Juan B. Gallego-Fernández and María Zunzunegui
Plants 2025, 14(15), 2342; https://doi.org/10.3390/plants14152342 - 29 Jul 2025
Viewed by 204
Abstract
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have [...] Read more.
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have facilitated its exponential expansion, threatening endemic species and critical dune habitats. The main objective of this study was to identify the key functional traits that may explain the competitive advantage and rapid spread of R. monosperma in coastal dune ecosystems. We compared its seasonal responses with those of three co-occurring woody species, two native (Juniperus phoenicea and J. macrocarpa) and one naturalised (Pinus pinea), at two sites differing in groundwater availability within a coastal dune area (Doñana National Park, Spain). We measured water relations, leaf traits, stomatal conductance, photochemical efficiency, stable isotopes, and shoot elongation in 12 individuals per species. Repeated-measures ANOVA showed significant effects of species and species × season interaction for relative water content, shoot elongation, effective photochemical efficiency, and stable isotopes. R. monosperma showed significantly higher shoot elongation, relative water content, and photochemical efficiency in summer compared with the other species. Stable isotope data confirmed its nitrogen-fixing capacity. This characteristic, along with the higher seasonal plasticity, contributes to its competitive advantage. Given the ecological fragility of coastal dunes, understanding the functional traits favouring the success of neonatives such as R. monosperma is essential for biodiversity conservation and ecosystem management. Full article
Show Figures

Figure 1

20 pages, 4109 KiB  
Review
Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways
by Oluwafemi E. Adeyeri
Water 2025, 17(15), 2247; https://doi.org/10.3390/w17152247 - 28 Jul 2025
Viewed by 310
Abstract
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 [...] Read more.
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins. Full article
Show Figures

Figure 1

20 pages, 9145 KiB  
Article
Valuating Hydrological Ecosystem Services Provided by Groundwater in a Dryland Region in the Northwest of Mexico
by Frida Cital, J. Eliana Rodríguez-Burgueño, Concepción Carreón-Diazconti and Jorge Ramírez-Hernández
Water 2025, 17(15), 2221; https://doi.org/10.3390/w17152221 - 25 Jul 2025
Viewed by 294
Abstract
Drylands cover approximately 41% of Earth’s land surface, supporting about 500 million people and 45% of global agriculture. Groundwater is essential in drylands and is crucial for maintaining ecosystem services and offering numerous benefits. This article, for the first time, analyses and valuates [...] Read more.
Drylands cover approximately 41% of Earth’s land surface, supporting about 500 million people and 45% of global agriculture. Groundwater is essential in drylands and is crucial for maintaining ecosystem services and offering numerous benefits. This article, for the first time, analyses and valuates the hydrological ecosystem services (HESs) provided by groundwater in a region of the Colorado River Delta in Mexico, an area with uncertain economic impact due to water scarcity. The main water sources are the Colorado River and groundwater from the Mexicali and San Luis Rio Colorado valley aquifers, both of which are overexploited. Valuation techniques include surrogate and simulated market methods for agricultural, industrial, urban, and domestic uses, the shadow project approach for water conservation and purification cost avoidance, and the contingent valuation method for recreation. Data from 2013 to 2015 and 2020 were used as they are the most reliable sources available. The annual value of HESs provided by groundwater was USD 883,520 million, with water conservation being a key factor. The analyzed groundwater uses reflect differences in efficiency and economic value, providing key information for decisions on governance, allocation, conservation, and revaluation of water resources. These results suggest reorienting crops, establishing differentiated rates, and promoting payment for environmental services programs. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

25 pages, 1882 KiB  
Article
An Assessment of Collector-Drainage Water and Groundwater—An Application of CCME WQI Model
by Nilufar Rajabova, Vafabay Sherimbetov, Rehan Sadiq and Alaa Farouk Aboukila
Water 2025, 17(15), 2191; https://doi.org/10.3390/w17152191 - 23 Jul 2025
Viewed by 519
Abstract
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions [...] Read more.
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions by utilizing water with varying salinity levels. Moreover, establishing optimal drinking water conditions for human populations within an ecosystem can help mitigate future negative succession processes. The purpose of this study is to evaluate the quality of two distinct water sources in the Amudarya district of the Republic of Karakalpakstan, Uzbekistan: collector-drainage water and groundwater at depths of 10 to 25 m. This research is highly relevant in the context of climate change, as improper management of water salinity, particularly in collector-drainage water, may exacerbate soil salinization and degrade drinking water quality. The primary methodology of this study is as follows: The Food and Agriculture Organization of the United Nations (FAO) standard for collector-drainage water is applied, and the water quality index is assessed using the CCME WQI model. The Canadian Council of Ministers of the Environment (CCME) model is adapted to assess groundwater quality using Uzbekistan’s national drinking water quality standards. The results of two years of collected data, i.e., 2021 and 2023, show that the water quality index of collector-drainage water indicates that it has limited potential for use as secondary water for the irrigation of sensitive crops and has been classified as ‘Poor’. As a result, salinity increased by 8.33% by 2023. In contrast, groundwater quality was rated as ‘Fair’ in 2021, showing a slight deterioration by 2023. Moreover, a comparative analysis of CCME WQI values for collector-drainage and groundwater in the region, in conjunction with findings from Ethiopia, India, Iraq, and Turkey, indicates a consistent decline in water quality, primarily due to agriculture and various other anthropogenic pollution sources, underscoring the critical need for sustainable water resource management. This study highlights the need to use organic fertilizers in agriculture to protect drinking water quality, improve crop yields, and promote soil health, while reducing reliance on chemical inputs. Furthermore, adopting WQI models under changing climatic conditions can improve agricultural productivity, enhance groundwater quality, and provide better environmental monitoring systems. Full article
Show Figures

Figure 1

25 pages, 9183 KiB  
Article
Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States
by Tsegaye Tadesse, Stephanie Connolly, Brian Wardlow, Mark Svoboda, Beichen Zhang, Brian A. Fuchs, Hasnat Aslam, Christopher Asaro, Frank H. Koch, Tonya Bernadt, Calvin Poulsen, Jeff Wisner, Jeffrey Nothwehr, Ian Ratcliffe, Kelsey Varisco, Lindsay Johnson and Curtis Riganti
Forests 2025, 16(7), 1187; https://doi.org/10.3390/f16071187 - 18 Jul 2025
Viewed by 358
Abstract
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and [...] Read more.
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and soil moisture content. This study evaluated ForDRI using Pearson correlations with the Bowen Ratio (BR) at 24 AmeriFlux sites and Spearman correlations with the Tree-Ring Growth Index (TRSGI) at 135 sites, along with feedback from 58 stakeholders. CONUS was divided into four forest subgroups: (1) the West/Pacific Northwest, (2) Rocky Mountains/Southwest, (3) East/Northeast, and (4) South/Central/Southeast Forest regions. Strong positive ForDRI-TRSGI correlations (ρ > 0.7, p < 0.05) were observed in the western regions, where drought significantly impacts growth, while moderate alignment with BR (R = 0.35–0.65, p < 0.05) was noted. In contrast, correlations in Eastern and Southern forests were weak to moderate (ρ = 0.4–0.6 for TRSGI and R = 0.1–0.3 for BR). Stakeholders’ feedback indicated that ForDRI realistically maps historical drought years and recent trends, though suggestions for improvements, including trend maps and enhanced visualizations, were made. ForDRI is a valuable complementary tool for monitoring forest droughts and informing management decisions. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 471
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

15 pages, 3200 KiB  
Review
Research Hotspots and Trends in Soil Infiltration at the Watershed Scale Using the SWAT Model: A Bibliometric Analysis
by Yuxin Ouyang, S. M. Asik Ullah and Chika Takatori
Water 2025, 17(14), 2119; https://doi.org/10.3390/w17142119 - 16 Jul 2025
Viewed by 319
Abstract
Understanding soil infiltration at the watershed level is crucial to hydrological studies, as it significantly influences surface runoff, groundwater replenishment, and ecosystem sustainability. Research in this area—particularly employing the Soil and Water Assessment Tool (SWAT)—has seen sustained scholarly interest, with an upward trend [...] Read more.
Understanding soil infiltration at the watershed level is crucial to hydrological studies, as it significantly influences surface runoff, groundwater replenishment, and ecosystem sustainability. Research in this area—particularly employing the Soil and Water Assessment Tool (SWAT)—has seen sustained scholarly interest, with an upward trend in related publications. This study analyzed 141 peer-reviewed articles from the Web of Science (WOS) Core Collection. By applying bibliometric techniques through CiteSpace visualization software, it explored the key themes and emerging directions in the use of the SWAT model for soil infiltration studies across watersheds. Findings revealed that this field integrates multiple disciplines. Notably, the Journal of Hydrology and Hydrological Processes emerged as two of the most impactful publication venues. Researchers and institutions from the United States, China, and Ethiopia were the core contributors to this area. “Land use” and “climate change” are currently the hotspots of interest in this field. There are three development trends: (1) The scale of research is continuously expanding. (2) The research subjects are diversified, ranging from initially focusing on agricultural watersheds to surrounding areas such as hillsides, grasslands, and forests. (3) The research content becomes more systematic, emphasizing regional coordination and ecological sustainability. Overall, the research on soil infiltration at the watershed scale using the SWAT model presents a promising and thriving field. This study provides researchers with a framework that objectively presents the research hotspots and trends in this area, serving as a valuable resource for advancing academic inquiry in this domain. Full article
Show Figures

Figure 1

22 pages, 828 KiB  
Review
Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
by Christian C. Obijianya, Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov and Halis Simsek
Water 2025, 17(14), 2083; https://doi.org/10.3390/w17142083 - 11 Jul 2025
Viewed by 592
Abstract
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging [...] Read more.
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging groundwater, irrigation of fields, or even manufacturing drinkable water. This strategy meets growing water demand in water-scarce areas while protecting natural ecosystems. Treated wastewater is both a resource and a challenge. Though it may be nutrient-rich and can increase agricultural output while showing resource reuse and environmental conservation, high treatment costs, public acceptance, and contamination hazards limit its use. Proper treatment can reduce these hazards, safeguarding human health and the environment while enhancing its benefits, including a stable water supply, nutrient-rich irrigation, higher crop yields, economic development, and community resilience. On the one hand, inadequate treatment may lead to soil salinization, environmental degradation, and hazardous foods. Examining the dual benefits and risks of using treated wastewater for agricultural irrigation, this paper investigates the complexities of its use as a valuable resource and as a potential hazard. Modern treatment technologies are needed to address these difficulties and to ensure safe and sustainable use. If properly handled, treated wastewater reuse has enormous potential for reducing water scarcity and expanding sustainable agriculture as well as global food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

28 pages, 10458 KiB  
Article
Salinity Gradients Override Hydraulic Connectivity in Shaping Bacterial Community Assembly and Network Stability at a Coastal Aquifer–Reservoir Interface
by Cuixia Zhang, Haiming Li, Mengdi Li, Qian Zhang, Sihui Su, Xiaodong Zhang and Han Xiao
Microorganisms 2025, 13(7), 1611; https://doi.org/10.3390/microorganisms13071611 - 8 Jul 2025
Viewed by 517
Abstract
The coastal zone presents complex hydrodynamic interactions among inland groundwater, reservoir water, and intruding seawater, with important implications for ecosystem functioning and water quality. However, the relative roles of hydraulic connectivity and seawater-driven salinity gradients in shaping microbial communities at the aquifer–reservoir interface [...] Read more.
The coastal zone presents complex hydrodynamic interactions among inland groundwater, reservoir water, and intruding seawater, with important implications for ecosystem functioning and water quality. However, the relative roles of hydraulic connectivity and seawater-driven salinity gradients in shaping microbial communities at the aquifer–reservoir interface remain unclear. Here, we integrated hydrochemical analyses with high-throughput 16S rRNA gene sequencing to investigate bacterial community composition, assembly processes, and co-occurrence network patterns across groundwater_in (entering the reservoir), groundwater_out (exiting the reservoir), and reservoir water in a coastal system. Our findings reveal that seawater intrusion exerts a stronger influence on groundwater_out, leading to distinct chemical profiles and salinity-driven environmental filtering, whereas hydraulic connectivity promotes greater microbial similarity between groundwater_in and reservoir water. Groundwater samples exhibited higher alpha and beta diversity compared to the reservoir, with dominant taxa such as Comamonadaceae, Flavobacteriaceae, and Rhodobacteraceae serving as indicators of seawater intrusion. Community assembly analyses showed that homogeneous selection predominated, especially under strong salinity gradients, while dispersal limitation and spatial distance also contributed in areas of reduced connectivity. Key chemical factors, including TDS, Na+, Cl, Mg2+, and K+, strongly shaped groundwater communities. Additionally, groundwater bacterial networks were more complex and robust than those in reservoir water, suggesting enhanced resilience to salinity stress. Collectively, this study demonstrates that salinity gradients can override the effects of hydraulic connectivity in structuring bacterial communities and their networks at coastal interfaces. Our findings provide novel microbial insights relevant for understanding biogeochemical processes and support the use of microbial indicators for more sensitive monitoring and management of coastal groundwater resources. Full article
(This article belongs to the Special Issue Microbial Communities in Aquatic Environments)
Show Figures

Figure 1

23 pages, 3761 KiB  
Article
Long-Term Changes in Groundwater Levels in the Białowieża Forest, Poland, Under Climate Change
by Andrzej Boczoń, Michał Wróbel and Anna Kowalska
Water 2025, 17(13), 2027; https://doi.org/10.3390/w17132027 - 5 Jul 2025
Viewed by 574
Abstract
Groundwater is the primary water source for ecosystems, and so changes in groundwater levels, if directional and constant, can cause changes in vegetation and habitat characters. In Białowieża National Park, a significant decline in the water table was observed at the beginning of [...] Read more.
Groundwater is the primary water source for ecosystems, and so changes in groundwater levels, if directional and constant, can cause changes in vegetation and habitat characters. In Białowieża National Park, a significant decline in the water table was observed at the beginning of the 20th century. The question therefore arose as to whether the changes that occurred at that time were permanent. A second question was whether the negative trend would continue so clearly in the following years. The study is based on measurements from 1985 to 2005 and 2022 to 2023 taken in the same monitoring wells. Complete data were collected from 21 monitoring wells. An analysis of groundwater levels between 1985 and 2005 showed an average decline of 0.08 m/10 years in swamp habitats, 0.11 m/10 years in moist habitats, and 0.21 m/10 years in fresh habitats. The measurements in 2022 and 2023 showed that the trend of falling water levels had slowed down in almost the entire study area, with water levels in recent years being similar to those at the beginning of the century. This was also confirmed by comparing years with similar precipitation: 2022 with 1986, and 2002, 2004, and 2023 with 1999. This was due to the higher precipitation after 2005. In the period of 2006–2023, precipitation in the hydrological years was on average 60 mm higher than in the period of 1985–2005. Despite the clear trend toward rising air temperatures, the higher precipitation compensated for the higher evapotranspiration. However, one area showed a systematic decrease in water levels. This occurred at the watershed of the two largest rivers in the Białowieża Forest. The findings indicate that watershed areas are most vulnerable to lowering the groundwater level due to climatic warming. Full article
Show Figures

Figure 1

23 pages, 6122 KiB  
Article
Decoding Salinization Dynamics in Mediterranean Coastal Aquifers: A Case Study from a Wetland in Southern Italy
by Giuseppe Passarella, Rita Masciale, Matia Menichini, Marco Doveri and Ivan Portoghese
Environments 2025, 12(7), 227; https://doi.org/10.3390/environments12070227 - 2 Jul 2025
Viewed by 558
Abstract
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water [...] Read more.
This study investigates the salinization processes affecting the coastal aquifer within the Torre Guaceto State Nature Reserve, a Mediterranean coastal area characterized by a unique ecological value of a brackish wetland threatened by water-intensive agricultural activities. Groundwater salinization threatens biodiversity, agriculture, and water resource sustainability. This work integrates hydrogeological monitoring, geochemical and isotopic analyses, and geophysical surveys to understand salinity dynamics and identify key drivers, such as seawater intrusion, irrigation practices, and climate change. Data collected during monitoring campaigns from 2022 to 2024 reveal significant seasonal and spatial variations in groundwater salinity influenced by natural and human-induced factors. The results indicate that salt recycling from irrigation and marine spray deposition are important local contributors to groundwater salinity, in addition to seawater intrusion. These findings highlight the urgent need for integrated groundwater management approaches considering the combined effects of agricultural practices, irrigation water quality, and climate variability tailored to Mediterranean coastal ecosystems. Full article
Show Figures

Figure 1

Back to TopTop