Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (506)

Search Parameters:
Keywords = gross primary productivity (GPP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

23 pages, 5566 KiB  
Article
Response Mechanisms of Vegetation Productivity to Water Variability in Arid and Semi-Arid Areas of China: A Decoupling Analysis of Soil Moisture and Precipitation
by Zijian Liu, Hao Lin, Hongrui Li, Mengyang Li, Peng Zhou, Ziyu Wang and Jiqiang Niu
Atmosphere 2025, 16(8), 933; https://doi.org/10.3390/atmos16080933 - 3 Aug 2025
Viewed by 147
Abstract
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences [...] Read more.
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences of summer surface soil moisture (RSM) and precipitation (PRE) on gross primary productivity (GPP) across arid and semi-arid regions of China from 2000 to 2022. Utilizing GPP datasets alongside correlation analysis, ridge regression, and data binning techniques, the investigation yielded several key findings: (1) Both GPP and RSM exhibited significant upward trends within the study area, whereas precipitation showed no statistically significant trend; notably, GPP demonstrated the highest rate of increase at 0.455 Cg m−2 a−1. (2) Decoupling analysis indicated a coupled relationship between RSM and PRE; however, their individual effects on GPP were not merely a consequence of this coupling. Controlling for evapotranspiration and root-zone soil moisture interference, the analysis revealed that under conditions of elevated RSM, the average increase in summer–autumn GPP (SAGPP) was 0.249, significantly surpassing the increase observed under high-PRE conditions (−0.088). Areas dominated by RSM accounted for 62.13% of the total study region. Furthermore, examination of the aridity gradient demonstrated that the predominance of RSM intensified with increasing aridity, reaching its peak influence in extremely arid zones. This research provides a quantitative assessment of the differential impacts of RSM and PRE on vegetation productivity in China’s arid and semi-arid areas, thereby offering a vital theoretical foundation for improving predictions of terrestrial carbon sink dynamics under future climate change scenarios. Full article
Show Figures

Figure 1

21 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 279
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

21 pages, 14469 KiB  
Article
The Downscaled GOME-2 SIF Based on Machine Learning Enhances the Correlation with Ecosystem Productivity
by Chenyu Hu, Pinhua Xie, Zhaokun Hu, Ang Li and Haoxuan Feng
Remote Sens. 2025, 17(15), 2642; https://doi.org/10.3390/rs17152642 - 30 Jul 2025
Viewed by 241
Abstract
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, [...] Read more.
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, we used a consistent dataset combined with vegetation physiological and meteorological parameters to evaluate four different regression methods in this study. The XGBoost model demonstrated the best performance during cross-validation (R2 = 0.84, RMSE = 0.137 mW/m2/nm/sr) and was, therefore, selected to downscale GOME-2 SIF data. The resulting high-resolution SIF product (HRSIF) has a temporal resolution of 8 days and a spatial resolution of 0.05° × 0.05°. The downscaled product shows high fidelity to the original coarse SIF data when aggregated (correlation = 0.76). The reliability of the product was ensured through cross-validation with ground-based and satellite observations. Moreover, the finer spatial resolution of HRSIF better matches the footprint of eddy covariance flux towers, leading to a significant improvement in the correlation with tower-based gross primary productivity (GPP). Specifically, in the mixed forest vegetation type with the best performance, the R2 increased from 0.66 to 0.85, representing an increase of 28%. This higher-precision product will support more effective ecosystem monitoring and research. Full article
Show Figures

Figure 1

18 pages, 6269 KiB  
Article
Vapor Pressure Deficit Thresholds and Their Impacts on Gross Primary Productivity in Xinjiang Arid Grassland Ecosystems
by Yinan Bai, Changqing Jing, Ying Liu and Yuhui Wang
Sustainability 2025, 17(14), 6261; https://doi.org/10.3390/su17146261 - 8 Jul 2025
Viewed by 275
Abstract
Understanding vegetation responses to atmospheric drought is critical for arid ecosystem management under climate change. However, the threshold of the response mechanism of grassland in arid regions to atmospheric drought remains unclear. This study investigates how vapor pressure deficit (VPD) regulates grassland gross [...] Read more.
Understanding vegetation responses to atmospheric drought is critical for arid ecosystem management under climate change. However, the threshold of the response mechanism of grassland in arid regions to atmospheric drought remains unclear. This study investigates how vapor pressure deficit (VPD) regulates grassland gross primary productivity (GPP) in Xinjiang, China, using MODIS and other multi-source remote sensing data (2000–2020). The results show intensified atmospheric drought in central Tianshan Mountains and southern Junggar Basin, with VPD exhibiting a widespread increasing trend (significant increase: 15.75%, extremely significant increase: 4.68%). Intensified atmospheric drought occurred in the central Tianshan Mountains and southern Junggar Basin. Integrated analyses demonstrate that VPD has a dominant negative impact on GPP (path coefficient = −0.58, p < 0.05), primarily driven by atmospheric drought stress. A ridge regression-derived threshold was identified at 0.61 kPa, marking the point where VPD transitions from stimulating to suppressing productivity. Spatially, 58.75% of the total area showed a significant increase in GPP. These findings advance the mechanistic understanding of atmospheric drought impacts on arid ecosystems and inform adaptive grassland management strategies. Full article
Show Figures

Figure 1

23 pages, 5627 KiB  
Article
Evaluation of Noah-MP Land Surface Model-Simulated Water and Carbon Fluxes Using the FLUXNET Dataset
by Bofeng Pan, Xiaolu Wu and Xitian Cai
Land 2025, 14(7), 1400; https://doi.org/10.3390/land14071400 - 3 Jul 2025
Viewed by 390
Abstract
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales [...] Read more.
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales and vegetation types. This study systematically evaluates the performance of the newly modernized Noah-MP LSM version 5.0 in simulating water and carbon fluxes, specifically ET and GPP, across temporal scales ranging from half-hourly (capturing diurnal cycles) to annual using observational data from 105 sites within the globally FLUXNET2015 dataset. The results reveal that Noah-MP effectively captured the overall variability of both ET and GPP, particularly at short temporal scales. The model successfully simulated the diurnal and seasonal cycles of both fluxes, though cumulative errors increased at the annual scale. Diurnally, the largest simulation biases typically occurred around noon; while, seasonally, biases were smallest in winter. Performance varied significantly across vegetation types. For ET, the simulations were most accurate for open shrublands and deciduous broadleaf forests, while showing the largest deviation for woody savannas. Conversely, GPP simulations were most accurate for wetlands and closed shrublands, showing the largest deviation for evergreen broadleaf forests. Furthermore, an in-depth analysis stratified by the climate background revealed that ET simulations failed to capture inter-annual variability in the temperate and continental zones, while GPP was severely overestimated in arid and temperate climates. This study identifies the strengths and weaknesses of Noah-MP in simulating water and carbon fluxes, providing valuable insights for future model improvements. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

16 pages, 1262 KiB  
Article
Growth, Productivity, and Size Structure of Spirulina Strain Under Different Salinity Levels: Implications for Cultivation Optimization
by Imma Krissalina M. Lao and Brisneve Edullantes
Phycology 2025, 5(3), 31; https://doi.org/10.3390/phycology5030031 - 2 Jul 2025
Viewed by 489
Abstract
Salinity serves as a critical environmental factor influencing the physiological and morphological characteristics of Spirulina, a filamentous cyanobacterium used for food production and commercial purposes. This study examined a Spirulina strain’s responses to different salinity levels (10–45 ppt) through three independent laboratory [...] Read more.
Salinity serves as a critical environmental factor influencing the physiological and morphological characteristics of Spirulina, a filamentous cyanobacterium used for food production and commercial purposes. This study examined a Spirulina strain’s responses to different salinity levels (10–45 ppt) through three independent laboratory experiments that determined growth, productivity, and size structure. Growth across salinity treatments was assessed by monitoring optical density in 24-well microplates over 20 days and estimating specific growth rates using a logistic growth model. Primary productivity under different salinity and light conditions was measured using light and dark bottle experiments to calculate gross primary productivity (GPP) and to estimate photosynthetic efficiency through linear regression of GPP against light intensity. The size structure was assessed through tube-based experiments and image analysis, with organism sizes categorized and analyzed to identify salinity-induced patterns in filament structure. The study demonstrated that the Spirulina strain achieved its greatest growth at 10 ppt yet produced the highest photosynthetic efficiency between 27 and 45 ppt because it reallocated energy during salinity stress. The morphological analysis revealed that the Spirulina strain produced medium-sized filaments between 400 and 799 µm at elevated salinity levels, and our analysis confirmed substantial variations in size structure. The Spirulina strain demonstrates both physiological and morphological plasticity when exposed to salinity changes. The cultivation of the Spirulina strain at 27 ppt provides conditions that support moderate growth, enhanced productivity, and manageable morphological shifts while using its natural salinity tolerance to improve the efficiency and scalability of production for diverse biotechnological applications. Full article
Show Figures

Figure 1

25 pages, 77832 KiB  
Article
Fine-Scale Variations and Driving Factors of GPP Derived from Multi-Source Data Fusion in the Mountainous Region of Northwestern Hubei
by Dicheng Bai, Yuchen Wang, Yongming Ma, Huanhuan Li and Xiaobin Guan
Remote Sens. 2025, 17(13), 2186; https://doi.org/10.3390/rs17132186 - 25 Jun 2025
Viewed by 335
Abstract
Vegetation photosynthesis is a key Earth system process that can fix carbon dioxide in the atmosphere. Mountainous areas usually have high productivity and extensive vegetation cover, but their study requires a higher spatiotemporal resolution due to the complex climate and vegetation variations with [...] Read more.
Vegetation photosynthesis is a key Earth system process that can fix carbon dioxide in the atmosphere. Mountainous areas usually have high productivity and extensive vegetation cover, but their study requires a higher spatiotemporal resolution due to the complex climate and vegetation variations with altitude. In this study, we analyzed the variations and climatic responses of vegetation gross primary productivity (GPP) in northwestern Hubei, China, at a 30 m spatial resolution from 2001 to 2020, based on the fusion of multi-source remote sensing data. A GPP estimation framework based on the CASA model was applied, and spatiotemporal fusion of Landsat and MODIS data was achieved using the STNLFFM algorithm. The results indicate that GPP exhibits higher values in the mountainous regions of west Shennongjia, compared to the eastern plain regions, with a generally increasing trend with increasing elevation. GPP has shown an overall increasing trend over the past 20 years, with almost 90% of the high-elevation regions showing an increasing trend, and the low-elevation regions showing an opposite trend. The relationship between GPP and climate factors is greatly impacted by the temporal scale, with the most pronounced correlation at a seasonal scale. The impact of temperature has been generally stable over the past 20 years across different altitudes, while the relationship with precipitation has exhibited an overall decreasing trend with the increase of altitude. Precipitation and temperature correlations show opposing variations in different months and elevations, which can be mainly attributed to the varied climatic conditions in the different elevations. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 3086 KiB  
Article
Contribution of Different Forest Strata on Energy and Carbon Fluxes over an Araucaria Forest in Southern Brazil
by Marcelo Bortoluzzi Diaz, Pablo Eli Soares de Oliveira, Vanessa de Arruda Souza, Claudio Alberto Teichrieb, Hans Rogério Zimermann, Gustavo Pujol Veeck, Alecsander Mergen, Maria Eduarda Oliveira Pinheiro, Michel Baptistella Stefanello, Osvaldo L. L. de Moraes, Gabriel de Oliveira, Celso Augusto Guimarães Santos and Débora Regina Roberti
Forests 2025, 16(6), 1008; https://doi.org/10.3390/f16061008 - 16 Jun 2025
Viewed by 616
Abstract
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each [...] Read more.
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each forest stratum to improve understanding of surface–atmosphere interactions. Eddy covariance data from November 2009 to April 2012 were used to assess fluxes in an Araucaria forest in Paraná, Brazil, across the ecosystem, understory, and overstory strata. On average, the ecosystem acts as a carbon sink of −298.96 g C m−2 yr−1, with absorption doubling in spring–summer compared to autumn–winter. The understory primarily acts as a source, while the overstory functions as a CO2 sink, driving carbon absorption. The overstory contributes 63% of the gross primary production (GPP) and 75% of the latent heat flux, while the understory accounts for 94% of the ecosystem respiration (RE). The energy fluxes exhibited marked seasonality, with higher latent and sensible heat fluxes in summer, with sensible heat predominantly originating from the overstory. Annual ecosystem evapotranspiration reaches 1010 mm yr−1: 60% of annual precipitation. Water-use efficiency is 2.85 g C kgH2O−1, with higher values in autumn–winter and in the understory. The influence of meteorological variables on the fluxes was analyzed across different scales and forest strata, showing that solar radiation is the main driver of daily fluxes, while air temperature and vapor pressure deficit are more relevant at monthly scales. This study highlights the overstory’s dominant role in carbon absorption and energy fluxes, reinforcing the need to preserve these ecosystems for their crucial contributions to climate regulation and water-use efficiency. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 5307 KiB  
Article
Increasing Ecosystem Fluxes Observed from Eddy Covariance and Solar-Induced Fluorescence Data
by Jiao Zheng, Hao Zhou, Xu Yue, Xichuan Liu, Zhuge Xia, Jun Wang, Jingfeng Xiao, Xing Li and Fangmin Zhang
Remote Sens. 2025, 17(12), 2064; https://doi.org/10.3390/rs17122064 - 15 Jun 2025
Viewed by 617
Abstract
Ecosystems modulate Earth’s climate through the exchange of carbon and water fluxes. However, long-term trends in these terrestrial fluxes remain unclear due to the lack of continuous measurements on the global scale. This study combined flux data from 197 eddy covariance sites with [...] Read more.
Ecosystems modulate Earth’s climate through the exchange of carbon and water fluxes. However, long-term trends in these terrestrial fluxes remain unclear due to the lack of continuous measurements on the global scale. This study combined flux data from 197 eddy covariance sites with satellite-retrieved solar-induced chlorophyll fluorescence (SIF) to investigate spatiotemporal variations in gross primary productivity (GPP), evapotranspiration (ET), and their coupling via water use efficiency (WUE) from 2001 to 2020. We developed six global GPP and ET products at 0.05° spatial and 8-day temporal resolution, using two machine learning models and three SIF products, which integrate vegetation physiological parameters with data-driven approaches. These datasets provided mean estimates of 128 ± 2.3 Pg C yr−1 for GPP, 522 ± 58.2 mm yr−1 for ET, and 1.8 ± 0.21 g C kg−1 H2O yr−1 for WUE, with upward trends of 0.22 ± 0.04 Pg C yr−2 in GPP, 0.64 ± 0.14 mm yr−2 in ET, and 0.0019 ± 0.0005 g C kg−1 H2O yr−2 in WUE over the past two decades. These high-resolution datasets are valuable for exploring terrestrial carbon and water responses to climate change, as well as for benchmarking terrestrial biosphere models. Full article
Show Figures

Figure 1

27 pages, 6188 KiB  
Article
Unraveling the Scale Dependency of SIF-Based Phenology: Amplified Trends and Climate Responses
by Xiufeng Chen, Yanbin Yuan, Tao Xiong, Sicong He and Heng Dong
Remote Sens. 2025, 17(12), 2059; https://doi.org/10.3390/rs17122059 - 15 Jun 2025
Viewed by 495
Abstract
Plant phenology is closely related to plant function, ecosystem services, and climate balance. Solar-induced chlorophyll fluorescence (SIF) offers new perspectives on plant phenology at regional and global scales. However, the effect of SIF products at different scales on phenology extraction is still unclear. [...] Read more.
Plant phenology is closely related to plant function, ecosystem services, and climate balance. Solar-induced chlorophyll fluorescence (SIF) offers new perspectives on plant phenology at regional and global scales. However, the effect of SIF products at different scales on phenology extraction is still unclear. Understanding of the mechanisms underlying phenological responses to environmental factors remains incomplete. Therefore, in this study, two phenological metrics for the Start of Growing Season (SOS) and the End of Growing Season (EOS) were extracted from the phenology of deciduous forests in the middle and high latitudes of the Northern Hemisphere, utilizing SIF products at scales of 1 km, 5 km, and 50 km, and applying the Savitzky-Golay filtering method along with the dynamic threshold method. Our results showed that the 1-km resolution SIF had a significant advantage over the 5-km and 50-km resolution SIFs in terms of consistency with the extracted phenology results from the Gross Primary Productivity (GPP) sites, with mean absolute errors (MAEs) of 4.48 and 15.49 days for SOS and EOS, respectively. For the 5-km resolution SIF, the MAEs for the same phenological metrics were 9.2 and 21.07 days. For the 50-km resolution SIF, the MAEs were 58.94 and 42.73 days. Meanwhile, this study analyzed the trends of phenology utilizing the three scales of SIF products and found a general trend of advancement. The coarser spatial resolution of the SIF data made the trend of advancement more obvious. Using SHapley Additive exPlanations (SHAP) analysis, we investigated the phenological responses to environmental factors at different scales. We found that SOS/EOS were mainly regulated by soil and air temperature, whereas the scale effect on this analysis’ results was not significant. This study has implications for optimizing the use of data, understanding ecosystem changes, predicting vegetation dynamics under global change, and developing adaptive management strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 5906 KiB  
Article
Effects of Drought Stress on the Relationship Between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity in a Chinese Cork Oak Plantation
by Qingmei Pan, Chunxia He, Shoujia Sun, Jinsong Zhang, Xiangfen Cheng, Meijun Hu and Xin Wang
Remote Sens. 2025, 17(12), 2017; https://doi.org/10.3390/rs17122017 - 11 Jun 2025
Viewed by 940
Abstract
Solar-induced chlorophyll fluorescence (SIF) is a powerful tool for the estimation of gross primary productivity (GPP), but the relationship between SIF and GPP under drought stress remains incompletely understood. Elucidating the response of the relationship between SIF and GPP to drought stress is [...] Read more.
Solar-induced chlorophyll fluorescence (SIF) is a powerful tool for the estimation of gross primary productivity (GPP), but the relationship between SIF and GPP under drought stress remains incompletely understood. Elucidating the response of the relationship between SIF and GPP to drought stress is essential in order to enhance the precision of GPP estimation in forests. In this study, we obtained SIF in the red (SIF687) and far-red (SIF760) bands and GPP data from tower flux observations in a Chinese cork oak plantation to explore the response of the diurnal GPP-SIF relationship to drought stress. The plant water stress index (PWSI) was used to quantify drought stress. The results show that drought reduced SIF and GPP, but GPP was more sensitive to drought stress than SIF. The diurnal non-linear relationship of GPP-SIF (R2) decreased with the increase in drought stress, but a significant non-linear correlation remained for GPP-SIF (R2_GPP-SIF760 = 0.30, R2_GPP-SIF687 = 0.23) under severe drought stress (PWSIbin: 0.8–0.9). Physiological coupling strengthened the GPP-SIF relationship under drought, while canopy structure effects were negligible. Random forest and path analyses revealed that VPD was the key factor reducing the GPP-SIF correlation during drought. Incorporating VPD into the GPP-SIF relationship improved the GPP estimation accuracy by over 48% under severe drought stress. The red SIF allowed for more accurate GPP estimations than the far-red SIF under drought conditions. Our results offer important perspectives on the GPP-SIF relationship under drought conditions, potentially helping to improve GPP model predictions in the face of climate change. Full article
Show Figures

Figure 1

20 pages, 10937 KiB  
Article
Adaptive Analysis of Ecosystem Stability in China to Soil Moisture Variations: A Perspective Based on Climate Zoning and Land Use Types
by Yuanbo Lu, Yang Yu, Xiaoyun Ding, Lingxiao Sun, Chunlan Li, Jing He, Zengkun Guo, Ireneusz Malik, Malgorzata Wistuba and Ruide Yu
Remote Sens. 2025, 17(12), 1971; https://doi.org/10.3390/rs17121971 - 6 Jun 2025
Viewed by 405
Abstract
In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones [...] Read more.
In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones and land cover types. Sen’s Slope Estimation and the Mann–Kendall trend test, combined with linear regression and correlation analyses, are employed to analyze the long-term trends of EVI and GPP in different climatic zones and land cover types and to assess the effects of soil moisture changes on ecosystem stability. The research reveals the following findings: (1) On a national scale, both EVI and GPP exhibit positive growth trends, with more significant increases in humid areas and relatively slower growth in arid areas. In addition, EVI and GPP of different land cover types exhibit positive inter-annual variation trends, reflecting a gradual enhancement in ecosystem productivity. (2) Cluster analysis shows that EVI has strong spatial correlation, with a distribution pattern of low–low (L-L) clusters in the north and high–high (H-H) clusters in the south. L-H clusters are concentrated in the Huaihai, Southwest Rivers, and Pearl River basins, while H-L clusters are scattered along the eastern coast. The spatial correlation of GPP is mainly concentrated in the south and the northeast, with a distribution pattern of L-L in the northeast, L-H in the Yangtze River basin, and H-H in the south. H-L clusters are dispersed in the downstream area of the Yangtze River. Both EVI and GPP show a tendency for high-value aggregation in space, with high-value areas of EVI located in the south and low-value areas in the central and western regions. High-value areas of GPP are in the south, while low-value areas are in the northeast, particularly in the Yangtze River Delta. (3) The correlation between EVI, GPP, and soil moisture varies significantly across different climatic regions. Arid and semi-humid regions show significant correlations between specific soil moisture depths and EVI and GPP, while such correlations are not significant in humid regions. The EVI and GPP values of croplands and grasslands are significantly and negatively correlated with soil moisture at depths of 150–200 cm (SM4). Conversely, wetland GPP values increase significantly with increasing soil moisture. Other vegetation types do not show significant correlations with soil moisture. The results of this study provide an important basis for understanding the impact of climate change on ecosystem stability and offer scientific guidance for ecological protection and water resource management. Full article
Show Figures

Figure 1

26 pages, 7751 KiB  
Article
Twenty-Year Variability in Water Use Efficiency over the Farming–Pastoral Ecotone of Northern China: Driving Force and Resilience to Drought
by Xiaonan Guo, Meng Wu, Zhijun Shen, Guofei Shang, Qingtao Ma, Hongyu Li, Lei He and Zhao-Liang Li
Agriculture 2025, 15(11), 1164; https://doi.org/10.3390/agriculture15111164 - 28 May 2025
Viewed by 462
Abstract
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water [...] Read more.
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water scarcity, has long been recognized as an ecologically fragile zone. The ecological restoration projects in China have mitigated land degradation and maintain the sustainability of dryland. However, the process of greening in drylands has the potential to impact water availability. A comprehensive analysis of the WUE in the FPENC can help to understand the carbon absorption and water consumption. Using gross primary production (GPP) and evapotranspiration (ET) data from a MODerate resolution Imaging Spectroradiometer (MODIS), alongside biophysical variables data and land cover information, the spatio-temporal variations in WUE from 2003 to 2022 were examined. Additionally, its driving force and the ecosystem resilience were also revealed. Results indicated that the annual mean of WUE fluctuated between 0.52 and 2.60 gC kgH2O−1, showing a non-significant decreasing trend across the FPENC. Notably, the annual averaged WUE underwent a significant decline before 2012 (p < 0.05), and then showed a slight increased trend (p = 0.14) during the year afterward (i.e., 2013–2022). In terms of climatic controls, temperature (Temp) and soil volumetric water content (VSWC) dominantly affected WUE from 2003 to 2012; VPD (vapor pressure deficit), VSWC, and Temp showed comprehensive controls from 2013 to 2022. The findings suggest that a wetter atmosphere and increased soil moisture contribute to the decline in WUE. In total, 59.2% of FPENC was shown to be non-resilient, as grassland occupy the majority of the area, located in Mu Us Sandy land and Horqin Sand Land. These results underscore the importance of climatic factors in the regulation WUE over FPENC and highlight the necessity for focused research on WUE responses to climate change, particularly extreme events like droughts, in the future. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

15 pages, 5288 KiB  
Article
Seasonal Variations in the Relationship Between Canopy Solar-Induced Chlorophyll Fluorescence and Gross Primary Production in a Temperate Evergreen Needleleaf Forest
by Kaijie Yang, Yifei Cai, Xiaoya Li, Weiwei Cong, Yiming Feng and Feng Wang
Forests 2025, 16(6), 893; https://doi.org/10.3390/f16060893 - 26 May 2025
Viewed by 369
Abstract
The temperate evergreen needleleaf forest (ENF), primarily composed of Mongolian Scots pine (Pinus sylvestris var. mongolica), plays a pivotal role in the “The Great Green Wall” Shelterbelt Project in northern China as a major species for windbreak and sand fixation. Solar-induced [...] Read more.
The temperate evergreen needleleaf forest (ENF), primarily composed of Mongolian Scots pine (Pinus sylvestris var. mongolica), plays a pivotal role in the “The Great Green Wall” Shelterbelt Project in northern China as a major species for windbreak and sand fixation. Solar-induced chlorophyll fluorescence (SIF) has emerged as a revolutionary remote sensing signal for quantifying photosynthetic activity and gross primary production (GPP) at the ecosystem scale. Meanwhile, eddy covariance (EC) technology has been widely employed to obtain in situ GPP estimates. Although a linear relationship between SIF and GPP has been reported in various ecosystems, it is mainly derived from satellite SIF products and flux-tower GPP observations, which are often difficult to align due to mismatches in spatial and temporal resolution. In this study, we analyzed synchronous high-frequency SIF and EC-derived GPP measurements from a Mongolian Scots pine plantation during the seasonal transition (August–December). The results revealed the following. (1) The ENF acted as a net carbon sink during the observation period, with a total carbon uptake of 100.875 gC·m−2. The diurnal dynamics of net ecosystem exchange (NEE) exhibited a “U”-shaped pattern, with peak carbon uptake occurring around midday. As the growing season progressed toward dormancy, the timing of CO2 uptake and release gradually shifted. (2) Both GPP and SIF peaked in September and declined thereafter. A strong linear relationship between SIF and GPP (R2 = 0.678) was observed, consistent across both diurnal and sub-daily scales. SIF demonstrated higher sensitivity to light and environmental changes, particularly during the autumn–winter transition. Cloudy and rainy conditions significantly affect the relationship between SIF and GPP. These findings highlight the potential of canopy SIF observations to capture seasonal photosynthesis dynamics accurately and provide a methodological foundation for regional GPP estimation using remote sensing. This work also contributes scientific insights toward achieving China’s carbon neutrality goals. Full article
Show Figures

Figure 1

Back to TopTop