Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (832)

Search Parameters:
Keywords = green training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1887 KiB  
Article
Knowledge Sharing: Key to Sustainable Building Construction Implementation
by Chijioke Emmanuel Emere, Clinton Ohis Aigbavboa and Olusegun Aanuoluwapo Oguntona
Eng 2025, 6(8), 190; https://doi.org/10.3390/eng6080190 - 6 Aug 2025
Abstract
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice [...] Read more.
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice globally has been emphasised by earlier research. Consequently, this study aims to investigate knowledge-sharing elements to enhance SBC in South Africa (SA). Utilising a questionnaire survey, this study elicited data from 281 professionals in the built environment. Data analysis was performed with “descriptive statistics”, the “Kruskal–Wallis H-test”, and “principal component analysis” to determine the principal knowledge-sharing features (KSFs). This study found that “creating public awareness of sustainable practices”, the “content of SBC training, raising awareness of green building products”, “SBC integration in professional certifications”, an “information hub or repository for sustainable construction”, and “mentoring younger professionals in sustainable practices” are the most critical KSFs for SBC deployment. These formed a central cluster, the Green Education Initiative and Eco-Awareness Alliance. The results achieved a reliability test value of 0.956. It was concluded that to embrace the full adoption of SBC, corporate involvement is critical, and all stakeholders must embrace the sustainability paradigm. It is recommended that the principal knowledge-sharing features revealed in this study should be carefully considered to help construction stakeholders in fostering knowledge sharing for a sustainable built environment. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
12 pages, 3315 KiB  
Article
NeRF-RE: An Improved Neural Radiance Field Model Based on Object Removal and Efficient Reconstruction
by Ziyang Li, Yongjian Huai, Qingkuo Meng and Shiquan Dong
Information 2025, 16(8), 654; https://doi.org/10.3390/info16080654 - 31 Jul 2025
Viewed by 171
Abstract
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study [...] Read more.
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study introduces a 3D scene reconstruction and rendering strategy based on implicit neural representation through the efficient and removable neural radiation fields model (NeRF-RE). Leveraging neural radiance fields (NeRF), the model incorporates a multi-resolution hash grid and proposal network to improve training efficiency and modeling accuracy, while integrating a segment-anything model to safeguard public privacy. Take the crabapple tree, extensively utilized in urban garden design across temperate regions of the Northern Hemisphere. A dataset comprising 660 images of crabapple trees exhibiting three distinct geometric forms is collected to assess the NeRF-RE model’s performance. The results demonstrated that the ‘harvest gold’ crabapple scene had the highest reconstruction accuracy, with PSNR, LPIPS and SSIM of 24.80 dB, 0.34 and 0.74, respectively. Compared to the Mip-NeRF 360 model, the NeRF-RE model not only showed an up to 21-fold increase in training efficiency for three types of crabapple trees, but also exhibited a less pronounced impact of dataset size on reconstruction accuracy. This study reconstructs real scenes with high fidelity using virtual reality technology. It not only facilitates people’s personal enjoyment of the beauty of natural gardens at home, but also makes certain contributions to the publicity and promotion of urban landscapes. Full article
(This article belongs to the Special Issue Extended Reality and Its Applications)
Show Figures

Figure 1

27 pages, 4327 KiB  
Article
The Art Nouveau Path: Promoting Sustainability Competences Through a Mobile Augmented Reality Game
by João Ferreira-Santos and Lúcia Pombo
Multimodal Technol. Interact. 2025, 9(8), 77; https://doi.org/10.3390/mti9080077 - 29 Jul 2025
Viewed by 348
Abstract
This paper presents a qualitative case study on the design, implementation, and validation of the Art Nouveau Path, a mobile augmented reality game developed to foster sustainability competences through engagement with Aveiro’s Art Nouveau built heritage. Grounded in the GreenComp framework and [...] Read more.
This paper presents a qualitative case study on the design, implementation, and validation of the Art Nouveau Path, a mobile augmented reality game developed to foster sustainability competences through engagement with Aveiro’s Art Nouveau built heritage. Grounded in the GreenComp framework and developed through a Design-Based Research approach, the game integrates location-based interaction, narrative storytelling, and multimodal augmented reality and multimedia content to activate key competences such as systems thinking, futures literacy, and sustainability-oriented action. The game was validated with 33 in-service schoolteachers, both through a simulation-based training workshop and a curricular review of the game. A mixed-methods strategy was used, combining structured questionnaires, open-ended reflections, and curricular review. The findings revealed strong emotional and motivational engagement, interdisciplinary relevance, and alignment with formal education goals. Teachers emphasized the game’s capacity to connect local identity with global sustainability challenges through immersive and reflective experiences. Limitations pointed to the need for enhanced pedagogical scaffolding, clearer integration into STEAM subjects, and broader accessibility across technological contexts. This study demonstrates that these games, when grounded in competence-based frameworks and inclusive design, can meaningfully support multimodal, situated learning for sustainability and offer valuable contributions to pedagogical innovation in Education for Sustainable Development. Full article
Show Figures

Figure 1

33 pages, 4841 KiB  
Article
Research on Task Allocation in Four-Way Shuttle Storage and Retrieval Systems Based on Deep Reinforcement Learning
by Zhongwei Zhang, Jingrui Wang, Jie Jin, Zhaoyun Wu, Lihui Wu, Tao Peng and Peng Li
Sustainability 2025, 17(15), 6772; https://doi.org/10.3390/su17156772 - 25 Jul 2025
Viewed by 343
Abstract
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in [...] Read more.
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in the single-operation mode that handles inbound or outbound tasks individually, with limited attention paid to the more prevalent composite operation mode where inbound and outbound tasks coexist. To bridge this gap, this study investigates the task allocation problem in an FWSS/RS under the composite operation mode, and deep reinforcement learning (DRL) is introduced to solve it. Initially, the FWSS/RS operational workflows and equipment motion characteristics are analyzed, and a task allocation model with the total task completion time as the optimization objective is established. Furthermore, the task allocation problem is transformed into a partially observable Markov decision process corresponding to reinforcement learning. Each shuttle is regarded as an independent agent that receives localized observations, including shuttle position information and task completion status, as inputs, and a deep neural network is employed to fit value functions to output action selections. Correspondingly, all agents are trained within an independent deep Q-network (IDQN) framework that facilitates collaborative learning through experience sharing while maintaining decentralized decision-making based on individual observations. Moreover, to validate the efficiency and effectiveness of the proposed model and method, experiments were conducted across various problem scales and transport resource configurations. The experimental results demonstrate that the DRL-based approach outperforms conventional task allocation methods, including the auction algorithm and the genetic algorithm. Specifically, the proposed IDQN-based method reduces the task completion time by up to 12.88% compared to the auction algorithm, and up to 8.64% compared to the genetic algorithm across multiple scenarios. Moreover, task-related factors are found to have a more significant impact on the optimization objectives of task allocation than transport resource-related factors. Full article
Show Figures

Figure 1

23 pages, 3301 KiB  
Article
An Image-Based Water Turbidity Classification Scheme Using a Convolutional Neural Network
by Itzel Luviano Soto, Yajaira Concha-Sánchez and Alfredo Raya
Computation 2025, 13(8), 178; https://doi.org/10.3390/computation13080178 - 23 Jul 2025
Viewed by 283
Abstract
Given the importance of turbidity as a key indicator of water quality, this study investigates the use of a convolutional neural network (CNN) to classify water samples into five turbidity-based categories. These classes were defined using ranges inspired by Mexican environmental regulations and [...] Read more.
Given the importance of turbidity as a key indicator of water quality, this study investigates the use of a convolutional neural network (CNN) to classify water samples into five turbidity-based categories. These classes were defined using ranges inspired by Mexican environmental regulations and generated from 33 laboratory-prepared mixtures with varying concentrations of suspended clay particles. Red, green, and blue (RGB) images of each sample were captured under controlled optical conditions, and turbidity was measured using a calibrated turbidimeter. A transfer learning (TL) approach was applied using EfficientNet-B0, a deep yet computationally efficient CNN architecture. The model achieved an average accuracy of 99% across ten independent training runs, with minimal misclassifications. The use of a lightweight deep learning model, combined with a standardized image acquisition protocol, represents a novel and scalable alternative for rapid, low-cost water quality assessment in future environmental monitoring systems. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

30 pages, 13059 KiB  
Article
Verifying the Effects of the Grey Level Co-Occurrence Matrix and Topographic–Hydrologic Features on Automatic Gully Extraction in Dexiang Town, Bayan County, China
by Zhuo Chen and Tao Liu
Remote Sens. 2025, 17(15), 2563; https://doi.org/10.3390/rs17152563 - 23 Jul 2025
Viewed by 360
Abstract
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of [...] Read more.
Erosion gullies can reduce arable land area and decrease agricultural machinery efficiency; therefore, automatic gully extraction on a regional scale should be one of the preconditions of gully control and land management. The purpose of this study is to compare the effects of the grey level co-occurrence matrix (GLCM) and topographic–hydrologic features on automatic gully extraction and guide future practices in adjacent regions. To accomplish this, GaoFen-2 (GF-2) satellite imagery and high-resolution digital elevation model (DEM) data were first collected. The GLCM and topographic–hydrologic features were generated, and then, a gully label dataset was built via visual interpretation. Second, the study area was divided into training, testing, and validation areas, and four practices using different feature combinations were conducted. The DeepLabV3+ and ResNet50 architectures were applied to train five models in each practice. Thirdly, the trainset gully intersection over union (IOU), test set gully IOU, receiver operating characteristic curve (ROC), area under the curve (AUC), user’s accuracy, producer’s accuracy, Kappa coefficient, and gully IOU in the validation area were used to assess the performance of the models in each practice. The results show that the validated gully IOU was 0.4299 (±0.0082) when only the red (R), green (G), blue (B), and near-infrared (NIR) bands were applied, and solely combining the topographic–hydrologic features with the RGB and NIR bands significantly improved the performance of the models, which boosted the validated gully IOU to 0.4796 (±0.0146). Nevertheless, solely combining GLCM features with RGB and NIR bands decreased the accuracy, which resulted in the lowest validated gully IOU of 0.3755 (±0.0229). Finally, by employing the full set of RGB and NIR bands, the GLCM and topographic–hydrologic features obtained a validated gully IOU of 0.4762 (±0.0163) and tended to show an equivalent improvement with the combination of topographic–hydrologic features and RGB and NIR bands. A preliminary explanation is that the GLCM captures the local textures of gullies and their backgrounds, and thus introduces ambiguity and noise into the convolutional neural network (CNN). Therefore, the GLCM tends to provide no benefit to automatic gully extraction with CNN-type algorithms, while topographic–hydrologic features, which are also original drivers of gullies, help determine the possible presence of water-origin gullies when optical bands fail to tell the difference between a gully and its confusing background. Full article
Show Figures

Figure 1

17 pages, 1467 KiB  
Article
Confidence-Based Knowledge Distillation to Reduce Training Costs and Carbon Footprint for Low-Resource Neural Machine Translation
by Maria Zafar, Patrick J. Wall, Souhail Bakkali and Rejwanul Haque
Appl. Sci. 2025, 15(14), 8091; https://doi.org/10.3390/app15148091 - 21 Jul 2025
Viewed by 446
Abstract
The transformer-based deep learning approach represents the current state-of-the-art in machine translation (MT) research. Large-scale pretrained transformer models produce state-of-the-art performance across a wide range of MT tasks for many languages. However, such deep neural network (NN) models are often data-, compute-, space-, [...] Read more.
The transformer-based deep learning approach represents the current state-of-the-art in machine translation (MT) research. Large-scale pretrained transformer models produce state-of-the-art performance across a wide range of MT tasks for many languages. However, such deep neural network (NN) models are often data-, compute-, space-, power-, and energy-hungry, typically requiring powerful GPUs or large-scale clusters to train and deploy. As a result, they are often regarded as “non-green” and “unsustainable” technologies. Distilling knowledge from large deep NN models (teachers) to smaller NN models (students) is a widely adopted sustainable development approach in MT as well as in broader areas of natural language processing (NLP), including speech, and image processing. However, distilling large pretrained models presents several challenges. First, increased training time and cost that scales with the volume of data used for training a student model. This could pose a challenge for translation service providers (TSPs), as they may have limited budgets for training. Moreover, CO2 emissions generated during model training are typically proportional to the amount of data used, contributing to environmental harm. Second, when querying teacher models, including encoder–decoder models such as NLLB, the translations they produce for low-resource languages may be noisy or of low quality. This can undermine sequence-level knowledge distillation (SKD), as student models may inherit and reinforce errors from inaccurate labels. In this study, the teacher model’s confidence estimation is employed to filter those instances from the distilled training data for which the teacher exhibits low confidence. We tested our methods on a low-resource Urdu-to-English translation task operating within a constrained training budget in an industrial translation setting. Our findings show that confidence estimation-based filtering can significantly reduce the cost and CO2 emissions associated with training a student model without drop in translation quality, making it a practical and environmentally sustainable solution for the TSPs. Full article
(This article belongs to the Special Issue Deep Learning and Its Applications in Natural Language Processing)
Show Figures

Figure 1

18 pages, 35958 KiB  
Article
OpenFungi: A Machine Learning Dataset for Fungal Image Recognition Tasks
by Anca Cighir, Roland Bolboacă and Teri Lenard
Life 2025, 15(7), 1132; https://doi.org/10.3390/life15071132 - 18 Jul 2025
Viewed by 406
Abstract
A key aspect driving advancements in machine learning applications in medicine is the availability of publicly accessible datasets. Evidently, there are studies conducted in the past with promising results, but they are not reproducible due to the fact that the data used are [...] Read more.
A key aspect driving advancements in machine learning applications in medicine is the availability of publicly accessible datasets. Evidently, there are studies conducted in the past with promising results, but they are not reproducible due to the fact that the data used are closed or proprietary or the authors were not able to publish them. The current study aims to narrow this gap for researchers who focus on image recognition tasks in microbiology, specifically in fungal identification and classification. An open database named OpenFungi is made available in this work; it contains high-quality images of macroscopic and microscopic fungal genera. The fungal cultures were grown from food products such as green leaf spices and cereals. The quality of the dataset is demonstrated by solving a classification problem with a simple convolutional neural network. A thorough experimental analysis was conducted, where six performance metrics were measured in three distinct validation scenarios. The results obtained demonstrate that in the fungal species classification task, the model achieved an overall accuracy of 99.79%, a true-positive rate of 99.55%, a true-negative rate of 99.96%, and an F1 score of 99.63% on the macroscopic dataset. On the microscopic dataset, the model reached a 97.82% accuracy, a 94.89% true-positive rate, a 99.19% true-negative rate, and a 95.20% F1 score. The results also reveal that the model maintains promising performance even when trained on smaller datasets, highlighting its robustness and generalization capabilities. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 5633 KiB  
Article
Duck Egg Crack Detection Using an Adaptive CNN Ensemble with Multi-Light Channels and Image Processing
by Vasutorn Chaowalittawin, Woranidtha Krungseanmuang, Posathip Sathaporn and Boonchana Purahong
Appl. Sci. 2025, 15(14), 7960; https://doi.org/10.3390/app15147960 - 17 Jul 2025
Viewed by 324
Abstract
Duck egg quality classification is critical in farms, hatcheries, and salted egg processing plants, where cracked eggs must be identified before further processing or distribution. However, duck eggs present a unique challenge due to their white eggshells, which make cracks difficult to detect [...] Read more.
Duck egg quality classification is critical in farms, hatcheries, and salted egg processing plants, where cracked eggs must be identified before further processing or distribution. However, duck eggs present a unique challenge due to their white eggshells, which make cracks difficult to detect visually. In current practice, human inspectors use standard white light for crack detection, and many researchers have focused primarily on improving detection algorithms without addressing lighting limitations. Therefore, this paper presents duck egg crack detection using an adaptive convolutional neural network (CNN) model ensemble with multi-light channels. We began by developing a portable crack detection system capable of controlling various light sources to determine the optimal lighting conditions for crack visibility. A total of 23,904 images were collected and evenly distributed across four lighting channels (red, green, blue, and white), with 1494 images per channel. The dataset was then split into 836 images for training, 209 images for validation, and 449 images for testing per lighting condition. To enhance image quality prior to model training, several image pre-processing techniques were applied, including normalization, histogram equalization (HE), and contrast-limited adaptive histogram equalization (CLAHE). The Adaptive MobileNetV2 was employed to evaluate the performance of crack detection under different lighting and pre-processing conditions. The results indicated that, under red lighting, the model achieved 100.00% accuracy, precision, recall, and F1-score across almost all pre-processing methods. Under green lighting, the highest accuracy of 99.80% was achieved using the image normalization method. For blue lighting, the model reached 100.00% accuracy with the HE method. Under white lighting, the highest accuracy of 99.83% was achieved using both the original and HE methods. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

26 pages, 2018 KiB  
Review
Influence of Light Regimes on Production of Beneficial Pigments and Nutrients by Microalgae for Functional Plant-Based Foods
by Xiang Huang, Feng Wang, Obaid Ur Rehman, Xinjuan Hu, Feifei Zhu, Renxia Wang, Ling Xu, Yi Cui and Shuhao Huo
Foods 2025, 14(14), 2500; https://doi.org/10.3390/foods14142500 - 17 Jul 2025
Viewed by 481
Abstract
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic [...] Read more.
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic microalgae are particularly important as a source of food products due to their ability to biosynthesize high-value compounds. Their photosynthetic efficiency and biosynthetic activity are directly influenced by light conditions. The primary goal of this study is to track the changes in the light requirements of various high-value microalgae species and use advanced systems to regulate these conditions. Artificial intelligence (AI) and machine learning (ML) models have emerged as pivotal tools for intelligent microalgal cultivation. This approach involves the continuous monitoring of microalgal growth, along with the real-time optimization of environmental factors and light conditions. By accumulating data through cultivation experiments and training AI models, the development of intelligent microalgae cell factories is becoming increasingly feasible. This review provides a concise overview of the regulatory mechanisms that govern microalgae growth in response to light conditions, explores the utilization of microalgae-based products in plant-based foods, and highlights the potential for future research on intelligent microalgae cultivation systems. Full article
Show Figures

Graphical abstract

32 pages, 6589 KiB  
Article
Machine Learning (AutoML)-Driven Wheat Yield Prediction for European Varieties: Enhanced Accuracy Using Multispectral UAV Data
by Krstan Kešelj, Zoran Stamenković, Marko Kostić, Vladimir Aćin, Dragana Tekić, Tihomir Novaković, Mladen Ivanišević, Aleksandar Ivezić and Nenad Magazin
Agriculture 2025, 15(14), 1534; https://doi.org/10.3390/agriculture15141534 - 16 Jul 2025
Viewed by 529
Abstract
Accurate and timely wheat yield prediction is valuable globally for enhancing agricultural planning, optimizing resource use, and supporting trade strategies. Study addresses the need for precision in yield estimation by applying machine-learning (ML) regression models to high-resolution Unmanned Aerial Vehicle (UAV) multispectral (MS) [...] Read more.
Accurate and timely wheat yield prediction is valuable globally for enhancing agricultural planning, optimizing resource use, and supporting trade strategies. Study addresses the need for precision in yield estimation by applying machine-learning (ML) regression models to high-resolution Unmanned Aerial Vehicle (UAV) multispectral (MS) and Red-Green-Blue (RGB) imagery. Research analyzes five European wheat cultivars across 400 experimental plots created by combining 20 nitrogen, phosphorus, and potassium (NPK) fertilizer treatments. Yield variations from 1.41 to 6.42 t/ha strengthen model robustness with diverse data. The ML approach is automated using PyCaret, which optimized and evaluated 25 regression models based on 65 vegetation indices and yield data, resulting in 66 feature variables across 400 observations. The dataset, split into training (70%) and testing sets (30%), was used to predict yields at three growth stages: 9 May, 20 May, and 6 June 2022. Key models achieved high accuracy, with the Support Vector Regression (SVR) model reaching R2 = 0.95 on 9 May and R2 = 0.91 on 6 June, and the Multi-Layer Perceptron (MLP) Regressor attaining R2 = 0.94 on 20 May. The findings underscore the effectiveness of precisely measured MS indices and a rigorous experimental approach in achieving high-accuracy yield predictions. This study demonstrates how a precise experimental setup, large-scale field data, and AutoML can harness UAV and machine learning’s potential to enhance wheat yield predictions. The main limitations of this study lie in its focus on experimental fields under specific conditions; future research could explore adaptability to diverse environments and wheat varieties for broader applicability. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Agricultural Soil and Crop Mapping)
Show Figures

Figure 1

24 pages, 1517 KiB  
Article
Developing a Competency-Based Transition Education Framework for Marine Superintendents: A DACUM-Integrated Approach in the Context of Eco-Digital Maritime Transformation
by Yung-Ung Yu, Chang-Hee Lee and Young-Joong Ahn
Sustainability 2025, 17(14), 6455; https://doi.org/10.3390/su17146455 - 15 Jul 2025
Viewed by 394
Abstract
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework [...] Read more.
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework to support such transitions poses a critical challenge for shipping companies seeking to secure sustainable human resources. The aim of this study was to develop a competency-based training program that facilitates the effective transition of seafarers to shore-based ship superintendent roles. We integrated a developing a curriculum (DACUM) analysis with competency-based job analysis to achieve this aim. The core competencies required for ship superintendent duties were identified through three expert consultations. In addition, social network analysis (SNA) was used to quantitatively assess the structure and priority of the training content. The analysis revealed that convergent competencies, such as digital technology literacy, responsiveness to environmental regulations, multicultural organizational management, and interpretation of global maritime regulations, are essential for a successful career shift. Based on these findings, a modular training curriculum comprising both common foundational courses and specialized advanced modules tailored to job categories was designed. The proposed curriculum integrated theoretical instruction, practical training, and reflective learning to enhance both applied understanding and onsite implementation capabilities. Furthermore, the concept of a Seafarer Success Support Platform was proposed to support a lifecycle-based career development pathway that enables rotational mobility between sea and shore positions. This digital learning platform was designed to offer personalized success pathways aligned with the career stages and competency needs of maritime personnel. Its cyclical structure, comprising career transition, competency development, field application, and performance evaluation, enables seamless career integration between shipboard- and shore-based roles. Therefore, the platform has the potential to evolve into a practical educational model that integrates training, career development, and policies. This study contributes to maritime human resource development by integrating the DACUM method with a competency-based framework and applying social network analysis (SNA) to quantitatively prioritize training content. It further proposes the Seafarer Success Support Platform as an innovative model to support structured career transitions from shipboard roles to shore-based supervisory positions. Full article
Show Figures

Figure 1

21 pages, 1117 KiB  
Article
Exploring the Role of Innovative Teaching Methods Using ICT Educational Tools for Engineering Technician Students in Accelerating the Green Transition
by Georgios Sotiropoulos, Eleni Didaskalou, Fragiskos Bersimis, Georgios Kosyvas and Konstantina Agoraki
Sustainability 2025, 17(14), 6404; https://doi.org/10.3390/su17146404 - 12 Jul 2025
Viewed by 360
Abstract
Sustainable development has emerged as a critical priority for the global community, influencing all aspects of development worldwide. Within this context, the role of education and training in advancing sustainable development can contribute to this. This research aims to explore whether the integration [...] Read more.
Sustainable development has emerged as a critical priority for the global community, influencing all aspects of development worldwide. Within this context, the role of education and training in advancing sustainable development can contribute to this. This research aims to explore whether the integration of Information and Communication Technology educational tools into the curricula of engineering technicians helps trainees better understand the concepts of climate change and resource management, which are directly linked to the green transition and the green economy, compared to traditional educational methods. The study was conducted with trainees from Higher Vocational Training Schools (SAEKs) in the wider Athens area, Greece. According to the results, using educational technology to teach engineering courses aids students in developing the competencies needed to change production processes and business models in the direction of a greener future. This is especially crucial as future technicians will be able to use cutting-edge methods to lower emissions and boost resource use efficiency. The findings of the study could provide important information for all those involved in the design of educational curricula of engineering technicians. Concerns and thoughts on the effective use of educational technology in the educational process are also expressed. Full article
Show Figures

Figure 1

28 pages, 3074 KiB  
Article
Risk Management of Green Building Development: An Application of a Hybrid Machine Learning Approach Towards Sustainability
by Yanqiu Zhu, Hongan Chen, Jun Ma and Fei Pan
Sustainability 2025, 17(14), 6373; https://doi.org/10.3390/su17146373 - 11 Jul 2025
Viewed by 423
Abstract
Despite the rapid adoption of green buildings as a sustainable development strategy, robust, data-driven approaches for assessing and predicting project risks remain limited. This study proposes an innovative hybrid framework combining the fuzzy analytic hierarchy process (FAHP), multilayer perceptron neural networks (MLPNNs), and [...] Read more.
Despite the rapid adoption of green buildings as a sustainable development strategy, robust, data-driven approaches for assessing and predicting project risks remain limited. This study proposes an innovative hybrid framework combining the fuzzy analytic hierarchy process (FAHP), multilayer perceptron neural networks (MLPNNs), and particle swarm optimization (PSO) to quantify and forecast the impact of critical risks on green buildings’ performance. Drawing on structured input from 30 domain experts in Shenzhen, China, ten risk categories were identified and prioritized, with economic, market, and functional risks emerging as the most influential. Using these expert-derived weights, an MLP was trained to predict the effects of the top five risks on four core performance metrics—cost, time, quality, and scope. PSO was applied to optimize the model’s architecture and hyperparameters, improving its predictive accuracy. The optimized framework achieved RMSE values ranging from 0.06 to 0.09 and R2 values of up to 0.95 across all outputs, demonstrating strong predictive capability. These results substantiate the framework’s effectiveness in generating actionable, quantitative risk predictions under uncertainty. Full article
Show Figures

Figure 1

Back to TopTop