Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (736)

Search Parameters:
Keywords = green cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3586 KiB  
Article
Energy Sustainability of Urban Areas by Green Systems: Applied Thermodynamic Entropy and Strategic Modeling Means
by Carla Balocco, Giacomo Pierucci, Michele Baia, Costanza Borghi, Saverio Francini, Gherardo Chirici and Stefano Mancuso
Atmosphere 2025, 16(8), 975; https://doi.org/10.3390/atmos16080975 (registering DOI) - 17 Aug 2025
Abstract
Global warming, anthropogenic pressure, and urban expansion at the expense of green spaces are leading to an increase in the incidence of urban heat islands, creating discomfort and health issue for citizens. This present research aimed at quantifying the impact of nature-based solutions [...] Read more.
Global warming, anthropogenic pressure, and urban expansion at the expense of green spaces are leading to an increase in the incidence of urban heat islands, creating discomfort and health issue for citizens. This present research aimed at quantifying the impact of nature-based solutions to support decision-making processes in sustainable energy action plans. A simple method is provided, linking applied thermodynamics to physics-informed modeling of urban built-up and green areas, high-resolution climate models at urban scale, greenery modeling, spatial georeferencing techniques for energy, and entropy exchanges evaluation in urban built-up areas, with and without vegetation. This allows the outdoor climate conditions and thermo-hygrometric well-being to improve, reducing the workload of cooling plant-systems in buildings and entropy flux to the environment. The finalization and post-processing of obtained results allows the definition of entropy footprints. The main findings show a decrease in greenery’s contribution for different scenarios, referring to a different climatological dataset, but an increase in entropy that becomes higher for the scenario with higher emissions. The comparison between the entropy footprint values for different urban zones can be a useful support to public administrations, stakeholders, and local governments for planning proactive resilient cities and anthropogenic impact reduction and climate change mitigation. Full article
Show Figures

Figure 1

14 pages, 4297 KiB  
Article
Numerical Simulation of Natural Gas Waste Heat Recovery Through Hydrated Salt Particle Desorption in a Full-Size Moving Bed
by Liang Wang, Minghui Li, Yu Men, Yun Jia and Bin Ding
Processes 2025, 13(8), 2589; https://doi.org/10.3390/pr13082589 - 15 Aug 2025
Abstract
To achieve energy conservation, emission reduction, and green low-carbon goals for gas storage facilities, it is crucial to efficiently recover and utilize waste heat during gas injection while maintaining natural gas cooling rates. However, existing sensible and latent heat storage technologies cannot sustain [...] Read more.
To achieve energy conservation, emission reduction, and green low-carbon goals for gas storage facilities, it is crucial to efficiently recover and utilize waste heat during gas injection while maintaining natural gas cooling rates. However, existing sensible and latent heat storage technologies cannot sustain long-term thermal storage or seasonal utilization of waste heat. Thermal chemical energy storage, with its high energy density and low thermal loss during prolonged storage, offers an effective solution for efficient recovery and long-term storage of waste heat in gas storage facilities. This study proposes a novel heat recovery method by combining a moving bed with mixed hydrated salts (CaCl2·6H2O and MgSO4·7H2O). By constructing both small-scale and full-scale three-dimensional models in Fluent, which couple the desorption and endothermic processes of hydrated salts, the study analyzes the temperature and flow fields within the moving bed during heat exchange, thereby verifying the feasibility of this approach. Furthermore, the effects of key parameters, including the inlet temperatures of hydrated salt particles and natural gas, flow velocity, and mass flow ratio on critical performance indicators such as the outlet temperatures of natural gas and hydrated salts, the overall heat transfer coefficient, the waste heat recovery efficiency, and the mass fraction of hydrated salt desorption are systematically investigated. The results indicate that in the small-scale model (1164 × 312 × 49 mm) the outlet temperatures of natural gas and mixed hydrated salts are 79.8 °C and 49.3 °C, respectively, with a waste heat recovery efficiency of only 33.6%. This low recovery rate is primarily due to the insufficient residence time of high-velocity natural gas (10.5 m·s−1) and hydrated salt particles (2 mm·s−1) in the moving bed, which limits heat exchange efficiency. In contrast, the full-scale moving bed (3000 × 1500 × 90 mm) not only accounts for variations in natural gas inlet temperature during the three-stage compression process but also allows for optimized operational adjustments. These optimizations ensure a natural gas outlet temperature of 41.3 °C, a hydrated salt outlet temperature of 82.5 °C, a significantly improved waste heat recovery efficiency of 94.2%, and a hydrated salt desorption mass fraction of 69.2%. This configuration enhances the safety of the gas injection system while maximizing both natural gas waste heat recovery and the efficient utilization of mixed hydrated salts. These findings provide essential theoretical guidance and data support for the effective recovery and seasonal utilization of waste heat in gas storage reservoirs. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

48 pages, 2984 KiB  
Review
Progress in Nanofluid Technology: From Conventional to Green Nanofluids for Biomedical, Heat Transfer, and Machining Applications
by Beatriz D. Cardoso, Andrews Souza, Glauco Nobrega, Inês S. Afonso, Lucas B. Neves, Carlos Faria, João Ribeiro and Rui A. Lima
Nanomaterials 2025, 15(16), 1242; https://doi.org/10.3390/nano15161242 - 13 Aug 2025
Viewed by 135
Abstract
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving [...] Read more.
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving NPs synthesized using physical and chemical approaches, have improved NP morphology control but are likely to cause environmental and safety concerns. In contrast, green NFs that are plant extract, microorganism, and biogenic waste-based represent a sustainable and biocompatible alternative. The effect of key parameters (e.g., NP size, shape, concentration, dispersion stability, and base fluid properties) on the performance of NFs is critically examined. The review also covers potential applications: in biomedical engineering (e.g., drug delivery, imaging, theranostics, and antimicrobial therapies), in heat transfer (e.g., solar collectors, cooling electronics, nuclear reactors), and precision machining (e.g., lubricants and coolants). Comparative insights regarding green versus conventionally prepared NFs are provided concerning their toxicity, environmental impact, scalability, and functional performance across various applications. Overall, this review highlights the new promise of both green and conventional NFs and provides key opportunities and challenges to guide future developments in this field. Full article
Show Figures

Figure 1

20 pages, 2761 KiB  
Article
Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea
by Minsun Kim, Jongho Won and Hyungkyoo Kim
Land 2025, 14(8), 1628; https://doi.org/10.3390/land14081628 - 12 Aug 2025
Viewed by 309
Abstract
Climate change intensifies the challenge of elevated temperatures in dense urban areas, notably in Seoul, South Korea. This study investigates the effects of land use and urban form on summer air temperatures by leveraging Seoul’s city-wide Smart Seoul Data of Things sensor network. [...] Read more.
Climate change intensifies the challenge of elevated temperatures in dense urban areas, notably in Seoul, South Korea. This study investigates the effects of land use and urban form on summer air temperatures by leveraging Seoul’s city-wide Smart Seoul Data of Things sensor network. Using spatial regression models and temperature data collected during July and August 2021, the analysis identifies key environmental factors associated with urban heat dynamics. The results show that medium- and high-density residential areas, industrial zones, and roads consistently increase temperatures, while greenery, taller buildings, and greater urban porosity contribute to cooling effects. The findings highlight the need for urban planning strategies that expand green spaces, promote vertical development with attention to ventilation, and reconfigure built environments to enhance thermal comfort. This study provides robust empirical insights and offers evidence-based recommendations for climate-responsive urban planning and policies in Seoul and similar high-density cities worldwide. Full article
(This article belongs to the Special Issue Urban Form and the Urban Heat Island Effect (Second Edition))
Show Figures

Figure 1

30 pages, 2872 KiB  
Article
Small-Scale Hybrid Participation and Heat Mitigation Measures by Active Bottom Surface Cooling—Need for an Integrated Framework to Improve Well-Being
by Benjamin Hueber and Amando Reber
Sustainability 2025, 17(16), 7264; https://doi.org/10.3390/su17167264 - 11 Aug 2025
Viewed by 325
Abstract
Rising urban temperatures due to climate change, limited green spaces, and dense urban areas impact public health and human well-being, highlighting the need for innovative grey infrastructure solutions where conventional green spaces are not feasible. This study aims to bridge the gap between [...] Read more.
Rising urban temperatures due to climate change, limited green spaces, and dense urban areas impact public health and human well-being, highlighting the need for innovative grey infrastructure solutions where conventional green spaces are not feasible. This study aims to bridge the gap between objectively measured and perceived benefits of urban heat mitigation by combining social and technological methods within socio-ecological systems. First, a literature review of 759 articles, with 64 meeting the review criteria, and a bibliometric analysis examined the recent extensive research on participation and the connections between participation, resilience, and sustainability. Second, a chain of evidence as a qualitative method demonstrated how Active Bottom Surface Cooling (ABSC) can enhance outdoor thermal comfort (OTC). This emphasised the importance of participatory innovation and novel cooling technologies for urban resilience: hybrid (digital and analogue) participation can raise the awareness, acceptance, and effectiveness of such technical innovations. It revealed the need for an integrated framework, leveraging synergies: (1) community engagement tailors solutions to urban needs, (2) adaptability ensures effectiveness across diverse settings, (3) improved thermal comfort enhances citizen well-being, and (4) resilience strengthens the climate change response. By conceptualising cities as urban systems, the integrated framework fosters reciprocal socio-ecological benefits between people, nature, and the environment. Through hybrid participation and ABSC, it boosts community engagement, OTC, and well-being for sustainable urban development. Full article
Show Figures

Figure 1

19 pages, 3066 KiB  
Article
Biomimicry and Green Architecture: Nature-Inspired Innovations for Sustainable Buildings
by Walaa Mohamed Metwally
Sustainability 2025, 17(16), 7223; https://doi.org/10.3390/su17167223 - 10 Aug 2025
Viewed by 574
Abstract
The building sector is a pivotal driver of global resource depletion and environmental deterioration, being responsible for 40% of raw material consumption, 16% of water usage, 25% of timber utilization, and 40% of total energy demand. It also accounts for 30% of worldwide [...] Read more.
The building sector is a pivotal driver of global resource depletion and environmental deterioration, being responsible for 40% of raw material consumption, 16% of water usage, 25% of timber utilization, and 40% of total energy demand. It also accounts for 30% of worldwide greenhouse gas (GHG) emissions, predominantly CO2. The operational phase of buildings is the most energy-intensive and emission-heavy stage, accounting for 85–95% of their total life-cycle energy consumption. This energy is primarily expended on heating, cooling, ventilation, and hot water systems, which are largely dependent on fossil fuels. Furthermore, embodied energy, the cumulative energy expended from the extraction of materials through construction, operation, and eventual demolition, plays a substantial role in a building’s overall environmental footprint. To address these pressing challenges, this study discusses sustainable innovations within green architecture and biomimicry. Our topic supports the 2030 vision Sustainable Development Goals (SDGs), both directly and indirectly (SDGs 7, 9, 11, 12, and 13). This study also explores cutting-edge applications, such as algae- and slime mold-inspired decentralized urban planning, which offer innovative pathways toward energy efficiency and sustainability. Considering the integration of renewable energy sources, passive design methodologies, and eco-friendly materials, this research emphasizes the transformative potential of biomimicry and green architecture in fostering a sustainable built environment, mitigating climate change, and cultivating a regenerative coexistence between human habitats and the natural world. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

14 pages, 3205 KiB  
Article
Typomorphic Characterization and Geological Significance of Megacrystalline Uraninite in the Haita Area, Kangdian Region, Southwestern China
by Minghui Yin, Zhengqi Xu, Bo Xie, Chengjiang Zhang and Jian Yao
Crystals 2025, 15(8), 718; https://doi.org/10.3390/cryst15080718 - 8 Aug 2025
Viewed by 226
Abstract
Megacrystalline uraninite within Neoproterozoic migmatites in the Haita area of the Kangdian region of China provides a unique condition for the investigation of uraninite typomorphism under high-temperature conditions. The present study represents the first systematic characterization of the typomorphic signatures and genetic significance [...] Read more.
Megacrystalline uraninite within Neoproterozoic migmatites in the Haita area of the Kangdian region of China provides a unique condition for the investigation of uraninite typomorphism under high-temperature conditions. The present study represents the first systematic characterization of the typomorphic signatures and genetic significance of megacrystalline uraninite via optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XRS), and electron probe microanalysis (EPMA). The results show that uranium mineralization occurs as euhedral megacrystalline uraninite (black grains ≤ 10 mm) hosted in quartz veins, exhibiting frequent rhombic dodecahedral and subordinate cubic–octahedral morphologies. The paragenetic assemblage is quartz–uraninite–titanite–apatite–molybdenite. The investigated uraninite is characterized by elevated unit-cell parameters and a reduced oxygen index, with complex chemical compositions enriched in ThO2 and Y2O3. These typomorphic characteristics indicate crystallization under high-temperature reducing conditions with gradual cooling. Post-crystallization tectonic fragmentation and uplift-facilitated oxidation occur, generating secondary uranium minerals with concentric color zonation (orange–red to yellow–green halos). Mineralization was jointly controlled by migmatization and late-stage tectonism, with the breakup of the Rodinia supercontinent serving as the key driver of fluid mobilization and ore deposition. The data materialized in the present study improve our knowledge about uranium mineralization during continental breakup events. Full article
Show Figures

Figure 1

23 pages, 5418 KiB  
Article
Optimal Roof Strategy for Mitigating Urban Heat Island in Hot Arid Climates: Simulation and Python-Based Multi-Criteria Decision Analysis
by Rehab Alaa, Amira Elbalazi and Walaa S.E. Ismaeel
Urban Sci. 2025, 9(8), 310; https://doi.org/10.3390/urbansci9080310 - 8 Aug 2025
Viewed by 460
Abstract
This study adopts a multi-scale, simulation-driven approach to evaluate the performance of different passive roof types in mitigating Urban Heat Island (UHI) in hot arid climate. A comparative analysis was performed for selected roof types; green, pond, cool, and dark roofs. At the [...] Read more.
This study adopts a multi-scale, simulation-driven approach to evaluate the performance of different passive roof types in mitigating Urban Heat Island (UHI) in hot arid climate. A comparative analysis was performed for selected roof types; green, pond, cool, and dark roofs. At the urban scale, ENVI-met v5.7.1 was employed to simulate microclimatic impacts, including Mean Radiant Temperature (MRT) at the pedestrian street level (1.4 m) and above building canopy level (25 m). The results revealed that green roofs were the most effective in mitigating UHI on the urban scale, reducing MRT by 1.83 °C at the pedestrian level and by 3.5 °C at the above canopy level. Surprisingly, dark roofs also performed well, with MRT reductions of 1.81 °C and 3.5 °C, respectively, outperforming pond roofs, which showed reductions of 1.80 °C and 0.31 °C. While cool roofs effectively reduced MRT at the pedestrian level by 1.80 °C, they had adverse effect at the canopy level, increasing MRT by 15.58 °C. At the building scale, Design Builder v7.3.1, coupled with Energy Plus, was used to assess indoor thermal and energy performance. Pond and cool roofs reduced operative temperature by 0.08 °C and 0.07 °C, respectively, followed by green roofs, with a 0.05 °C reduction, while dark roofs increased it by 0.07 °C. In terms of energy performance, green roofs yielded the greatest benefit, reducing cooling load by 3.3%, followed by pond roofs, with a 1.32% reduction; cool roofs showed negligible reduction, while dark roofs increased it by 1.2%. Finally, a Python-based Multi criteria Decision Making (MCDM) analytical framework integrated these findings with additional factors to optimize thermal comfort, environmental impact, sustainability, and feasibility and rank strategies accordingly. The analysis identified green roofs as the optimal solution, followed by pond roofs and then cool roofs tied with the base case, leaving dark roofs as the least favorable strategy. This study’s key contribution lies in its integrated simulation–decision analysis methodology, which bridges urban climatology and building performance to provide actionable insights for sustainable urban design. By validating green roofs as the most effective passive strategy in hot arid regions, this work aids policymakers and planners in prioritizing interventions that support climate-resilient urbanization. Full article
Show Figures

Figure 1

22 pages, 2637 KiB  
Article
Vegetation-Specific Cooling Responses to Compact Urban Development: Evidence from a Landscape-Based Analysis in Nanjing, China
by Qianyu Sun, Daicong Li, Xiaolan Tang and Yujie Ren
Plants 2025, 14(16), 2457; https://doi.org/10.3390/plants14162457 - 8 Aug 2025
Viewed by 276
Abstract
The urban heat island (UHI) effect has emerged as a growing ecological challenge in compact urban environments. Although urban vegetation plays a vital role in mitigating thermal extremes, its cooling performance varies depending on vegetation type and urban morphological context. This study explores [...] Read more.
The urban heat island (UHI) effect has emerged as a growing ecological challenge in compact urban environments. Although urban vegetation plays a vital role in mitigating thermal extremes, its cooling performance varies depending on vegetation type and urban morphological context. This study explores the extent to which compact urban development—quantified using the Mixed-use and Intensive Development (MIXD) index—modulates the cooling responses of different vegetation types in Nanjing, China. A combination of landscape metrics, regression-based interaction models, and XGBoost with SHAP analysis is employed to uncover vegetation-specific and structure-sensitive cooling effects. The results indicate that densely planted trees exhibit reduced cooling effectiveness in compact areas, where spatial clustering and fragmentation tend to intensify UHI effects, particularly during nighttime. In contrast, scattered trees are found to maintain more stable cooling performance across varying degrees of urban compactness, while low-lying vegetation demonstrates limited thermal regulation capacity. Critical thresholds of MIXD (approximately 28 for UHI area and 37 for UHI intensity) are identified, indicating a nonlinear modulation of green space performance. These findings underscore the importance of vegetation structure and spatial configuration in shaping urban microclimates and offer mechanistic insights into plant–environment interactions under conditions of increasing urban density. Full article
(This article belongs to the Special Issue Plants in Urban Landscapes (Environments))
Show Figures

Figure 1

15 pages, 1258 KiB  
Article
Biochar Affects Greenhouse Gas Emissions from Urban Forestry Waste
by Kumuduni Niroshika Palansooriya, Tamanna Mamun Novera, Dengge Qin, Zhengfeng An and Scott X. Chang
Land 2025, 14(8), 1605; https://doi.org/10.3390/land14081605 - 6 Aug 2025
Viewed by 352
Abstract
Urban forests are vital to cities because they provide a range of ecosystem services, including carbon (C) sequestration, air purification, and urban cooling. However, urban forestry also generates significant amounts of organic waste, such as grass clippings, pruned tree branches, and fallen tree [...] Read more.
Urban forests are vital to cities because they provide a range of ecosystem services, including carbon (C) sequestration, air purification, and urban cooling. However, urban forestry also generates significant amounts of organic waste, such as grass clippings, pruned tree branches, and fallen tree leaves and woody debris that can contribute to greenhouse gas (GHG) emissions if not properly managed. In this study, we investigated the effect of wheat straw biochar (produced at 500 °C) on GHG emissions from two types of urban forestry waste: green waste (GW) and yard waste (YW), using a 100-day laboratory incubation experiment. Overall, GW released more CO2 than YW, but biochar addition reduced cumulative CO2 emissions by 9.8% in GW and by 17.6% in YW. However, biochar increased CH4 emissions from GW and reduced the CH4 sink strength of YW. Biochar also had contrasting effects on N2O emissions, increasing them by 94.3% in GW but decreasing them by 61.4% in YW. Consequently, the highest global warming potential was observed in biochar-amended GW (125.3 g CO2-eq kg−1). Our findings emphasize that the effect of biochar on GHG emissions varies with waste type and suggest that selecting appropriate biochar types is critical for mitigating GHG emissions from urban forestry waste. Full article
(This article belongs to the Special Issue Land Use Effects on Carbon Storage and Greenhouse Gas Emissions)
Show Figures

Figure 1

20 pages, 2385 KiB  
Article
Assessing Thermal Comfort in Green and Conventional Office Buildings in Hot Climates
by Abdulrahman Haruna Muhammad, Ahmad Taki and Sanober Hassan Khattak
Sustainability 2025, 17(15), 7078; https://doi.org/10.3390/su17157078 - 5 Aug 2025
Viewed by 338
Abstract
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. [...] Read more.
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. This is particularly relevant in Africa, where climate conditions and energy infrastructure challenges make sustainable building operation essential. Although interest in sustainable construction has increased, limited research has examined the real-world performance of green buildings in Africa. This study helps address that gap by evaluating indoor thermal comfort in a green-certified office building and two conventional office buildings in Abuja, Nigeria, through post-occupancy evaluation (POE). The Predicted Mean Vote (PMV) and Thermal Sensation Vote (TSV) were used to assess comfort, revealing discrepancies between predicted and actual occupant responses. In the green building, PMV indicated near-neutral conditions (0.28), yet occupants reported a slightly cool sensation (TSV: −1.1). Neutral temperature analysis showed that the TSV-based neutral temperature (26.5 °C) was 2.2 °C higher than the operative temperature (24.3 °C), suggesting overcooling. These findings highlight the importance of incorporating occupant feedback into HVAC control. Aligning cooling setpoints with comfort preferences could improve satisfaction and reduce unnecessary cooling, promoting energy-efficient building operation. Full article
Show Figures

Figure 1

27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 - 2 Aug 2025
Viewed by 452
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Viewed by 271
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Viewed by 430
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

21 pages, 2695 KiB  
Article
Thermographic Investigation of Elastocaloric Behavior in Ni-Ti Sheet Elements Under Cyclic Bending
by Saeed Danaee Barforooshi, Gianmarco Bizzarri, Girolamo Costanza, Stefano Paoloni, Ilaria Porroni and Maria Elisa Tata
Materials 2025, 18(15), 3546; https://doi.org/10.3390/ma18153546 - 29 Jul 2025
Viewed by 308
Abstract
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior [...] Read more.
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior under controlled loading conditions. The experimental investigation employed passive thermography to analyze the thermal response of Ni-Ti sheets under two deflection configurations at 1800 rpm loading. Testing revealed consistent adiabatic temperature variations (ΔTad) of 4.14 °C and 4.26 °C for the respective deflections during heating cycles, while cooling phases demonstrated efficient thermal homogenization with temperature gradients decreasing from 4.13 °C to 0.13 °C and 4.43 °C to 0.68 °C over 60 s. These findings provide systematic thermal documentation of elastocaloric behavior in bending-loaded Ni-Ti sheet elements and quantitative data on the relationship between mechanical loading parameters and thermal gradients, enhancing the experimental understanding of elastocaloric phenomena in this configuration. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

Back to TopTop