Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = gravity frame

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 32699 KB  
Article
Evaluation of a Soviet-Era Gravimetric Survey Using Absolute Gravity Measurements and Global Gravity Models: Toward the First National Geoid of Kazakhstan
by Daniya Shoganbekova, Asset Urazaliyev, Roman Sermiagin, Serik Nurakynov, Magzhan Kozhakhmetov, Nailya Zhaksygul and Anel Islyamova
Geosciences 2025, 15(10), 404; https://doi.org/10.3390/geosciences15100404 - 17 Oct 2025
Viewed by 254
Abstract
Determining a high-precision national geoid is a fundamental step in modernizing Kazakhstan’s vertical reference system. However, the country’s vast territory, complex topography, and limited coverage of modern terrestrial and airborne gravimetric surveys present significant challenges. In this context, Soviet-era gravimetric maps at a [...] Read more.
Determining a high-precision national geoid is a fundamental step in modernizing Kazakhstan’s vertical reference system. However, the country’s vast territory, complex topography, and limited coverage of modern terrestrial and airborne gravimetric surveys present significant challenges. In this context, Soviet-era gravimetric maps at a 1:200,000 scale remain the only consistent nationwide data source, yet their reliability has not previously been rigorously assessed within modern gravity standards. This study presents the first comprehensive validation of Soviet-era gravimetric surveys using two independent approaches. The first approach is about the comparison of gravity anomalies with the global geopotential models EGM2008, EIGEN-6C4 and XGM2019e_2159. The second approach is about the direct evaluation against absolute gravity measurements from the newly established Qazaqstan Gravity Reference Frame (QazGRF). The analysis demonstrates that, after applying systematic corrections, the Soviet-era gravimetric survey retains high information content. The mean discrepancy with QazGRF measurements is 0.7 mGal with a standard deviation of 2.5 mGal, and more than 90% of the evaluated points deviate by less than ±5 mGal. Larger inconsistencies, up to 20 mGal, are confined to mountainous and geophysically complex regions. In addition, several artifacts inherent to the global models were identified, suggesting that the integration of validated regional gravimetric data can also support future improvements of global gravity models. A key finding was the detection of an artifact in the global models on sheet M43. Its presence was confirmed by comparison with terrestrial gravimetric data and inter-model differences. It was established that the anomaly is caused by inaccuracies in the terrestrial “fill-in” component of the EGM2008 model, which subsequently inherited by later global solutions. The results confirm that Soviet gravimetric maps, once critically re-evaluated and tied to absolute observations, can be effectively integrated with global models. This integration delivers reliable, high-resolution inputs for regional gravity-field modeling. It establishes a robust scientific and practical foundation for constructing the first national geoid of Kazakhstan and for implementing a unified state coordinate and height system. It also helps enhance the accuracy of global geopotential models. Full article
Show Figures

Figure 1

19 pages, 3320 KB  
Article
On-Ground Calibration of a Nano-G Accelerometer for Micro-Vibration Monitoring in Space on a Dual-Axis Indexing Device
by Yang Zhou, Zhi Li, Qiangwei Xu and Xiangchun Li
Sensors 2025, 25(20), 6289; https://doi.org/10.3390/s25206289 - 10 Oct 2025
Viewed by 264
Abstract
High-sensitivity accelerometers are essential for spacecraft micro-vibration monitoring. This study proposes a procedure to facilitate precise on-ground calibration of such accelerometers with a limited operational range by rotating to multiple positions with its input axis mounted along the horizontal tilt axis of a [...] Read more.
High-sensitivity accelerometers are essential for spacecraft micro-vibration monitoring. This study proposes a procedure to facilitate precise on-ground calibration of such accelerometers with a limited operational range by rotating to multiple positions with its input axis mounted along the horizontal tilt axis of a two-axis indexing device. Each single-axis accelerometer unit of a self-developed tri-axial nano-g accelerometer was respectively tested with its various reference axes along the rotation axis for identifying the parameters of their model equations including higher-order terms. The minute tilt axis deviation of the test equipment from the horizontal plane and the accelerometer’s higher-order response to gravity during calibration are corrected for application in the microgravity environment. Errors of accelerometer biases and scale factors are satisfactorily improved, respectively, to ±2% and ±0.01 mg, by at least one order of magnitude. Parameters of all three units of the accelerometer are unified into one coordinate frame defined by the accelerometer mounting surface. Acceleration measured by our accelerometer shows consistency with the other collocated one in a space mission. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

38 pages, 15055 KB  
Article
Towards a Generative Frame System of Ancient Chinese Timber Architecture: Structural Generation and Optimization of “Column Reduction” and “Column Relocation”
by Tonghao Liu, Binyue Zhang and Yamin Zhao
Buildings 2025, 15(18), 3329; https://doi.org/10.3390/buildings15183329 - 15 Sep 2025
Viewed by 609
Abstract
In traditional Chinese timber architecture, “column reduction” (Jian Zhu Zao) and “column relocation” (Yi Zhu Zao) enhances spatial continuity, yet often produces bending-dominated, material-intensive frames. This study develops a generative frame system that encodes raised beam logic into a parametric line-model workflow and [...] Read more.
In traditional Chinese timber architecture, “column reduction” (Jian Zhu Zao) and “column relocation” (Yi Zhu Zao) enhances spatial continuity, yet often produces bending-dominated, material-intensive frames. This study develops a generative frame system that encodes raised beam logic into a parametric line-model workflow and couples it with simulation-based optimization. Informed by case analysis, the tool implements three lateral strategies—ridge-support revision, insertion of inclined members, and inclination of originally horizontal members—and one longitudinal strategy—longitudinal truss formation—whose use is governed by a user-defined historical authenticity parameter. Structural responses were evaluated using Karamba3D, and cross-section sizing was searched using Wallacei under gravity-dominant loading. The results indicate clearer load paths, greater axial-force participation, and reduced bending, yielding lower maximum displacements at comparable self-weight; moreover, the performance ranking aligns with the calibrated authenticity loss schedule, suggesting that the authenticity controller also acts as a practical proxy for expected stiffness gains. The framework improves design and modeling efficiency while offering quantitative decision support for culturally sensitive conservation and imitation design. Limitations include line-model idealization, simplified timber and joint behavior, gravity-only loading, and a modest historical corpus. The approach is extensible to other traditional systems via parameter and rule adaptation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 587 KB  
Article
The Lyra–Schwarzschild Spacetime
by M. C. Bertin, R. R. Cuzinatto, J. A. Paquiyauri and B. M. Pimentel
Universe 2025, 11(9), 315; https://doi.org/10.3390/universe11090315 - 12 Sep 2025
Viewed by 555
Abstract
In this paper, we provide a complete analysis of the most general spherical solution of the Lyra scalar-tensor (LyST) gravitational theory based on the proper definition of a Lyra manifold. Lyra’s geometry features the metric tensor and a scale function as fundamental fields, [...] Read more.
In this paper, we provide a complete analysis of the most general spherical solution of the Lyra scalar-tensor (LyST) gravitational theory based on the proper definition of a Lyra manifold. Lyra’s geometry features the metric tensor and a scale function as fundamental fields, resulting in generalizations of geometrical quantities such as the affine connection, curvature, torsion, and non-metricity. A proper action is defined considering the correct invariant volume element and the scalar curvature, obeying the symmetry of Lyra’s reference frame transformations and resulting in a generalization of the Einstein–Hilbert action. The LyST gravity assumes zero torsion in a four-dimensional metric-compatible spacetime. In this work, geometrical quantities are presented and solved via Cartan’s technique for a spherically symmetric line element. Birkhoff’s theorem is demonstrated so that the solution is proven to be static, resulting in the Lyra–Schwarzschild metric, which depends on both the geometrical mass (through a modified version of the Schwarzschild radius rS) and an integration constant dubbed the Lyra radius rL. We study particle and light motion in Lyra–Schwarzschild spacetime using the Hamilton–Jacobi method. The motion of massive particles includes the determination of the rISCO and the periastron shift. The study of massless particle motion shows the last photon’s unstable orbit. Gravitational redshift in Lyra–Schwarzschild spacetime is also reviewed. We find a coordinate transformation that casts Lyra–Schwarzschild spacetime in the form of the standard Schwarzschild metric; the physical consequences of this fact are discussed. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

28 pages, 7371 KB  
Article
Parametric Analysis of a 400-Meter Super-High-Rise Building: Global and Local Structural Behavior
by Jiafeng Chen, Wei Hao, Weihong Cheng, Jie Wang and Haokai Chen
Buildings 2025, 15(17), 3199; https://doi.org/10.3390/buildings15173199 - 4 Sep 2025
Viewed by 784
Abstract
Super high-rise buildings of 400 m and above are currently rare globally, making their design and construction data invaluable. Due to their enormous size, the structural safety, architectural effect, and construction cost are key concerns of all parties. This study employs parametric analysis [...] Read more.
Super high-rise buildings of 400 m and above are currently rare globally, making their design and construction data invaluable. Due to their enormous size, the structural safety, architectural effect, and construction cost are key concerns of all parties. This study employs parametric analysis to research the lateral force-resisting system and key local structural issues of a 400 m under-construction super-high-rise structure. The overall analysis results show that the 8-mega-column scheme can relatively well balance architectural effect and structural performance; the 5-belt truss design minimizes the steel consumption. The local research results indicate that the inward inclination of bottom columns leads to increased axial forces in floor beams significantly, necessitating reinforcement; horizontal braces directly connected to the core tube enhance folded belt truss integrity under rare earthquakes; failure of bottom gravity columns in the folded secondary frame increases beam bending moments and axial forces substantially. Steel consumption sensitivity analysis shows that when the structural first-order period is reduced by 0.1 s, adjusting the section sizes of the members in the belt truss minimizes the increase in steel consumption, while adjusting steel beams maximizes it. These findings provide essential design insights for similar super-high-rise projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 542 KB  
Article
The Effects of the Gravitational Coupling Variation on the Local H0 Estimation
by Antonio Enea Romano
Universe 2025, 11(8), 278; https://doi.org/10.3390/universe11080278 - 19 Aug 2025
Cited by 2 | Viewed by 382
Abstract
We study the effects of the time evolution of the matter-gravity coupling on the luminosity distance, showing it can provide a natural explanation to the apparent Hubble tension. The gravitational coupling evolution induces a modification of the Friedman equation with respect to the [...] Read more.
We study the effects of the time evolution of the matter-gravity coupling on the luminosity distance, showing it can provide a natural explanation to the apparent Hubble tension. The gravitational coupling evolution induces a modification of the Friedman equation with respect to the ΛCDM model, which we study in both the Einstein and Jordan frame. We consider a phenomenological parametrization of the low redshift variation of the coupling in a narrow redshift shell, showing how it can affect the distance of the anchors used to calibrate supernovae (SNe), while higher redshift background observations are not affected. This effect is purely geometrical, and it is not related to any change of the intrinsic SNe physical properties. The effects of a time varying gravity coupling only manifest on sufficiently long time scales, such as in cosmological observations at different redshifts, and if ignored lead to apparent tensions in the values of cosmological parameters estimated with observations from different epochs of the Universe history. Full article
Show Figures

Figure 1

21 pages, 7203 KB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 - 2 Aug 2025
Viewed by 544
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

19 pages, 9232 KB  
Article
Peculiarities of Assessing Body Strength When Converting a Bus from Diesel to Electric Traction Following the UNECE R100 Regulation
by Kostyantyn Holenko, Oleksandr Dykha, Eugeniusz Koda, Ivan Kernytskyy, Orest Horbay, Yuriy Royko, Ruslan Humeniuk, Yaroslav Sholudko, Vasyl Rys, Serhii Berezovetskyi, Tomasz Wierzbicki and Anna Markiewicz
Appl. Sci. 2025, 15(14), 8115; https://doi.org/10.3390/app15148115 - 21 Jul 2025
Viewed by 483
Abstract
The problem of the conversion of diesel buses to electric ones in connection with the inevitable introduction of the EURO 7 emission standards entails an automatic requirement to follow several additional United Nations Economic Commission for Europe rules, like R100 regulations. They regulate [...] Read more.
The problem of the conversion of diesel buses to electric ones in connection with the inevitable introduction of the EURO 7 emission standards entails an automatic requirement to follow several additional United Nations Economic Commission for Europe rules, like R100 regulations. They regulate the preservation of battery units at longitudinal 12 g and transverse 10 g accelerations without penetrating into the elements of the bus body. Three models (12 modes in total) of battery units with frames made of S235 steel were analysed. The maximum stress value varies between 364.89 MPa and 439.08 MPa in 10 g and 12 g modes, respectively, which is beyond the tensile strength (360 MPa) and provokes plastic deformations. The max deformations were recorded in the models with the highest average stress: 63.04 mm in the 12 g mode with an average stress of 83.18 MPa. The minimum deformations of 6.95 and 7.95 mm were found in the 10 g modes (left and right acceleration direction, respectively), which meet the manufacturer’s requirements (45–50 mm maximum). The study’s primary contribution lies in developing a practical method for assessing battery unit integrity and structural behaviour during the conversion of diesel buses to electric propulsion, fully compliant with R100 regulations. By combining transient structural simulation, mathematical centre modelling of acceleration propagation, and centre of gravity prediction, the proposed approach enables engineers to evaluate electric conversions’ safety and certification feasibility without modifying the existing bus body. Full article
Show Figures

Figure 1

32 pages, 14223 KB  
Article
Seismic Vulnerability Assessment of Residential RC Buildings in Yemen Using Incremental Dynamic Analysis (IDA)
by Amr Ahmed Radman Ahmed, Linfeng Lu, Bo Li, Wei Bi and Fawziah Mohammed Abdullah Al-Dhubai
Buildings 2025, 15(8), 1336; https://doi.org/10.3390/buildings15081336 - 17 Apr 2025
Cited by 2 | Viewed by 1168
Abstract
Traditional buildings constructed in Yemen during the 20th century often lacked adequate seismic protection. Today, most reinforced concrete (RC) residential buildings in the country are designed with beam–column systems that primarily carry gravity loads without considering lateral seismic forces. As a result, these [...] Read more.
Traditional buildings constructed in Yemen during the 20th century often lacked adequate seismic protection. Today, most reinforced concrete (RC) residential buildings in the country are designed with beam–column systems that primarily carry gravity loads without considering lateral seismic forces. As a result, these structures are potentially vulnerable to earthquakes and require further investigation. This study aims to develop analytical seismic fragility curves for residential RC buildings in Yemen with varied heights. Three building heights were considered, namely three, five, and seven stories. While in most studies, the infill walls are regarded as non-structural elements, and their contributions to resisting earthquake actions are ignored, in this study, the contribution of the infill wall was taken into account by utilizing a compression strut modeling of the infill wall. In addition, an investigation was conducted to study the effect of soft stories on the seismic vulnerability of residential RC buildings. Finite element models were developed, and 900 Incremental Dynamic Analyses (IDAs) were conducted. Three damage limit states were defined: Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Based on these results, cumulative distribution functions (CDFs) were calculated to derive the seismic fragility curves. The findings indicate that taller buildings are more likely to reach or exceed the defined damage states, making them more vulnerable to earthquakes. Infilled frame structures demonstrate better seismic performance due to the contribution of infill walls to lateral resistance. In contrast, buildings with soft stories are more vulnerable due to abrupt changes in stiffness, resulting in greater deformation concentration in the soft story. The developed fragility curves provide a quantitative basis for assessing seismic damage in Yemeni RC residential buildings and offer a foundation for future seismic risk evaluations. Full article
(This article belongs to the Special Issue Study on Concrete Structures—2nd Edition)
Show Figures

Figure 1

16 pages, 310 KB  
Article
Non-Zero Coriolis Field in Ehlers’ Frame Theory
by Federico Re and Oliver F. Piattella
Galaxies 2025, 13(2), 38; https://doi.org/10.3390/galaxies13020038 - 5 Apr 2025
Cited by 2 | Viewed by 901
Abstract
Ehlers’ Frame Theory is a class of geometric theories parameterized by λ:=1/c2 and identical to the General Theory of Relativity for λ0. The limit λ0 does not recover Newtonian gravity, as one [...] Read more.
Ehlers’ Frame Theory is a class of geometric theories parameterized by λ:=1/c2 and identical to the General Theory of Relativity for λ0. The limit λ0 does not recover Newtonian gravity, as one might expect, but yields the so-called Newton–Cartan theory of gravity, which is characterized by a second gravitational field ω, called the Coriolis field. Such a field encodes at a non-relativistic level the dragging feature of general spacetimes, as we show explicitly for the case of the (η,H) geometries. Taking advantage of the Coriolis field, we apply Ehlers’ theory to an axially symmetric distribution of matter, mimicking, for example, a disc galaxy, and show how its dynamics might reproduce a flattish rotation curve. In the same setting, we further exploit the formal simplicity of Ehlers’ formalism in addressing non-stationary cases, which are remarkably difficult to treat with the General Theory of Relativity. We show that the time derivative of the Coriolis field gives rise to a tangential acceleration which allows for studying a possible formation in time of the rotation curve’s flattish feature. Full article
32 pages, 6997 KB  
Article
CFR-YOLO: A Novel Cow Face Detection Network Based on YOLOv7 Improvement
by Guohong Gao, Yuxin Ma, Jianping Wang, Zhiyu Li, Yan Wang and Haofan Bai
Sensors 2025, 25(4), 1084; https://doi.org/10.3390/s25041084 - 11 Feb 2025
Cited by 4 | Viewed by 1686
Abstract
With the rapid development of machine learning and deep learning technology, cow face detection technology has achieved remarkable results. Traditional contact cattle identification methods are costly; are easy to lose and tamper with; and can lead to a series of security problems, such [...] Read more.
With the rapid development of machine learning and deep learning technology, cow face detection technology has achieved remarkable results. Traditional contact cattle identification methods are costly; are easy to lose and tamper with; and can lead to a series of security problems, such as untimely disease prevention and control, incorrect traceability of cattle products, and fraudulent insurance claims. In order to solve these problems, this study explores the application of cattle face detection technology in cattle individual detection to improve the accuracy of detection, an approach that is particularly important in smart animal husbandry and animal behavior analysis. In this paper, we propose a novel cow face detection network based on YOLOv7 improvement, named CFR-YOLO. First of all, the method of extracting the features of a cow’s face (including nose, eye corner, and mouth corner) is constructed. Then, we calculate the frame center of gravity and frame size based on these feature points to design the cow face detection CFR-YOLO network model. To optimize the performance of the model, the activation function of FReLU is used instead of the original SiLU activation function, and the CBS module is replaced by the CBF module. The RFB module is introduced in the backbone network; and in the head layer, the CBAM convolutional attention module is introduced. The performance of CFR-YOLO is compared with other mainstream deep learning models (including YOLOv7, YOLOv5, YOLOv4, and SSD) on a self-built cow face dataset. Experiments indicate that the CFR-YOLO model achieves 98.46% accuracy (precision), 97.21% recall (recall), and 96.27% average accuracy (mAP), proving its excellent performance in the field of cow face detection. In addition, comparative analyses with the other four methods show that CFR-YOLO exhibits faster convergence speed while ensuring the same detection accuracy; and its detection accuracy is higher under the condition of the same model convergence speed. These results will be helpful to further develop the cattle identification technique. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

52 pages, 652 KB  
Article
Scalar Field Kantowski–Sachs Solutions in Teleparallel F(T) Gravity
by Alexandre Landry
Universe 2025, 11(1), 26; https://doi.org/10.3390/universe11010026 - 16 Jan 2025
Cited by 5 | Viewed by 1052
Abstract
In this paper, we investigate time-dependent Kantowski–Sachs spherically symmetric teleparallel F(T) gravity with a scalar field source. We begin by setting the exact field equations to be solved and solve conservation laws for possible scalar field potential, Vϕ, [...] Read more.
In this paper, we investigate time-dependent Kantowski–Sachs spherically symmetric teleparallel F(T) gravity with a scalar field source. We begin by setting the exact field equations to be solved and solve conservation laws for possible scalar field potential, Vϕ, solutions. Then, we find new non-trivial teleparallel F(T) solutions by using power-law and exponential ansatz for each potential case arising from conservation laws, such as linear, quadratic, or logarithmic, to name a few. We find a general formula allowing us to compute all possible new teleparallel F(T) solutions applicable for any scalar field potential and ansatz. Then, we apply this formula and find a large number of exact and approximate new teleparallel F(T) solutions for several types of cases. Some new F(T) solution classes may be relevant for future cosmological applications, especially concerning dark matter, dark energy quintessence, phantom energy leading to the Big Rip event, and quintom models of physical processes. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
40 pages, 2476 KB  
Tutorial
A Tutorial on the Strong Gravity Effects in Black Hole X-Ray Spectra
by Cosimo Bambi
Universe 2024, 10(12), 451; https://doi.org/10.3390/universe10120451 - 8 Dec 2024
Cited by 1 | Viewed by 1206
Abstract
This is a tutorial on the strong gravity effects (motion of massive and massless particles in a curved spacetime, evaluation of redshift factors, estimate of physical quantities in different reference frames, etc.) necessary to calculate the electromagnetic spectra of geometrically thin and optically [...] Read more.
This is a tutorial on the strong gravity effects (motion of massive and massless particles in a curved spacetime, evaluation of redshift factors, estimate of physical quantities in different reference frames, etc.) necessary to calculate the electromagnetic spectra of geometrically thin and optically thick accretion disks around black holes. The presentation is intentionally pedagogical, and most calculations are reported step by step. In the disk–corona model, the spectrum of a source has three components: a thermal component from the disk, a Comptonized component from the corona, and a reflection component from the disk. This tutorial reviews only the strong gravity effects, which can be decoupled from the physical processes involving the interaction between matter and radiation. The formulas presented here are valid for stationary, axisymmetric, asymptotically flat, circular spacetimes, so they can be potentially used for a large class of black hole solutions. Full article
(This article belongs to the Special Issue Recent Advances in Gravitational Lensing and Galactic Dynamics)
Show Figures

Figure 1

22 pages, 7294 KB  
Article
A Study on the Hydrodynamic Response Characteristics of Vessel-Shaped Cages Based on the Smoothed Particle Hydrodynamics Method
by Yue Zhuo, Junhua Chen, Lingjie Bao, Hao Li, Fangping Huang and Chuhua Jiang
J. Mar. Sci. Eng. 2024, 12(12), 2199; https://doi.org/10.3390/jmse12122199 - 1 Dec 2024
Cited by 1 | Viewed by 1268
Abstract
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish [...] Read more.
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish cages are prone to damage in the more hostile environments of the deep sea. In this paper, we present a design for a single-point mooring vessel-shaped fish cage that can quickly adjust its bow direction when subjected to waves from various angles. This design ensures that the floating frame consistently responds effectively to wave impacts, thereby reducing the wave forces experienced. The dynamic response of the floating frame and the mooring forces were simulated by coupling the Smoothed Particle Hydrodynamics method with the Moordyn numerical model for mooring analysis. The three degrees of freedom (heave, surge, and pitch) and the mooring forces of a scaled-down vessel-type ship cage model under wave conditions were investigated both numerically and experimentally. The results indicate that the error between the simulation data and the experimental results is maintained within 6%. Building on this foundation, the motion response and mooring force of a full-sized ship-shaped net box under wave conditions off the southeast coast of China were simulated. This study examined the effects of varying mooring lengths and buoy configurations on the motion response and mooring force of the fish cage. Finally, we constructed the fish cage and tested it under the influence of a typhoon. The results demonstrate that the fish cage could operate stably without structural damage, such as mooring failure or floating frame breakage, despite the significant deformation of the floating frame. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 9369 KB  
Article
Research on the Safety and Stability Evaluation for a New Type of Prefabricated Aqueduct in the Construction Stage
by Yamin Li, Lingyu Zhou, Wei Huang, Jinheng Li, Manjun Liao, Hongyuan Wei and Jiaopeng Fang
Buildings 2024, 14(12), 3838; https://doi.org/10.3390/buildings14123838 - 29 Nov 2024
Viewed by 966
Abstract
To address the issue of regional water resource scarcity, water diversion projects have been constructed worldwide. As an essential lifeline project, the prefabricated aqueduct is prevalently utilized in cross-regional water transfer and diversion projects. This paper was based on the prefabricated aqueduct project, [...] Read more.
To address the issue of regional water resource scarcity, water diversion projects have been constructed worldwide. As an essential lifeline project, the prefabricated aqueduct is prevalently utilized in cross-regional water transfer and diversion projects. This paper was based on the prefabricated aqueduct project, which adopted fabricated technologies including the connection technology among the gravity pier, the prefabricated arch ribs, and the prefabricated bent frame columns. The PHC piles, bearing platforms, bent frame columns, arch ribs, and groove bodies were all prefabricated components that were transported to the site for installation. The connections of the prefabricated aqueduct employed to link different components were of such crucial significance that their safety and stability determined whether the overall structure would be compromised. Therefore, the main objective of this paper was to examine the stress and deformation of this prefabricated aqueduct to prevent the occurrence of security risks throughout the entire construction stage. The finite element model was established in Midas Civil, and the entire construction stage was simulated and analyzed. Coupled with on-site monitoring, the stress and deformation of the prefabricated aqueduct were evaluated. The results indicated that the tensile stress, the compressive stress, the vertical displacement, and the lateral displacement of each part of the prefabricated aqueduct met the requirements of the standard, suggesting that the overall structure with the applied connection technology was in a safe and stable state throughout the entire construction stage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop