Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = graphene oxide (GO) film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3402 KiB  
Article
Preparation and Performance Study of Graphene Oxide Doped Gallate Epoxy Coatings
by Junhua Liu, Ying Wu, Yu Yan, Fei Wang, Guangchao Zhang, Ling Zeng, Yin Ma and Yuchun Li
Materials 2025, 18(15), 3536; https://doi.org/10.3390/ma18153536 - 28 Jul 2025
Viewed by 284
Abstract
Coatings that are tolerant of poor surface preparation are often used for rapid, real-time maintenance of aging steel surfaces. In this study, a modified epoxy (EP) anti-rust coating was proposed, utilizing methyl gallate (MG) as a rust conversion agent, graphene oxide (GO) as [...] Read more.
Coatings that are tolerant of poor surface preparation are often used for rapid, real-time maintenance of aging steel surfaces. In this study, a modified epoxy (EP) anti-rust coating was proposed, utilizing methyl gallate (MG) as a rust conversion agent, graphene oxide (GO) as an active functional material, and epoxy resin as the film-forming material. The anti-rust mechanism was investigated using potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), and the scanning vibration electrode technique (SVET). The results demonstrated that over a period of 21 days, the impedance of the coating increases while the corrosion current density decreases with prolonged soaking time. The coating exhibited a maximum impedance of 2259 kΩ, and a lower corrosion current density of 8.316 × 10−3 A/m2, which demonstrated a three-order magnitude reduction compared to the corrosion current density observed in mild steel without coating. LSCM demonstrated that MG can not only penetrate the tiny gap between the rust particles, but also effectively convert harmful rust into a complex. SVET showed a much more uniform current density distribution in the micro-zones of mild steel with the anti-rust coating compared to uncoated mild steel, indicating that the presence of GO not only enhanced the electrical conductivity of the coating, but also improved the structure of the coating, which contributed to the high performance of the modified epoxy anti-rust coating. This work highlights the potential application of anti-rust coating in the protection of metal structures in coastal engineering. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

11 pages, 2278 KiB  
Article
Femtosecond Laser Irradiation Induced Heterojunctions Between Graphene Oxide and Silver Nanowires
by Jiayun Feng, Zhiyuan Wang, Zhuohuan Wu, Shujun Wang, Yuxin Sun, Qi Meng, Jiayue Wen, Shang Wang and Yanhong Tian
Materials 2025, 18(14), 3393; https://doi.org/10.3390/ma18143393 - 19 Jul 2025
Viewed by 292
Abstract
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing [...] Read more.
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing a periodically excited electric field along the Ag NWs. This electric field then interfered with the femtosecond laser field, creating strong localized heating effects, which melted the Ag NW and GO, leading to mechanical bonding between the two. The formation of these heterostructures was attributed to the transfer of plasmon energy from the Ag NW to the adjacent GO surface. Since the connection efficiency of the nanowires is closely related to the specific location and the polarization direction of the laser, FDTD simulations were conducted to model the electric field distribution on the surface of Ag NW and GO structures under different laser polarization directions, varying the lengths and diameters of the nanowires. Finally, the resistance changes of the printed Ag NW paths on the GO thin film after femtosecond laser irradiation were investigated. It was found that laser bonding could reduce the resistance of the Ag NW-GO heterostructures by two orders of magnitude, further confirming the formation of the junctions. Full article
Show Figures

Figure 1

7 pages, 656 KiB  
Communication
Cyclic Voltammetry and Micro-Raman Study of Graphene Oxide-Coated Silicon Substrates
by Grazia Giuseppina Politano
Crystals 2025, 15(7), 603; https://doi.org/10.3390/cryst15070603 - 27 Jun 2025
Viewed by 277
Abstract
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis [...] Read more.
This work presents the improvement of the electro-optical response of n-type crystalline silicon via dip-coated graphene oxide (GO) thin films. GO was deposited on Si/SiO2 by immersion, and the resulting heterostructures were characterized by cyclic voltammetry measurements and Raman spectroscopy. Raman analysis revealed a slight but measurable broadening (~0.7 cm−1) of the Si TO phonon mode at 514 cm−1, indicating local interfacial strain. Cyclic voltammetry measurements showed a substantial increase in photocurrent in comparison to pristine silicon substrates. These effects are attributed to a GO-induced p-type inversion layer and enhanced interfacial charge transfer. The results suggest that GO can serve as a functional interfacial layer for improving silicon-based optoelectronic and photoelectrochemical devices. Full article
(This article belongs to the Special Issue Optical Characterization of Functional Materials)
Show Figures

Figure 1

14 pages, 1673 KiB  
Article
Drying and Film Formation Processes of Graphene Oxide Suspension on Nonwoven Fibrous Membranes with Varying Wettability
by Zeman Liu, Jiaxing Fan, Jian Xue and Fei Guo
Surfaces 2025, 8(2), 39; https://doi.org/10.3390/surfaces8020039 - 18 Jun 2025
Viewed by 484
Abstract
Graphene oxide (GO) films have attracted significant attention due to their potential in separation and filtration applications. Based on their unique lamellar structure and ultrathin nature, GO films are difficult to maintain in a free-standing form and typically require substrate support. Consequently, understanding [...] Read more.
Graphene oxide (GO) films have attracted significant attention due to their potential in separation and filtration applications. Based on their unique lamellar structure and ultrathin nature, GO films are difficult to maintain in a free-standing form and typically require substrate support. Consequently, understanding their film formation behavior and mechanisms on substrates is of paramount importance. This work employs commonly used nonwoven fibrous membranes as substrates and guided by the coffee-ring theory, systematically investigates the film formation behaviors, film morphology, and underlying mechanisms of GO films on fibrous membranes with varying wettability. Fibrous membranes with different wetting properties—hydrophilic, hydrophobic, and superhydrophobic—were prepared via electrospinning and initiated chemical vapor deposition (iCVD) surface modification techniques. The spreading behaviors, deposition dynamics, capillary effects, and evaporation-induced film formation mechanisms of GO suspensions on these substrates were thoroughly examined. The results showed that GO formed belt-like, ring-like, and circular patterns on the three fibrous membranes, respectively. GO films encapsulated more than the upper half, approximately the upper half, and the top portion of fibers, respectively. Pronounced wrinkling of GO films was observed except for those on the hydrophilic fibrous membrane. This work demonstrates that tuning the wettability of fibrous substrates enables precise control over GO film morphology, including fiber encapsulation, wrinkling, and coverage area. Furthermore, it deepens the understanding of the interactions between 1D nanofibers and 2D GO sheets at low-dimensional scales, laying a foundational basis for the optimized design of membrane engineering. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

15 pages, 2137 KiB  
Article
Using Screen Printing Technology to Fabricate Flexible Sodium Ion Sensors
by Fang-Hsing Wang, Shang-Wei Huang, Cheng-Fu Yang and Kao-Wei Min
Sensors 2025, 25(12), 3650; https://doi.org/10.3390/s25123650 - 11 Jun 2025
Viewed by 370
Abstract
This study focused on the development of Na+ ion sensing devices on a flexible substrate and investigated the impact of various additive materials on its sensing performance. For the Na+ ion sensing aspect, the film on the carbon working electrode used [...] Read more.
This study focused on the development of Na+ ion sensing devices on a flexible substrate and investigated the impact of various additive materials on its sensing performance. For the Na+ ion sensing aspect, the film on the carbon working electrode used tert-butyl calix[4]arene tetraethyl acetate as the ion carrier. The main component of the film was polyvinyl chloride (PVC), with a plasticizer added to enhance its flexibility, ensuring better adaptation to the flexible substrate. In this base formulation, graphene oxide (GO) or multi-walled carbon nanotubes (MWCNTs) were incorporated into the sensing electrode to explore their effects on Na+ ion sensing capabilities. The results demonstrated that adding MWCNTs significantly improved the sensor’s sensitivity to Na+ ions. In addition, the study used the response slope to Na+ ions as a comparative reference for selectivity by calculating the ratio of the Na+ ion response slope to the response slopes of other ions (such as K+ and Ca2+). The findings showed that the sensors with MWCNTs exhibited better selectivity than the others with GO, and therefore, further analysis was performed on the response time of the sensors with MWCNTs. The results indicated that incorporating MWCNTs reduced the sensors’ response time and enhanced their overall sensitivity. However, excessive addition of MWCNTs would lead to a decrease in the selectivity of the fabricated sensors. This suggests that while MWCNTs offer promising improvements in performance, their concentration must be carefully optimized to maintain the sensors’ selectivity. Full article
Show Figures

Figure 1

19 pages, 6178 KiB  
Article
Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
by Jacinta Akoth Okwako, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong and Chi-Hwan Han
Energies 2025, 18(10), 2411; https://doi.org/10.3390/en18102411 - 8 May 2025
Viewed by 570
Abstract
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, [...] Read more.
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, we explore the structural and photoelectrochromic enhancements in tungsten oxide (WO3) films achieved by doping with molybdenum disulfide quantum dots (MoS2 QDs) and grapheneoxide–molybdenum disulfide quantum dots (GO–MoS2 QDs) for advanced photoelectrochromic devices. X-ray diffraction (XRD) analysis revealed that doping with MoS2 QDs and GO–MoS2 QDs leads to a reduction in the crystallite size of WO3, as evidenced by the broadening and decrease in peak intensity. Transmission Electron Microscopy (TEM) confirmed the presence of characteristic lattice fringes with interplanar spacings of 0.36 nm, 0.43 nm, and 0.34 nm, corresponding to the planes of WO3, MoS2, and graphene. Energy-Dispersive X-ray Spectroscopy (EDS) mapping indicated a uniform distribution of tungsten, oxygen, molybdenum, and sulfur, suggesting homogeneous doping throughout the WO3 matrix. Scanning Electron Microscopy (SEM) analysis showed a significant decrease in film thickness from 724.3 nm for pure WO3 to 578.8 nm for MoS2 QD-doped WO3 and 588.7 nm for GO–MoS2 QD-doped WO3, attributed to enhanced packing density and structural reorganization. These structural modifications are expected to enhance photoelectrochromic performance by improving charge transport and mechanical stability. Photoelectrochromic performance analysis showed a significant improvement in optical modulation upon incorporating MoS2 QDs and GO–MoS2 QDs into the WO3 matrix, achieving a coloration depth of 56.69% and 70.28% at 630 nm, respectively, within 10 min of 1.5 AM sun illumination, with more than 90% recovery of the initial transmittance within 7 h in dark conditions. Additionally, device stability was improved by the incorporation of GO–MoS2 QDs into the WO3 layer. The findings demonstrate that incorporating MoS2 QDs and GO–MoS2 QDs effectively modifies the structural properties of WO3, making it a promising material for high-performance photoelectrochromic applications. Full article
Show Figures

Figure 1

12 pages, 6465 KiB  
Article
Graphene-Based Organic Semiconductor Film for Highly Selective Photocatalytic CO2 Reduction
by Yanghong Xu, Haopeng Tang, Yifei Wang, Xiaofeng Zhu and Long Yang
Nanomaterials 2025, 15(9), 677; https://doi.org/10.3390/nano15090677 - 29 Apr 2025
Cited by 1 | Viewed by 545
Abstract
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO [...] Read more.
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO nanosheets facilitate the uniform dispersion of DPP nanoparticles (~5 nm) while simultaneously constructing an efficient charge transport network to mitigate carrier recombination. Under visible-light irradiation in an aqueous solution without sacrificial agents, the optimized GO–DPP50 film catalyst exhibited exceptional performance, achieving a CO production rate of 32.62 μmol·g⁻1·h⁻1 with nearly 100% selectivity. This represents 2.77-fold and 3.28-fold enhancements over pristine GO (8.65 μmol·g−1·h−1) and bare DPP (7.62 μmol·g−1·h−1), respectively. Mechanistic analysis reveals a synergistic mechanism. The 2D GO framework not only serves as a high-surface-area substrate for DPP anchoring, but also substantially suppresses charge recombination through rapid electron transport channels. Concurrently, the uniformly distributed DPP nanoparticles improve visible-light absorption efficiency and facilitate effective photogenerated carrier excitation. This work establishes a novel paradigm for the synergistic integration of 2D nanomaterials with organic semiconductors, providing critical design principles for developing high-performance film-based photocatalysts and selectivity control in CO2 reduction applications. Full article
Show Figures

Graphical abstract

16 pages, 2277 KiB  
Article
Simultaneous Trace Analysis of Lead and Cadmium in Drinking Water, Milk, and Honey Samples Through Modified Screen-Printed Electrode
by Fei Wang, Xiao Peng, Ziqian Xiao, Ying Ge, Bilin Tao, Zhaoyong Shou, Yifei Feng, Jing Yuan and Liang Xiao
Biosensors 2025, 15(5), 267; https://doi.org/10.3390/bios15050267 - 23 Apr 2025
Viewed by 661
Abstract
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby [...] Read more.
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby enhancing N-rGO@ppy’s redox properties. Firstly, a glassy carbon electrode (GCE) modified with N-rGO@ppy (N-rGO@ppy/GCE) was used in combination with a bismuth film and square-wave anodic stripping voltammetry (SWASV) for the simultaneous trace analysis of Pb2+ and Cd2+. N-rGO@ppy/GCE exhibited distinct stripping peaks for Pb2+ and Cd2+, with a linear range of 1 to 500 μg L−1. The limits of detection (LODs) were found to be 0.080 μg L−1 for Pb2+ and 0.029 μg L−1 for Cd2+, both of which are significantly below the standards set by the World Health Organization (WHO). Subsequently, the same electrochemical sensing strategy was adapted to a more portable screen-printed electrode (SPE) to accommodate the demand for in situ detection. The performance of N-rGO@ppy/SPE for analyzing Pb2+ and Cd2+ in actual samples, such as drinking water, milk, and honey, showed results consistent with those obtained from conventional graphite furnace atomic absorption spectrometry (GFAAS). Full article
Show Figures

Figure 1

14 pages, 3125 KiB  
Article
Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging
by Yiwei Quan, Peng He and Guqiao Ding
Nanomaterials 2025, 15(8), 630; https://doi.org/10.3390/nano15080630 - 20 Apr 2025
Viewed by 432
Abstract
Converting graphene oxide (GO) nanosheets into high-performance paper-like GO films has significant practical value. However, it is still challenging because the mechanical properties significantly decreased when the nanosheets are assembled into films. The simultaneous attainment of high tensile strength, high modulus, and relatively [...] Read more.
Converting graphene oxide (GO) nanosheets into high-performance paper-like GO films has significant practical value. However, it is still challenging because the mechanical properties significantly decreased when the nanosheets are assembled into films. The simultaneous attainment of high tensile strength, high modulus, and relatively high toughness remains a formidable challenge. Here, we demonstrated an effective approach involving the incorporation of high oxidized graphene oxide (HOGO) and borate, to enhance the mechanical properties of GO films. X-ray photoelectron spectroscopy (XPS) measurements and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) revealed the synergistic effects of hydrogen and covalent bonding from HOGO and borate, respectively. Additionally, wide-angle X-ray scattering (WAXS) analysis indicated a notable enhancement in the orientation of the GO in the resulting films, characterized by the Herman’s orientation factor (ƒ = 0.927), attributable to the combined action of hydrogen and covalent bonding. The borate-crosslinked GO+HOGO films exhibited exceptional mechanical properties, with an impressive strength (417.2 MPa), high modulus (43.8 GPa), and relatively high toughness (2.5 MJ m−3). This innovative assembly strategy presents a promising avenue for achieving desirable mechanical properties, thereby enhancing the potential for commercial applications. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Graphical abstract

20 pages, 8368 KiB  
Article
Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film
by Chung-Long Pan, Tien-Tsan Hung, Chi-Yen Shen, Pin-Hong Chen and Chi-Ming Tai
Polymers 2025, 17(8), 1024; https://doi.org/10.3390/polym17081024 - 10 Apr 2025
Viewed by 631
Abstract
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and [...] Read more.
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and XRD, revealing a rough, wrinkled morphology beneficial for gas adsorption. The sensor showed significant frequency shifts to NH3, enhanced by AuNPs, Cu2O, rGO, and PPy. It had a 6.4-fold stronger response to NH3 compared to CO2, H2, and CO, confirming excellent selectivity. The linear detection range was 12–1000 ppb, with a limit of detection (LOD) of 8 ppb. Humidity affected performance, causing negative frequency shifts, and sensitivity declined after 30 days due to resistivity changes. Despite this, the sensor demonstrated excellent NH3 selectivity and stability across multiple cycles. In simulated breath tests, it distinguished between healthy and patient-like samples, highlighting its potential as a reliable, non-invasive diagnostic tool. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 3168 KiB  
Article
Enhancing the Corrosion Resistance of Passivation Films via the Synergistic Effects of Graphene Oxide and Epoxy Resin
by Bo-Rui Wu, Jian-Tao Yao, Hui Dong, Ze-Lin Chen and Xiao-Gang Liu
Coatings 2025, 15(4), 444; https://doi.org/10.3390/coatings15040444 - 8 Apr 2025
Cited by 2 | Viewed by 718
Abstract
Silane-based passivation films have been widely utilized for corrosion protection in metal materials. In order to further improve the anticorrosion performance of the silane passivation film, this paper adopts the hydrolysis method to add graphene oxide (GO) to the silane coupling agent (3-(2,3-glycidoxy)propyltrimethoxysilane) [...] Read more.
Silane-based passivation films have been widely utilized for corrosion protection in metal materials. In order to further improve the anticorrosion performance of the silane passivation film, this paper adopts the hydrolysis method to add graphene oxide (GO) to the silane coupling agent (3-(2,3-glycidoxy)propyltrimethoxysilane) (KH560). The synthesized KH560-GO passivation solution was then mixed with epoxy resin (EP) to prepare a silane composite passivation film layer (KH560-GO/EP) containing GO and epoxy resin. For comparison, EP and KH560-GO films were also prepared, and the corrosion performance of the composite film was compared with that of the single film. The structure of the KH560-GO film was characterized by X-ray diffraction analyzer (XRD) and infrared spectroscopy (FTIR). The microstructure of the composite film was analyzed by scanning electron microscopy (SEM), while its corrosion resistance was tested through polarization curves and electrochemical impedance spectroscopy (EIS). Additionally, neutral salt spray tests were conducted to evaluate the corrosion resistance of the samples, and rubber wiping tests were performed to assess the adhesion of the film. The results demonstrated that the KH560-GO/EP film exhibited a higher corrosion potential (Ecorr) of −0.239 V compared to the EP and KH560-GO films, along with the lowest self-corrosion current density (Icorr) of 6.157 × 10−7 A/cm2. These findings indicate that the KH560-GO/EP film possesses excellent corrosion resistance. The results showed that the corrosion potential (Ecorr) of the KH560-GO/EP film was higher than that of EP and KH560-GO film layer is −0.239 V, and the self-corrosion current density (Icorr) is the smallest, which is 6.157 × 10−7 A/cm2. The KH560-GO/EP film layer shows excellent corrosion resistance. Experiments show that the KH560-GO/EP passivated film has excellent bonding properties and corrosion resistance. Full article
(This article belongs to the Special Issue Microstructure and Corrosion Behavior of Metallic Materials)
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 986
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

20 pages, 4906 KiB  
Article
Antibacterial Properties and Long-Term Corrosion Resistance of Bioactive Coatings Obtained by Matrix-Assisted Pulsed Laser Evaporation on TiZrTaAg
by Andrei Bogdan Stoian, Mariana Prodana, Radu Nartita, Daniela Ionita and Madalina Simoiu
Metals 2025, 15(3), 253; https://doi.org/10.3390/met15030253 - 27 Feb 2025
Cited by 1 | Viewed by 871
Abstract
The long-term corrosion and antibacterial evaluation of bioactive coating obtained by matrix-assisted pulsed laser evaporation (MAPLE) on TiZrTaAg is crucial for assessing its potential in biomedical applications. The MAPLE deposition technique involves the formation of a dense and adherent layer on the surface [...] Read more.
The long-term corrosion and antibacterial evaluation of bioactive coating obtained by matrix-assisted pulsed laser evaporation (MAPLE) on TiZrTaAg is crucial for assessing its potential in biomedical applications. The MAPLE deposition technique involves the formation of a dense and adherent layer on the surface of the alloy which can include a multitude of components such as bioactive glass, ZnO and graphene oxide. Long-term corrosion studies in simulated body fluids evaluate the stability and integrity of the coating over extended periods, ensuring its durability in the physiological environment. The results showed that the coatings, especially the one incorporating graphene oxide (GO), significantly reduced the corrosion rate of TiZrTaAg compared to the uncoated alloy. Antibacterial evaluation assesses the coating’s ability to inhibit bacterial colonization and biofilm formation, which are major concerns in implant-associated infections. The coatings demonstrated high antibacterial activity, with the one with the GO-containing film exhibiting the highest bacterial inhibition, achieving 83% against Staphylococcus aureus and 71% against Escherichia coli. The study concluded that the MAPLE-modified TiZrTaAg alloy with bioactive coatings, particularly the one with GO, shows promising potential for biomedical applications due to enhanced corrosion resistance and strong antibacterial properties. Full article
Show Figures

Figure 1

17 pages, 5079 KiB  
Article
Holey Carbon Nanohorns-Based Nanohybrid as Sensing Layer for Resistive Ethanol Sensor
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Oana Brancoveanu and Cornel Cobianu
Sensors 2025, 25(5), 1299; https://doi.org/10.3390/s25051299 - 20 Feb 2025
Cited by 1 | Viewed by 670
Abstract
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w [...] Read more.
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w/w/w/w). The sensing device includes a flexible polyimide substrate and interdigital transducer (IDT)-like electrodes. The sensing film is deposited by drop-casting on the sensing structure. The morphology and composition of the sensitive film are analyzed using scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, and Raman spectroscopy. The manufactured resistive device presents good sensitivity to concentrations of alcohol vapors varying in the range of 0.008–0.16 mg/cm3. The resistance of the proposed sensing structure increases over the entire range of measured ethanol concentration. Different types of sensing mechanisms are recognized. The decrease in the hole concentration in CNHox, GO, and CNHox due to the interaction with ethanol vapors, which act as electron donors, and the swelling of the PVP are plausible and seem to be the prevalent sensing pathway. The hard–soft acid-base (HSAB) principle strengthens our analysis. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

15 pages, 6513 KiB  
Article
A Wide-Range, Highly Stable Intelligent Flexible Pressure Sensor Based on Micro-Wrinkled SWCNT/rGO-PDMS with Efficient Thermal Shrinkage
by Lei Fan, Zhaoxin Wang, Tao Yang, Qiang Zhao, Zhixin Wu, Yijie Wang, Xue Qi and Lei Zhang
Biosensors 2025, 15(2), 122; https://doi.org/10.3390/bios15020122 - 19 Feb 2025
Cited by 1 | Viewed by 1351
Abstract
Flexible pressure sensors have drawn growing attention in areas like human physiological signal monitoring and human–computer interaction. Nevertheless, it still remains a significant challenge to guarantee their long-term stability while attaining a wide detection range, a minute pressure testing limit, and high sensitivity. [...] Read more.
Flexible pressure sensors have drawn growing attention in areas like human physiological signal monitoring and human–computer interaction. Nevertheless, it still remains a significant challenge to guarantee their long-term stability while attaining a wide detection range, a minute pressure testing limit, and high sensitivity. Inspired by the wrinkles on animal skins, this paper introduces a flexible pressure sensor with wrinkled microstructures. This sensor is composed of a composite of reduced graphene oxide (rGO), single-walled carbon nanotubes (SWCNTs), and polydimethylsiloxane (PDMS). After optimizing the proportion of the composite materials, the flexible pressure sensor was manufactured using highly efficient heat-shrinkable films. It has a sensitivity as high as 15.364 kPa−1. Owing to the wrinkled microstructures, the sensor can achieve an ultra-wide pressure detection range, with the maximum reaching 1150 kPa, and is capable of detecting water wave vibrations at the minimum level. Moreover, the wrinkled microstructures were locked by PDMS. The sensor acquired waterproof performance and its mechanical stability was enhanced. Even after 18,000 cycles of repeated loading and unloading, its performance remained unchanged. By combining with an artificial neural network, high-precision recognition of different sounds and postures when grasping different objects was realized, with the accuracies reaching 98.3333% and 99.1111%, respectively. Through the integration of flexible WIFI, real-time wireless transmission of sensing data was made possible. In general, the studied sensor can facilitate the application of flexible pressure sensors in fields such as drowning monitoring, remote traditional Chinese medicine, and intelligent voice. Full article
(This article belongs to the Special Issue Microelectronics and MEMS-Based Biosensors for Healthcare Application)
Show Figures

Figure 1

Back to TopTop