Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of AuNPs-Cu2O/rGo/PPy Hybrid Nanocomposite Films
2.1.1. Preparation of Cu2O/rGO Nanocomposites
2.1.2. Preparation of AuNPs/rGO/PPy Nanocomposites
2.1.3. Preparation of AuNPs-Cu2O/rGO/PPy Nanocomposites
2.2. SAW Sensor Fabrication
2.3. Gas Detection Measurement
3. Results
3.1. Material Analysis of the AuNPs-Cu2O/rGO/PPy Hybrid Nanocomposite Films
3.2. Gas Sensing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M. Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.S.; de Oliveira, A.C.; de Oliveira, A.C. A portable device for methane measurement using a low-cost semiconductor sensor: Development, calibration and environmental applications. Sensors 2021, 21, 7456. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Roy, P.; Debnath, P. Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: A review focused on personalized healthcare. Sens. Actuators B Chem. 2022, 359, 131604. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T. Insights into the gas sensor materials: Synthesis, performances and devices. Sens. Actuators B Chem. 2022, 371, 132565. [Google Scholar] [CrossRef]
- Karthikeyan, E.M.J.; Alagappan, P.; Sisir Gadisetti, R. Use of the ammonia breath test in the diagnosis of Helicobacter pylori infection. Int. Surg. J. 2020, 7, 3955–3958. [Google Scholar] [CrossRef]
- Lefferts, M.J.; Castell, M.R. Ammonia breath analysis. Sens. Diagn. 2022, 1, 955–967. [Google Scholar] [CrossRef]
- Aswal, D.K.; Gupta, S.K. Current state of knowledge on the metal oxide-based gas sensors: A review. Sens. Actuators B Chem. 2022, 367, 130557. [Google Scholar] [CrossRef]
- Dinh, P.N.; Nguyen, H.Q.; Hieu, N.V.; Hoa, N.D.; Van Duy, N.; Kim, D. Recent development in nanocarbon materials for gas sensor applications. Sens. Actuators B Chem. 2020, 305, 127371. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Mohanta, G.; Sharma, A.; Kim, K.; Deep, A. A three-phase copper MOF-graphene-polyaniline composite for effective sensing of ammonia. Anal. Chim. Acta 2018, 1043, 89–97. [Google Scholar] [CrossRef]
- Garg, N.; Kumar, M.; Kumari, N.; Deep, A.; Sharma, A. Chemoresistive room-temperature sensing of ammonia using zeolite imidazole framework and reduced graphene oxide (ZIF-67/rGO) composite. ACS Omega 2020, 5, 27492–27501. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, S.; Singh, R.; Sharma, S. Hydrothermally synthesized MoS2-multi-walled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Appl. Surf. Sci. 2020, 532, 147373. [Google Scholar] [CrossRef]
- Singh, S.; Sattigeri, R.; Kumar, S.; Jha, P.; Sharma, S. Superior room-temperature ammonia sensing using a hydrothermally synthesized MoS2/SnO2 composite. ACS Omega 2021, 6, 11602–11613. [Google Scholar] [CrossRef] [PubMed]
- Beniwal, A.; Sharma, S. SnO2-ZnO-Fe2O3 tri-composite based room temperature operated dual behavior ammonia and ethanol sensor for ppb level detection. Nanoscale 2020, 12, 19732–19745. [Google Scholar] [CrossRef]
- Carvalho, T.R.; Porto, A.O.; de Abreu, M.A.S.; de Souza, C.P.; Ribeiro, C. Gas sensing properties of Cu2O and its particle size and morphology-dependent gas-detection sensitivity. J. Mater. Chem. A 2014, 2, 16289–16295. [Google Scholar] [CrossRef]
- Ma, C.; Yu, Y.; Zhang, Y.; Zhang, X.; Zhu, J.; Qin, Y. Rose-like Cu2O nanoflowers via hydrothermal synthesis and their gas sensing properties. Mater. Lett. 2016, 185, 338–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Y.; Liu, Y.; Zhang, Y. Facile synthesis of ZnIn2S4/Cu2O hierarchical heterostructures for enhanced selectivity and sensitivity of NH3 gas at room temperature. Appl. Surf. Sci. 2023, 628, 158315. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Liu, Z.; Zhou, X.; Chen, J. Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing. Mater. Lett. 2019, 256, 126615. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, X.; Du, B.; Hu, X.; Yang, X.; He, Y.; Zhou, Y.; Zang, Z. Low-operating temperature ammonia sensor based on Cu2O nanoparticles decorated with p-type MoS2 nanosheets. J. Mater. Chem. C 2021, 9, 12345–12356. [Google Scholar] [CrossRef]
- Hizam, S.M.M.; Al-Dhahebi, A.M.; Saheed, M.S.M. Recent advances in graphene-based nanocomposites for ammonia detection. Surfaces 2023, 6, 5125. [Google Scholar] [CrossRef]
- Ghosh, R.; Midya, A.; Santra, S.; Ray, S.K.; Guha, P.K. Chemically reduced graphene oxide for ammonia detection at room temperature. ACS Appl. Mater. Interfaces 2013, 5, 7599–7603. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Kim, H.W.; Kim, S.S. Reduced graphene oxide (rGO)-loaded metal-oxide nanofiber gas sensors: An overview. Sensors 2021, 21, 1352. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Li, X.; Shuai, W.; He, G.; Jiang, W.; Hu, J.; Wang, Y.; Hu, N.; Zhang, Y.; Yang, Z. Three-dimensional chemically reduced graphene oxide templated by silica spheres for ammonia sensing. Sens. Actuators B Chem. 2017, 252, 956–964. [Google Scholar] [CrossRef]
- Ly, A.; Luo, Y.; Cavaillès, G.; Olivier, M.; Debliquy, M.; Lahem, D. Ammonia sensor based on vapor phase polymerized polypyrrole. Chemosensors 2020, 8, 38. [Google Scholar] [CrossRef]
- Fernandez, F.; Khadka, R.; Yim, J. A comparative study between vapor phase polymerized PPy and PEDOT-thermoplastic polyurethane composites for ammonia sensing. Polymer 2021, 217, 123463. [Google Scholar] [CrossRef]
- Muthusamy, S.; Charles, J.; Renganathan, B.; Ganesan, A. Ternary polypyrrole/prussian blue/TiO2 nanocomposite wrapped poly-methyl methacrylate fiber optic gas sensor to detect volatile gas analytes. Optik 2021, 230, 166289. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, I.; Husain, A.; Khan, A.; Asiri, A.M. Electrical conductivity based ammonia sensing properties of polypyrrole/MoS2 nanocomposite. Polymers 2020, 12, 3047. [Google Scholar] [CrossRef]
- Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41, 2849–2866. [Google Scholar] [CrossRef]
- Kumalasari, M.R.; Alfanaar, R.; Andreani, A.S. Gold nanoparticles (AuNPs): A versatile material for biosensor application. Talanta Open 2024, 5, 100327. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Lee, Y.; Lee, G.H.; Lee, S.Y.; Kim, H.S.; Kim, S.I.; Park, H.J.; Kim, S.J.; Lee, B.Z.; Choi, M.S.; et al. Room-temperature ammonia gas sensing via Au nanoparticle-decorated TiO2 nanosheets. Nanoscale Res. Lett. 2023, 18, 47. [Google Scholar] [CrossRef]
- Hung, T.T.; Chung, M.H.; Chiu, J.J.; Yang, M.W.; Tien, T.N.; Shen, C.Y. Poly(4-styrenesulfonic acid) doped polypyrrole/tungsten oxide/reduced graphene oxide nanocomposite films based surface acoustic wave sensors for NO sensing behavior. Org. Electron. 2021, 88, 106006. [Google Scholar] [CrossRef]
- Calderón-Jiménez, B.; Johnson, M.E.; Montoro Bustos, A.R.; Murphy, K.E.; Winchester, M.R.; Vega Baudrit, J.R. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 2017, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.T.; Chung, M.H.; Wu, J.Y.; Shen, C.Y. A room-temperature surface acoustic wave ammonia sensors based on rGO/DPP2T-TT composite films. Sensors 2022, 22, 5280. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.Y.; Hung, T.T.; Chuang, Y.W.; Lai, S.K.; Tai, C.M. Room-temperature NH3 gas surface acoustic wave (SAW) sensors based on graphene/PPy composite films decorated by Au nanoparticles with ppb detection ability. Polymers 2023, 15, 4353. [Google Scholar] [CrossRef]
- Low, F.W.; Lai, C.W.; Abd Hamid, S.B. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram. Int. 2015, 41, 5798–5806. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglier, G. Solid State Gas Sensing; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Duan, Z.; Huang, Q.; Wu, Y.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling. Sens. Actuators B Chem. 2021, 344, 130150. [Google Scholar] [CrossRef]
- Xu, X.; Zu, X.; Ao, D.; Yu, J.; Xiang, X.; Xie, W.; Fu, Y. NH3-sensing mechanism using surface acoustic wave sensor with AlO(OH) film. Nanomaterials 2019, 9, 1732. [Google Scholar] [CrossRef]
- Sun, X.; Chen, T.; Liang, Y.; Zhang, C.; Zhai, S.; Sun, J.; Wang, W. Enhanced sensitivity of SAW based ammonia sensor employing GO-SnO2 nanocomposites. Sens. Actuators B Chem. 2023, 375, 132884. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Miu, D.; Viespe, C. Surface acoustic wave sensors for ammonia detection at room temperature based on SnO2/Co3O4 bilayers. J. Sens. 2019, 2019, 8203810. [Google Scholar] [CrossRef]
- Duan, X.; Duan, Z.; Zhang, Y.; Liu, B.; Li, X.; Zhao, Q.; Yuan, Z.; Jiang, Y. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sens. Actuators B Chem. 2022, 369, 132302. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Y.; Xiong, W.; Fu, Y.; Elmarakbi, A.; Zu, X. Highly sensitive and selective surface acoustic wave ammonia sensor operated at room temperature with a polyacrylic acid sensing layer. Sensors 2022, 22, 6349. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Wang, Y.S. High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane. J. Alloys Compd. 2019, 789, 693–696. [Google Scholar] [CrossRef]
- Gong, S.Y.; Chen, J.Y.; Wu, X.F.; Han, N.; Chen, Y.F. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catal. Commun. 2018, 106, 25–29. [Google Scholar] [CrossRef]
- Sun, L.L.; Wang, G.H.; Hao, R.R.; Han, D.Y.; Cao, S. Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B. Appl. Surf. Sci. 2015, 358, 91–99. [Google Scholar] [CrossRef]
- Gautam, M.; Jayatissa, A.H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid State Electron. 2012, 78, 159–165. [Google Scholar] [CrossRef]
- Tang, X.; Lahem, D.; Raskin, J.P.; Gérard, P.; Geng, X.; André, N.; Debliquy, M. A fast and room-temperature operation ammonia sensor based on compound of graphene with polypyrrole. IEEE Sens. J. 2018, 18, 9088–9096. [Google Scholar] [CrossRef]
- Sun, J.; Shu, X.; Tian, Y.; Tong, Z.; Bai, S.; Luo, R.; Li, D.; Liu, C.C. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem. 2017, 241, 658–664. [Google Scholar] [CrossRef]
- Karaduman, I.; Er, E.; Çelikkan, H.; Erk, N.; Acar, S. Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. J. Alloys Compd. 2017, 722, 569–578. [Google Scholar] [CrossRef]
Sample | Frequency Shift (Hz) | Response Time (s) | Recovery Time (s) |
---|---|---|---|
rGO | 94 | 152 | 132 |
Cu2O/rGO | 139 | 144 | 120 |
AuNPs-Cu2O/rGO/PPy | 640 | 131 | 86 |
Concentration (ppb) | 12 | 22 | 50 | 100 | 200 | 400 | 600 | 800 | 1000 |
---|---|---|---|---|---|---|---|---|---|
Frequency shift (Hz) | 352 | 421 | 505 | 640 | 848 | 1334 | 1741 | 1937 | 2227 |
Response time (s) | 130 | 134 | 132 | 131 | 96 | 69 | 92 | 93 | 88 |
Recovery time (s) | 96 | 130 | 87 | 86 | 72 | 53 | 66 | 91 | 85 |
Time (Day) | 1 | 2 | 3 | 8 | 15 | 30 |
---|---|---|---|---|---|---|
Frequency shift (Hz) | 640 | 590 | 539 | 450 | 424 | 413 |
Stability (%) | 100.0% | 92.2% | 84.2% | 70.3% | 66.3% | 64.5% |
Sensing Film | Sensitivity | LOD | Response Time | Recovery Time | Reference |
---|---|---|---|---|---|
AlO(OH) | 1540 Hz to 10 ppm | 2 ppm | 30–60 s | 60–90 s | [38] |
GO-SnO2 | 0.0098 mV/ppb | 40 ppb | 16 s | 195 s | [39] |
SnO2/Co3O4 | 3.33 Hz/ppm | 9 ppm | 100–120 s | 30–50 s | [40] |
PAni-WO3 | 121% to 100 ppm | 1 ppm | 32 s | 388 s | [41] |
Polyacrylic Acid | 750 Hz/ppm | 0.5 ppm | 200 s | 230 s | [42] |
PANI–rGO | 13% to15 ppm | 0.3 ppm | 96 s | 22.1 min | [43] |
AuNPs-Cu2O/rGO/PPy | 2 Hz/ppb | 8 ppb | 130 s | 96 s | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.-L.; Hung, T.-T.; Shen, C.-Y.; Chen, P.-H.; Tai, C.-M. Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film. Polymers 2025, 17, 1024. https://doi.org/10.3390/polym17081024
Pan C-L, Hung T-T, Shen C-Y, Chen P-H, Tai C-M. Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film. Polymers. 2025; 17(8):1024. https://doi.org/10.3390/polym17081024
Chicago/Turabian StylePan, Chung-Long, Tien-Tsan Hung, Chi-Yen Shen, Pin-Hong Chen, and Chi-Ming Tai. 2025. "Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film" Polymers 17, no. 8: 1024. https://doi.org/10.3390/polym17081024
APA StylePan, C.-L., Hung, T.-T., Shen, C.-Y., Chen, P.-H., & Tai, C.-M. (2025). Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film. Polymers, 17(8), 1024. https://doi.org/10.3390/polym17081024