Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO Nanosheets
2.3. Preparation of HOGO Nanosheets
2.4. Preparation of Borate-Crosslinked GO+HOGO Films
2.5. Characterization
3. Results and Discussion
3.1. Characterization of the Synergistic Enhancement
3.2. WAXS Measurements of the Orientation Enhancement
3.3. Mechanical Improvement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Q.; Wu, M.; Li, M.; Jiang, L.; Tang, Z. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem. Int. Ed. Engl. 2013, 52, 3750–3755. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Adv. Mater. 2008, 20, 3924–3930. [Google Scholar] [CrossRef]
- Yu, D.; Yang, Y.; Durstock, M.; Baek, J.B.; Dai, L. Soluble P3HT-grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices. ACS Nano 2010, 4, 5633–5640. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Cheng, C.; Wu, Y.; Jiang, Y.; Gao, J.; Li, D.; Jiang, L. Bio-inspired Two-dimensional Nanofluidic Generators-based on A Layered Graphene Hydrogel Membrane. Adv. Mater. 2013, 25, 6064–6068. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Compton, O.C.; Putz, K.W.; Brinson, L.C.; Nguyen, S.T. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 2011, 23, 3842–3846. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.Q.; Zu, S.Z.; Peng, K.; Zhou, D.; Han, B.H.; Zhang, Z. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS Nano 2011, 5, 2134–2141. [Google Scholar] [CrossRef]
- Hing, K.A. Bone Repair in The Twenty-First Century: Biology, Chemistry or Engineering? Philos. Trans. A. Math. Phys. Eng. Sci. 2004, 362, 2821–2850. [Google Scholar] [CrossRef]
- Jackson, A.; Vincent, J.; Turner, R. The Mechanical Design of Nacre. Proc. R. Soc. Lond. Ser. B 1997, 234, 415–440. [Google Scholar] [CrossRef]
- Wegst, U.G.K. Bamboo and Wood in Musical Instruments. Annu. Rev. Mater. Res. 2008, 38, 323–349. [Google Scholar] [CrossRef]
- Wegst, U.G.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired Structural Materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- Ji, B.; Gao, H. Mechanical Principles of Biological Nanocomposites. Annu. Rev. Mater. Res. 2010, 40, 77–100. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 2014, 26, 7588–7592. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Cao, Y.; Wang, Y.; Yang, W.; Feng, J. Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv. Mater. 2013, 25, 2980–2983. [Google Scholar] [CrossRef]
- Yeh, C.N.; Raidongia, K.; Shao, J.; Yang, Q.H.; Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2014, 7, 166–170. [Google Scholar] [CrossRef]
- Mao, L.; Park, H.; Soler-Crespo, R.A.; Espinosa, H.D.; Han, T.H.; Nguyen, S.T.; Huang, J. Stiffening of graphene oxide films by soft porous sheets. Nat. Commun. 2019, 10, 3677–3685. [Google Scholar] [CrossRef]
- Park, S.; Dikin, D.A.; Nguyen, S.T.; Ruoff, R.S. Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J. Phys. Chem. C. 2009, 113, 15801–15804. [Google Scholar] [CrossRef]
- Putz, K.W.; Compton, O.C.; Palmeri, M.J.; Nguyen, S.T.; Brinson, L.C. High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly. Adv. Funct. Mater. 2010, 20, 3322–3329. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Liu, Q.; Kuang, J.; Zhou, D.; Ju, S.; Han, B.; Zhang, Z. High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films. Small 2013, 9, 2466–2472. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, S.; Zhang, Q.; Ming, P.; Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Graphene-based artificial nacre nanocomposites. Chem. Soc. Rev. 2016, 45, 2378–2395. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, Q. Bioinspired graphene-based nanocomposites via ionic interfacial interactions. Composites Commun. 2018, 7, 16–22. [Google Scholar] [CrossRef]
- Wan, S.; Cheng, Q. Role of Interface Interactions in the Construction of GO-Based Artificial Nacres. Adv. Mater. Int. 2018, 5, 1–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening. Adv. Mater. 2016, 28, 2834–2839. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Li, X.; Chen, Y.; Liu, N.; Du, Y.; Dou, S.; Jiang, L.; Cheng, Q. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, Q.; Wang, R.; Jiang, L.; Cheng, Q. Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation. J. Mater. Chem. A 2017, 5, 16386–16392. [Google Scholar] [CrossRef]
- Zhang, P.L.; He, P.; Zhao, Y.F.; Yang, S.W.; Yu, Q.K.; Xie, X.M.; Ding, G.Q. Oxidating Fresh Porous Graphene Networks toward Ultra-Large Graphene Oxide with Electrical Conductivity. Adv. Funct. Mater. 2022, 32, 1–11. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef]
- Liu, S.Y.; Hu, K.W.; Cerruti, M.; Barthelat, F. Ultra-stiff graphene oxide paper prepared by directed-flow vacuum filtration. Carbon 2020, 158, 426–434. [Google Scholar] [CrossRef]
- Lin, X.; Shen, X.; Zheng, Q.; Yousefi, N.; Ye, L.; Mai, Y.W.; Kim, J.K. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 2012, 6, 10708–10719. [Google Scholar] [CrossRef]
- Wan, S.J.; Chen, Y.; Wang, Y.L.; Li, G.W.; Wang, G.R.; Liu, L.Q.; Zhang, J.Q.; Liu, Y.Z.; Xu, Z.P.; Tomsia, A.P.; et al. Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter 2019, 1, 389–401. [Google Scholar] [CrossRef]
- Cui, W.; Li, M.; Liu, J.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 2014, 8, 9511–9517. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yu, T.; Yang, T.Y.; Zheng, L.X.; Liao, K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. Int. 2012, 24, 3426–3431. [Google Scholar] [CrossRef]
- Lam do, V.; Gong, T.; Won, S.; Kim, J.H.; Lee, H.J.; Lee, C.; Lee, S.M. A robust and conductive metal-impregnated graphene oxide membrane selectively separating organic vapors. Chem. Commun. 2015, 51, 2671–2674. [Google Scholar] [CrossRef]
- Wan, S.; Peng, J.; Li, Y.; Hu, H.; Jiang, L.; Cheng, Q. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan. ACS Nano 2015, 9, 9830–9836. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Huang, L.; Jia, N.; Li, C.; Shi, G. Size Fractionation of Graphene Oxide Sheets via Filtration through Track-Etched Membranes. Adv. Mater. 2015, 27, 3654–3660. [Google Scholar] [CrossRef]
- Wan, S.; Li, Y.; Peng, J.; Hu, H.; Cheng, Q.; Jiang, L. Synergistic toughening of graphene oxide-molybdenum disulfide-thermoplastic polyurethane ternary artificial nacre. ACS Nano 2015, 9, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Kim, Y.S.; Jung, Y.; Yang, S.J.; Park, C.R. Preparation and Exceptional Mechanical Properties of Bone-Mimicking Size-Tuned Graphene Oxide@Carbon Nanotube Hybrid Paper. ACS Nano 2016, 10, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Sun, W.; Wei, Q.; Qian, X.; Cheng, H.M.; Ren, W. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 2018, 9, 3484. [Google Scholar] [CrossRef]
- He, P.; Zhou, J.; Tang, H.; Yang, S.; Liu, Z.; Xie, X.; Ding, G. Electrochemically modified graphite for fast preparation of large-sized graphene oxide. J Colloid Interface Sci 2019, 542, 387–391. [Google Scholar] [CrossRef]
- Zhang, P.L.; Zhou, J.S.; He, P.; Yang, S.J.; Ding, G.Q. A one-pot strategy for highly efficient preparation of ultra-large graphene oxide. Carbon 2022, 191, 477–485. [Google Scholar] [CrossRef]
- Wan, S.; Fang, S.; Jiang, L.; Cheng, Q.; Baughman, R.H. Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and pi Bridging. Adv. Mater. Int. 2018, e1802733. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ni, H.; Wang, Y.; Wu, C.; Zhang, H.; Zhang, J.; Tomsia, A.P.; Jiang, L.; Cheng, Q. Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. USA 2020, 117, 8727–8735. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Chen, Y.; Fang, S.; Wang, S.; Xu, Z.; Jiang, L.; Baughman, R.H.; Cheng, Q. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 2021, 20, 624–631. [Google Scholar] [CrossRef]
- Jeon, J.H.; Cheedarala, R.K.; Kee, C.D.; Oh, I.K. Dry-Type Artificial Muscles Based on Pendent Sulfonated Chitosan and Functionalized Graphene Oxide for Greatly Enhanced Ionic Interactions and Mechanical Stiffness. Adv. Funct. Mater. 2013, 23, 6007–6018. [Google Scholar] [CrossRef]
Reference | Materials | Modulus (GPa) | Tensile Strength (MPa) | Toughness (MJ m−3) | |
---|---|---|---|---|---|
Natural Materials | [10] | Nacre | 26.0–42.0 | 200.0 | 2.6 |
[10] | Bone | 10.0–15.0 | 50.0–200.0 | 2.0–10.0 | |
[9] | Bamboo | 20.0–40.0 | - | - | |
GO-based Materials | [12] | GO+Ca2+ | 28.1 ± 1.2 | 125.8 | 0.3 |
GO+Mg2+ | 27.9 ± 1.8 | 87.9 | 0.1 | ||
[45] | GO+Zn2+ | 35.2 | 142.2 | 0.3 | |
[17] | GO+PAA | 33.3 ± 2.7 | 91.9 | 0.2 | |
[6] | GO+GA | 26.0−34.7 | 101.0 | 0.3 | |
[16] | GO+PGO | 35.1 ± 1.7 | 119.0 ± 27.0 | 0.4 | |
[5] | GO+B | 127.0 ± 4.0 | 185.0 | 0.1 | |
[28] | GO+B | 109.9 | 135.0 | 0.1 | |
[14] | GO+PDA+PEI | 84.8 ± 2.9 | 179.0 | 0.2 | |
[19] | GO+PVA | 25.3 ± 0.5 | 255.7 | 2.5 | |
[31] | GO+PDA | 11.3 ± 4.5 | 175.0 | 1.5 | |
[18] | GO+PVA | 40.3 | 80.2 | 0.1 | |
GO+PMMA | 10.1 | 148.3 | 2.4 | ||
[15] | GO+Al3+ | 26.2 ± 4.6 | 120.0 | 0.2 | |
Our work | LOGO+HOGO | 22.0 | 338.3 | 6.0 | |
LOGO+HOGO+B | 43.8 | 417.2 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, Y.; He, P.; Ding, G. Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging. Nanomaterials 2025, 15, 630. https://doi.org/10.3390/nano15080630
Quan Y, He P, Ding G. Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging. Nanomaterials. 2025; 15(8):630. https://doi.org/10.3390/nano15080630
Chicago/Turabian StyleQuan, Yiwei, Peng He, and Guqiao Ding. 2025. "Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging" Nanomaterials 15, no. 8: 630. https://doi.org/10.3390/nano15080630
APA StyleQuan, Y., He, P., & Ding, G. (2025). Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging. Nanomaterials, 15(8), 630. https://doi.org/10.3390/nano15080630