Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = grapevine breeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1610 KiB  
Review
Responding to Stress: Diversity and Resilience of Grapevine in a Changing Climate Under the Perspective of Omics Research
by Tomas Konecny, Armine Asatryan and Hans Binder
Int. J. Mol. Sci. 2025, 26(16), 7877; https://doi.org/10.3390/ijms26167877 - 15 Aug 2025
Abstract
Climate change, with its altered precipitation and extreme temperatures, significantly threatens global viticulture by affecting grapevine growth, yield, and fruit quality. Understanding the molecular underpinnings of grapevine resilience is crucial for developing adaptive strategies. Our aim is to explore the application of multi-omics [...] Read more.
Climate change, with its altered precipitation and extreme temperatures, significantly threatens global viticulture by affecting grapevine growth, yield, and fruit quality. Understanding the molecular underpinnings of grapevine resilience is crucial for developing adaptive strategies. Our aim is to explore the application of multi-omics approaches (integrating genomics, transcriptomics, proteomics, metabolomics, and epigenetics) to investigate grapevine stress responses. Advances in these omics technologies have been pivotal in identifying key stress-response genes, metabolic pathways, and regulatory networks, particularly those contributing to grapevine tolerance to water deficiency, (such as drought and decreased precipitation), extreme temperatures, UV radiation, and salinity. Furthermore, the rich genetic reservoir within grapevines serves as a vital resource for enhancing stress tolerance. While adaptive strategies such as rootstock selection and precision irrigation are important, future research must prioritize integrated multi-omics studies, including those on regional climate adaptation and long-term breeding programs. Such efforts are essential to exploit genetic diversity and ensure the sustainability of viticulture in the evolving climate. In summary, this review demonstrates how utilizing the inherent genetic variability of grapevines and employing multi-omics approaches are critical for understanding and enhancing their resilience to the challenges posed by climate change. Full article
Show Figures

Figure 1

15 pages, 24657 KiB  
Article
Identification and Genetic Analysis of Downy Mildew Resistance in Intraspecific Hybrids of Vitis vinifera L.
by Xing Han, Yihan Li, Zhilei Wang, Zebin Li, Nanyang Li, Hua Li and Xinyao Duan
Plants 2025, 14(15), 2415; https://doi.org/10.3390/plants14152415 - 4 Aug 2025
Viewed by 251
Abstract
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance [...] Read more.
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance and high quality. To assess the potential of intraspecific recurrent selection in V. vinifera (IRSV) in improving grapevine resistance to downy mildew and to analyze the pattern of disease resistance inheritance, the disease-resistant variety Ecolly was selected as one of the parents and crossed with Cabernet Sauvignon, Marselan, and Dunkelfelder, respectively, creating three reciprocal combinations, resulting in 1657 hybrid F1 progenies. The primary results are as follows: (1) significant differences in disease resistance among grape varieties and, significant differences in disease resistance between different vintages of the same variety were found; (2) the leaf downy mildew resistance levels of F1 progeny of different hybrid combinations conformed to a skewed normal distribution and showed some maternal dominance; (3) the degree of leaf bulbous elevation was negatively correlated with the level of leaf downy mildew resistance, and the correlation coefficient with the level of field resistance was higher; (4) five progenies with higher levels of both field and in vitro disease resistance were obtained. Intraspecific hybridization can improve the disease resistance of offspring through super-parent genetic effects, and Ecolly can be used as breeding material for recurrent hybridization to obtain highly resistant varieties. Full article
Show Figures

Figure 1

14 pages, 1069 KiB  
Article
Impact of Temperature and Sucrose Levels on the Slow Growth of Interspecific Grapevine Hybrids In Vitro
by Lidiane Miranda da Silva, Virginia Silva Carvalho, Alexandre Pio Viana, Daniel Pereira Miranda, Kíssila Motta Defanti and Otalício Damásio da Costa Júnior
Int. J. Plant Biol. 2025, 16(3), 83; https://doi.org/10.3390/ijpb16030083 - 23 Jul 2025
Viewed by 325
Abstract
Grapevine breeding programs face difficulties in preserving germplasm, especially from species and interspecific hybrids, since most collections are maintained in the field and exposed to biotic and abiotic stress, which can lead to material loss. The Universidade Estadual do Norte Fluminense Darcy Ribeiro [...] Read more.
Grapevine breeding programs face difficulties in preserving germplasm, especially from species and interspecific hybrids, since most collections are maintained in the field and exposed to biotic and abiotic stress, which can lead to material loss. The Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) Grapevine Breeding Program faces similar challenges, limiting studies on hybrids resistant to the nematode Pratylenchus brachyurus and downy mildew (Plasmopara viticola), which are valuable for genetic improvement. This study aimed to implement in vitro conservation under minimal growth conditions for interspecific hybrids of Vitis spp. from the UENF program. The protocol followed a completely randomized design in a 2 × 2 × 3 factorial scheme: two hybrids (CH1.2 and CH1.3), two temperatures (18 ± 1 °C and 27 ± 2 °C), and three sucrose concentrations (10, 20, and 30 g L−1), over 180 days of in vitro culture. The results showed that conservation of the UENF hybrids is feasible using nodal segments as explants, at 18 ± 2 °C and 10 g L−1 of sucrose, for up to four months. This protocol may also be applied to other Vitis spp., contributing to the preservation and continued study of valuable germplasm. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

12 pages, 1242 KiB  
Article
Identification of Vitis riparia as Donor of Black Rot Resistance in the Mapping Population V3125 x ‘Börner’ and Additive Effect of Rgb1 and Rgb2
by Patricia Weber, Anna Werner, Friederike Rex, Franco Röckel, Oliver Trapp, Reinhard Töpfer and Ludger Hausmann
Agronomy 2025, 15(6), 1484; https://doi.org/10.3390/agronomy15061484 - 19 Jun 2025
Viewed by 814
Abstract
Viticulture is facing challenges, like the impact of climate change and various pests and pathogens. Alongside powdery and downy mildew, black rot is one of the most prevalent fungal diseases in European wine-growing regions. The focus of grapevine breeding research has so far [...] Read more.
Viticulture is facing challenges, like the impact of climate change and various pests and pathogens. Alongside powdery and downy mildew, black rot is one of the most prevalent fungal diseases in European wine-growing regions. The focus of grapevine breeding research has so far been mainly on resistance to mildew diseases, and marker-assisted selection (MAS) in breeding material is possible for the most important resistance loci. However, only a few loci have been described for black rot resistance and these cannot yet be used for MAS. Thus, the characterization of genetic resistance to black rot and the establishment of closely linked genetic markers is important for the breeding of cultivars with multifungal resistances. In this study, an improved SSR marker-based genetic map of the biparental mapping population V3125 (‘Schiava Grossa’ x ‘Riesling’) x ‘Börner‘ (Vitis riparia x Vitis cinerea) was used to perform QTL analysis for black rot resistance. A total of 195 F1 individuals were analyzed at 347 SSR marker positions distributed on all 19 chromosomes. QTL analysis detected two QTLs conferring resistance to black rot on linkage groups 14 (Rgb1) and 16 (Rgb2). Our results revealed for the first time that Rgb1 and Rgb2 are derived from the wild species V. riparia. The presence of both loci in F1 individuals showed a clear additive effect for black rot resistance, supporting the breeding strategy of pyramiding two or more resistance factors to achieve a stronger overall resistance. Full article
Show Figures

Figure 1

11 pages, 5164 KiB  
Article
Molecular Characterization and Ex Situ Conservation of Wild Grapevines Grown in the Area Around the Neolithic Settlement of Dikili Tash, Greece
by Georgios Merkouropoulos, Ioannis Ganopoulos, Georgios Doupis, Erika Maul and Franco Röckel
Agriculture 2025, 15(12), 1301; https://doi.org/10.3390/agriculture15121301 - 17 Jun 2025
Viewed by 457
Abstract
Dikili Tash is a Neolithic settlement that lies next to the ruins of the ancient city of Philippi on the north-eastern part of Greece. A recent archaeological excavation has unearthed charred grapevine pips and pressings together with two-handed clay cups, jugs, and jars [...] Read more.
Dikili Tash is a Neolithic settlement that lies next to the ruins of the ancient city of Philippi on the north-eastern part of Greece. A recent archaeological excavation has unearthed charred grapevine pips and pressings together with two-handed clay cups, jugs, and jars that date to 4300 BC. The majority of the pips were found to be Vitis vinifera ssp. sylvestris. Natural populations of this species have been localized in the valley surrounding Dikili Tash and also on Mt Pangaion and Mt Lekani, which flank the valley. Fifty-one samples from these modern populations have been analyzed using microsatellites on twenty microsatellite loci, and a dendrogram has been constructed showing the genetic closeness of the samples analyzed. Cuttings from all the vines analyzed are currently rooted and grown in the Hellenic Agricultural Organization—DIMITRA (ELGO-DIMITRA) greenhouse facilities in Lykovryssi (Athens) with the aim to, eventually, be transplanted in the grapevine, thus establishing the first V. sylvestris ex situ conservation site in Greece. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

17 pages, 6326 KiB  
Article
Functional Characterization of Grapevine VviMYC4 in Regulating Drought Tolerance by Mediating Flavonol Biosynthesis
by Yiting Tan, Wenjuan Wang, Wenbo Tian, Beibei Wang, Qifeng Zhao, Jinjun Liang, Wei Zhao and Pengfei Wen
Plants 2025, 14(10), 1409; https://doi.org/10.3390/plants14101409 - 8 May 2025
Viewed by 659
Abstract
Drought ranks among the key abiotic stresses that limit the growth and yield of grapevines (Vitis vinifera L.). Flavonols, a class of antioxidants commonly found in grapevines, play a crucial role in combating drought stress. In this study, we characterized the function [...] Read more.
Drought ranks among the key abiotic stresses that limit the growth and yield of grapevines (Vitis vinifera L.). Flavonols, a class of antioxidants commonly found in grapevines, play a crucial role in combating drought stress. In this study, we characterized the function and regulatory mechanism of the grapevine VviMYC4 in mediating flavonol biosynthesis in response to drought stress. VviMYC4 encodes a protein of 468 amino acids with conserved bHLH-MYC_N and bHLH domains. Phylogenetic analysis confirmed its homology with the grapevine VviMYC2 and similarity in function. The expression of VviMYC4 in ‘Cabernet Sauvignon’ grapevine seedling leaves increased initially and then decreased during prolonged drought stress. The homologous and heterologous transformation of VviMYC4 in grape suspension cells, Arabidopsis plants, tobacco leaves, and grapevine leaves demonstrated its ability to positively regulate flavonol biosynthesis and accumulation by promoting the expression of flavonol-related genes, thereby enhancing the drought tolerance of transgenic plants. Furthermore, VviMYC4 could bind to specific E-box sites on the promoters of VviF3H and VviFLS to improve their activities. This study highlights VviMYC4 as a pivotal positive regulator of drought tolerance in grapevines and proposes that VviMYC4 enhances the antioxidant and reactive oxygen species (ROS) scavenging abilities of grapevines in challenging environments and improves their stress resilience by mediating flavonol biosynthesis. Our findings offer crucial candidate genes and valuable insights for the molecular breeding of grapevine drought resistance. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants, 2nd Edition)
Show Figures

Figure 1

29 pages, 2311 KiB  
Review
Research and Innovations in Latin American Vitiviniculture: A Review
by Gastón Gutiérrez-Gamboa and Mercedes Fourment
Horticulturae 2025, 11(5), 506; https://doi.org/10.3390/horticulturae11050506 - 8 May 2025
Cited by 1 | Viewed by 1496
Abstract
Latin America offers a unique point of view into the adaptation of viticulture to climate change through its rich diversity of climates, traditional knowledge, and scientific innovation. This review synthesizes the current research and technological developments across major wine-producing countries including Argentina, Brazil, [...] Read more.
Latin America offers a unique point of view into the adaptation of viticulture to climate change through its rich diversity of climates, traditional knowledge, and scientific innovation. This review synthesizes the current research and technological developments across major wine-producing countries including Argentina, Brazil, Chile, Uruguay, the Dominican Republic, and Haiti. Argentina shows key adaptation strategies, including high-altitude vineyard relocation, clonal and rootstock selection, canopy and water management, and the conservation of Criolla and other autochthonous grapevine varieties. In Brazil, tropical viticulture and breeding programs led by Embrapa exemplify advancements in disease-resistant and climate-resilient cultivars. Chile’s heroic and southern viticulture highlights the importance of old vines, microclimatic heterogeneity, and territorial identity. Uruguay stands out for its terroir-based research and producer-led adaptation strategies. This review also addresses systemic challenges in scientific publishing, particularly the underrepresentation of Latin American researchers in global vitivinicultural discourse. These disparities underscore the need for inclusive science that values local knowledge and promotes equity in research funding and dissemination. Overall, Latin America stands out not only as a region highly vulnerable to climate change, but as an emerging model of adaptation and innovation, demonstrating how resilient, sustainable, and culturally rooted wine production can thrive under shifting environmental conditions. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

25 pages, 4995 KiB  
Article
Characterization of Bunch Compactness in a Diverse Collection of Vitis vinifera L. Genotypes Enriched in Table Grape Cultivars Reveals New Candidate Genes Associated with Berry Number
by Marco Meneses, Claudia Muñoz-Espinoza, Sofía Reyes-Impellizzeri, Erika Salazar, Claudio Meneses, Katja Herzog and Patricio Hinrichsen
Plants 2025, 14(9), 1308; https://doi.org/10.3390/plants14091308 - 26 Apr 2025
Viewed by 939
Abstract
Bunch compactness (BC) is a complex, multi-trait characteristic that has been studied mostly in the context of wine grapes, with table grapes being scarcely considered. As these groups have marked phenotypic and genetic differences, including BC, the study of this trait is reported [...] Read more.
Bunch compactness (BC) is a complex, multi-trait characteristic that has been studied mostly in the context of wine grapes, with table grapes being scarcely considered. As these groups have marked phenotypic and genetic differences, including BC, the study of this trait is reported here using a genetically diverse collection of 116 Vitis vinifera L. cultivars and lines enriched for table grapes over two seasons. For this, 3D scanning-based morphological data were combined with ground measurements of 14 BC-related traits, observing high correlations among both approaches (R2 > 0.90–0.97). The multivariate analysis suggests that the attributes ‘berries per bunch’, ‘berry weight and width’, and ‘bunch weight and length’ could be considered as the main descriptors for BC, optimizing evaluation times. Then, GWASs based on a set of 70,335 SNPs revealed that GBS analysis in this same population enabled the detection of several SNPs associated with different sub-traits, with a locus for ‘berries per bunch’ in chromosome (chr) 18 being the most prominent. Enrichment analysis of significant and frequent SNPs found simultaneously in several traits and seasons revealed the over-representation of discrete functions such as alpha-linolenic acid metabolism and glycan degradation. In summary, the utility of 3D automated phenotyping was validated for table grape backgrounds, and new SNPs and candidate genes associated with the BC trait were detected. The latter could eventually become a selection tool for grapevine breeding programs. Full article
Show Figures

Figure 1

19 pages, 13029 KiB  
Article
Decoding G-Quadruplexes Sequence in Vitis vinifera: Regulatory Region Enrichment, Drought Stress Adaptation, and Sugar–Acid Metabolism Modulation
by Jun Xie, Kangkang Song, Gaixia Qiao, Rong Wang, Hongyuan Wu, Qiaoxia Jia, Yujuan Liu, Yi Li and Meilong Xu
Plants 2025, 14(8), 1180; https://doi.org/10.3390/plants14081180 - 10 Apr 2025
Viewed by 691
Abstract
G-quadruplexes play a crucial role in transcription, translation, and DNA replication in plant genomes. Here, we comprehensively examined the prevalence and functions of G-quadruplexes in Vitis vinifera. A total of 467,813 G-quadruplexes were identified in grapevine genome, with enrichment in the promoter [...] Read more.
G-quadruplexes play a crucial role in transcription, translation, and DNA replication in plant genomes. Here, we comprehensively examined the prevalence and functions of G-quadruplexes in Vitis vinifera. A total of 467,813 G-quadruplexes were identified in grapevine genome, with enrichment in the promoter (0.54/kbp) and near transcription start sites (TSSs, 1.00/kbp), and showed conservative strand preference. The G-quadruplex density in centromeres exhibited heterogeneity. The differentially expressed genes (DEGs) under two-day drought stress manifested high G-quadruplex density in the promoter and TSS regions. The upregulated DEGs showed template strand-biased G-quadruplex enrichment, while downregulated DEGs displayed coding strand dominance linked to metal ion homeostasis and sugar–acid metabolism pathways, respectively. G-quadruplexes were enriched in key sugar–acid metabolism genes, including pyruvate kinase and sucrose synthase. The number of G-quadruplexes in sucrose transferase VINV genes was higher than that in the CWINV and NINV genes. This study revealed G-quadruplexes as regulatory elements of stress response and berry development, providing abundant genetic targets for precision breeding and the quality improvement of grapevines. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 1459 KiB  
Article
Precise Identification of Vitis vinifera L. Varieties Using Cost-Effective NGS-Based SNP Genotyping
by Konstantinos Tegopoulos, Sonia-Vasiliki Polychronidou, Anastasia Voumvouraki, Petros Kolovos, George Skavdis and Maria Ε. Grigoriou
Horticulturae 2025, 11(4), 375; https://doi.org/10.3390/horticulturae11040375 - 31 Mar 2025
Viewed by 857
Abstract
In this study, we developed, validated and applied an NGS-based SNP genotyping protocol for the molecular identification of Vitis vinifera varieties, demonstrating a reliable and efficient approach for distinguishing grapevine cultivars. By utilizing a small but highly informative set of SNP loci, this [...] Read more.
In this study, we developed, validated and applied an NGS-based SNP genotyping protocol for the molecular identification of Vitis vinifera varieties, demonstrating a reliable and efficient approach for distinguishing grapevine cultivars. By utilizing a small but highly informative set of SNP loci, this method provides effective molecular genotyping while capturing the genetic diversity needed for accurate identification. This straightforward and accessible approach allows for the rapid generation of genetic profiles, which can be compared with the profiles in existing databases to precisely identify grapevine varieties, even in cases where traditional morphological methods fall short due to environmental variability or developmental differences. The process is designed to be both time-efficient and cost-effective, making it a practical tool for routine use in vineyard management, breeding programs, and conservation efforts. Furthermore, the workflow minimizes the need for whole-genome sequencing or other resource-intensive techniques, making molecular profiling accessible to a wider range of researchers, growers, and industry professionals. Analysis of the molecular profiles of known varieties validated the accuracy of the protocol. Moreover, 14 autochthonous Greek grapevine varieties that have not been previously identified were also genotyped and the data were compared with those of all Greek varieties in the Vitis International Variety Catalogue, revealing no matching multilocus genotypes across Greece. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

21 pages, 3083 KiB  
Article
A Comparative Transcriptomic Study Reveals Temporal and Genotype-Specific Defense Responses to Botrytis cinerea in Grapevine
by Flavia Angela Maria Maggiolini, Annalisa Prencipe, Carlo Bergamini, Antonio Domenico Marsico, Marco Vendemia, Marika Santamaria, Maria Angela Giannandrea, Margherita D’Amico, Lucia Rosaria Forleo, Rocco Perniola, Riccardo Velasco and Maria Francesca Cardone
J. Fungi 2025, 11(2), 124; https://doi.org/10.3390/jof11020124 - 7 Feb 2025
Cited by 1 | Viewed by 1055
Abstract
Grapevine (Vitis vinifera L.), a globally significant crop, is highly susceptible to Botrytis cinerea, the causative agent of gray mold disease. This study investigates transcriptomic responses to B. cinerea in tolerant and susceptible grapevine genotypes using RNA sequencing (RNA-seq). Differentially expressed [...] Read more.
Grapevine (Vitis vinifera L.), a globally significant crop, is highly susceptible to Botrytis cinerea, the causative agent of gray mold disease. This study investigates transcriptomic responses to B. cinerea in tolerant and susceptible grapevine genotypes using RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were identified at three time points (T1, T2, T3), highlighting both genotype-independent and genotype-specific responses. Early-stage infection (T1) revealed rapid and robust activation of defense pathways in both genotypes, though the tolerant genotype showed enhanced modulation of metabolic processes by T2, prioritizing secondary metabolism and stress adaptation over growth. In contrast, the susceptible genotype exhibited less coordinated metabolic reprogramming, with delayed or weaker activation of key defense mechanisms. Gene Ontology and KEGG analyses identified critical pathways, including phenylpropanoid biosynthesis-like lignin metabolism, MAPK signaling, as well as candidate genes such as WRKY transcription factors and enzymes involved in cell wall fortification and antifungal compound biosynthesis. Genotype-specific responses emphasized metabolic flexibility as a determinant of resistance, with the tolerant genotype exhibiting superior resource allocation to defense pathways. These findings provide insights into the molecular basis of grapevine resistance to B. cinerea, offering potential targets for breeding or genetic engineering to enhance resilience and reduce fungicide dependency. Full article
(This article belongs to the Special Issue Management of Postharvest Fungal Diseases of Fruits and Vegetables)
Show Figures

Figure 1

20 pages, 6545 KiB  
Article
Genome Scan Analysis for Advancing Knowledge and Conservation Strategies of Primitivo Clones (Vitis vinifera L.)
by Silvia Procino, Monica Marilena Miazzi, Vito Nicola Savino, Pierfederico La Notte, Pasquale Venerito, Nunzio D’Agostino, Francesca Taranto and Cinzia Montemurro
Plants 2025, 14(3), 437; https://doi.org/10.3390/plants14030437 - 2 Feb 2025
Cited by 1 | Viewed by 1121
Abstract
The success of the Primitivo variety underscores the critical need for the managing of clone genetic conservation, utilization, and improvement. By combining genomic and environmental data, breeders can better predict the performance of varieties, thereby improving breeding efficiency and enabling more targeted development [...] Read more.
The success of the Primitivo variety underscores the critical need for the managing of clone genetic conservation, utilization, and improvement. By combining genomic and environmental data, breeders can better predict the performance of varieties, thereby improving breeding efficiency and enabling more targeted development of high-quality grapevine cultivars. In this study, 35 Primitivo clones were analysed, including selected and certified clones that have been propagated over several years in Apulia. Genetic variability among the Primitivo clones was assessed through genotyping by sequencing. Using 38,387 filtered SNPs, pairwise identity-by-state (IBS) analysis demonstrated the uniqueness of the 35 clones (IBS < 0.75), indicating a high degree of variability among the samples. Genetic diversity analysis revealed three primary groups, which were differentiated based on geographic origin. The clones from Gioia del Colle were grouped into two distinct clusters, which aligns with the observed variation in grape-related traits. The fixation index (FST > 0.50) identified numerous loci putatively associated with stress responses and developmental traits, including genes involved in key plant biological processes, stress response regulation, and adaptation to environmental conditions such as glutamate receptors, auxin, and ethylene signalling. Full article
Show Figures

Figure 1

13 pages, 3688 KiB  
Article
Identification of the LH2 Locus for Prostrate Hair Density in Grapevine
by Bohan Yang, Jiaqi Liu, Qinqin Gu, Zhizhuo Xu, Xiukun Yao, Jianxiang Liang, Menghao Xu, Jiang Lu and Peining Fu
Horticulturae 2024, 10(12), 1309; https://doi.org/10.3390/horticulturae10121309 - 9 Dec 2024
Viewed by 1011
Abstract
Prostrate hairs are one of the anatomic barriers for grapevine resistance to pests and diseases, as well as in environmental adaptability, making them valuable for breeding programs. This study investigates the genetic determinants underlying prostrate hair density in grapevine, a key trait associated [...] Read more.
Prostrate hairs are one of the anatomic barriers for grapevine resistance to pests and diseases, as well as in environmental adaptability, making them valuable for breeding programs. This study investigates the genetic determinants underlying prostrate hair density in grapevine, a key trait associated with resistance to pests and pathogens. Using an F1 hybrid population derived from Vitis vinifera L. ‘Cabernet Sauvignon cv.’ and V. pseudoreticulata W.T.Wang ‘Huadong1058’, we performed a combination of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) to identify the genomic regions influencing the density of prostrate hair. We identified a major locus on 9.56–10.54 Mbp of chromosome 17, designated as ‘LH2’, which accounts for 43% of the phenotypic variation. This locus was delineated with high precision, and 92 candidate genes were identified within the region. Functional enrichment analysis suggested that these genes are potentially involved in binding, catalytic activity, and various cellular processes. In particular, the SNP markers ‘chr17_10130288’ and ‘chr17_10428273’ were significantly associated with prostrate hair density, providing valuable information for marker-assisted selection. These findings offer a reliable target for analyzing the hair development mechanism of grapevine leaves and breeding new cultivars rich in prostrate hair on the back of the leaves. Full article
(This article belongs to the Special Issue Novel Insights into Sustainable Viticulture)
Show Figures

Figure 1

35 pages, 2264 KiB  
Review
Development and Applications of Somatic Embryogenesis in Grapevine (Vitis spp.)
by Angela Carra, Akila Wijerathna-Yapa, Ranjith Pathirana and Francesco Carimi
Plants 2024, 13(22), 3131; https://doi.org/10.3390/plants13223131 - 7 Nov 2024
Cited by 1 | Viewed by 3518
Abstract
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a [...] Read more.
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a focus on the benefits, challenges, and limitations of this method. The paper provides a comprehensive overview of the different steps involved in the grapevine SE process, including callus induction, maintenance of embryogenic cultures, and the production of plantlets. Additionally, the review explores the development of high-health plant material through SE; the molecular and biochemical mechanisms underlying SE, including the regulation of gene expression, hormone signaling pathways, and metabolic pathways; as well as its use in crop improvement programs. The review concludes by highlighting the future directions for grapevine SE research, including the development of new and improved protocols, the integration of SE with other plant tissue culture techniques, and the application of SE for the production of elite grapevine cultivars, for the conservation of endangered grapevine species as well as for cultivars with unique traits that are valuable for breeding programs. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

17 pages, 3440 KiB  
Article
Time-Course Transcriptome Analysis Reveals Distinct Transcriptional Regulatory Networks in Resistant and Susceptible Grapevine Genotypes in Response to White Rot
by Tinggang Li, Xing Han, Lifang Yuan, Xiangtian Yin, Xilong Jiang, Yanfeng Wei and Qibao Liu
Int. J. Mol. Sci. 2024, 25(21), 11536; https://doi.org/10.3390/ijms252111536 - 27 Oct 2024
Viewed by 1191
Abstract
Grapevine (Vitis vinifera L.) is a globally significant economic crop. However, its widely cultivated varieties are highly susceptible to white rot disease. To elucidate the mechanisms of resistance in grapevine against this disease, we utilized time-ordered gene co-expression network (TO-GCN) analysis to [...] Read more.
Grapevine (Vitis vinifera L.) is a globally significant economic crop. However, its widely cultivated varieties are highly susceptible to white rot disease. To elucidate the mechanisms of resistance in grapevine against this disease, we utilized time-ordered gene co-expression network (TO-GCN) analysis to investigate the molecular responses in the grapevine varieties ‘Guifeimeigui’ (GF) and ‘Red Globe’ (RG). An assessment of their resistance demonstrated that GF is highly resistant to white rot, whereas RG is highly susceptible. We conducted transcriptome sequencing and a TO-GCN analysis on leaf samples from GF and RG at seven time points post-infection. Although a significant portion of the differentially expressed genes related to disease resistance were shared between GF and RG, the GF variety rapidly activated its defense mechanisms through the regulation of transcription factors during the early stages of infection. Notably, the gene VvLOX3, which is a key enzyme in the jasmonic acid biosynthetic pathway, was significantly upregulated in GF. Its upstream regulator, Vitvi08g01752, encoding a HD-ZIP family transcription factor, was identified through TO-GCN and yeast one-hybrid analyses. This study provides new molecular insights into the mechanisms of grapevine disease resistance and offers a foundation for breeding strategies aimed at enhancing resistance. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

Back to TopTop