Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (204)

Search Parameters:
Keywords = grain concentration profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 304
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

16 pages, 1105 KiB  
Article
Ozone Stress During Rice Growth Impedes Grain-Filling Capacity of Inferior Spikelets but Not That of Superior Spikelets
by Shaowu Hu, Hairong Mu, Yunxia Wang, Liquan Jing, Yulong Wang, Jianye Huang and Lianxin Yang
Agronomy 2025, 15(8), 1809; https://doi.org/10.3390/agronomy15081809 - 26 Jul 2025
Viewed by 213
Abstract
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets [...] Read more.
Ozone pollution decreases rice yield and quality in general, but how ozone stress changes grain-filling capacity is unclear. A chamber experiment was conducted to compare the effects of ozone exposure during the rice growth season on the grain-filling capacity and quality of spikelets located on the upper primary rachis (superior spikelets, SS) and the lower secondary rachis (inferior spikelets, IS). Ozone stress significantly decreased filled grain percentage by 41.4% and grain mass by 10.2% in IS, but had little effect on grain-filling capacity in SS. Consistent with the reduction in grain mass, ozone stress decreased grain volume, mainly due to reduced grain thickness, and IS was reduced more than SS. After removing the hull, brown rice obtained from ozone treatment exhibited higher proportions of immature and abnormal kernels, resulting in a substantially lower proportion of perfect kernels. Under ozone stress, the proportion of perfect kernels was only one-third in IS, compared with two-thirds in SS. Ozone stress affected the pasting properties of brown rice for both SS and IS, as shown by the decreased amylose content, and the increased maximum viscosity, minimum viscosity, final viscosity, setback, and peak time of the rapid visco analyzer profile. Out of fourteen traits related to nutritional quality of brown rice, only five showed significant increases under ozone stress, and they were the concentrations of albumin, prolamin, sulfur, copper, and manganese. The differential ozone responses between SS and IS were rather small for rice pasting properties and chemical compositions as shown by very few significant interactions between ozone and grain position. It is concluded that ozone stress during plant growth imposed more adverse effects on IS than SS in terms of grain-filling capacity and appearance quality, suggesting an enlarged asynchronous grain-filling pattern in rice panicles under ozone pollution. Strategies to improve the grain-filling capacity of IS are needed to mitigate ozone-induced damage to rice production. Full article
Show Figures

Figure 1

28 pages, 1881 KiB  
Article
Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages
by Delicia L. Bazán, Sandra Cortés Diéguez, José Manuel Domínguez and Nelson Pérez-Guerra
Foods 2025, 14(14), 2502; https://doi.org/10.3390/foods14142502 - 17 Jul 2025
Viewed by 322
Abstract
This study analyzes the aromatic profiles of kiwi-based fermented beverages, inoculated with varying proportions of milk kefir grains and incubated under different shaking rates. The experiments were designed using response surface methodology and three consecutive batch cultures were performed under each experimental condition. [...] Read more.
This study analyzes the aromatic profiles of kiwi-based fermented beverages, inoculated with varying proportions of milk kefir grains and incubated under different shaking rates. The experiments were designed using response surface methodology and three consecutive batch cultures were performed under each experimental condition. At the end of each fermentation, the grains were separated from the beverage and reused as the inoculum for fermenting fresh kiwi juice in the subsequent batch. Based on the results, together with the previously determined microbiological and chemical characteristics, two beverages were identified as having broader aromatic profiles, lower contents of sugars, ethanol, and acids, and high counts of lactic acid bacteria (LAB) and yeasts (>106 CFU/mL). These beverages were produced under relatively low agitation rates (38 and 86 rpm) and high inoculum proportions (4.33% and 4.68% w/v) during the second and third batch cultures, respectively. Over 28 days of refrigerated storage, the pH values of both beverages remained relatively stable, and the LAB counts consistently exceeded 106 CFU/mL. Yeast counts, along with the production of ethanol, glycerol, lactic acid, and acetic acid, increased slightly over time. In contrast, the concentrations of citric acid, quinic acid, total sugars, and acetic acid bacteria declined by day 28. Full article
Show Figures

Graphical abstract

24 pages, 3140 KiB  
Article
Physicochemical and Sensory Evaluation of Romanian Monofloral Honeys from Different Supply Chains
by Elena Daniela Bratosin, Delia Mirela Tit, Manuela Bianca Pasca, Anamaria Lavinia Purza, Gabriela Bungau, Ruxandra Cristina Marin, Andrei Flavius Radu and Daniela Gitea
Foods 2025, 14(13), 2372; https://doi.org/10.3390/foods14132372 - 4 Jul 2025
Viewed by 398
Abstract
Honey quality and authenticity are influenced by floral origin, processing, and storage, with implications for composition and sensory appeal. This study offers a comparative assessment of eight monofloral honey samples, representing five botanical varieties: acacia, linden, rapeseed, lavender, and thyme. For acacia, linden, [...] Read more.
Honey quality and authenticity are influenced by floral origin, processing, and storage, with implications for composition and sensory appeal. This study offers a comparative assessment of eight monofloral honey samples, representing five botanical varieties: acacia, linden, rapeseed, lavender, and thyme. For acacia, linden, and rapeseed, both producer-sourced and commercial honeys were analyzed, while lavender and thyme samples were available only from local beekeepers. The botanical origin of each sample was confirmed using morphological markers of pollen grains. Physicochemical characterization included acidity, pH, moisture content, refractive index, hydroxymethyl furfural (HMF), proline concentration, and carbohydrate profiling by HPLC-RID. Acacia honey exhibited the lowest acidity and HMF levels, alongside the highest fructose/glucose (F/G) ratios, indicating superior freshness, lower crystallization risk, and a sweeter flavor profile. In contrast, rapeseed honey showed elevated glucose levels and the lowest F/G ratio, confirming its tendency to crystallize rapidly. All samples recorded proline concentrations well above the quality threshold (180 mg/kg), supporting their authenticity and proper maturation. The estimated glycemic index (eGI) varied between 43.91 and 62.68 and was strongly inversely correlated with the F/G ratio (r = −0.98, p < 0.001). Sensory evaluation highlighted acacia honey from producers as the most appreciated across visual, tactile, and flavor attributes. Correlation analyses further revealed consistent links between sugar composition and both physical and sensory properties. Overall, the findings reinforce the value of integrated analytical and sensory profiling in assessing honey quality and authenticity. Full article
Show Figures

Graphical abstract

7 pages, 2358 KiB  
Proceeding Paper
Effect of FSW Parameters on Microstructure and Mechanical Properties of Dissimilar Aluminum Joints
by Jayakumar Krishnamoorthy, Saran Kumar Murugesan, Sanjuvigasini Nagappan and Sanjay Prakash Prithiviraj
Eng. Proc. 2025, 93(1), 12; https://doi.org/10.3390/engproc2025093012 - 2 Jul 2025
Viewed by 241
Abstract
Friction stir welding (FSW) is a novel welding technique that produces a solid-state weld by generating frictional heat and plastic deformation at the weld spot with a revolving, non-consumable welding tool. Despite processing a wide range of industrial materials, FSW has concentrated on [...] Read more.
Friction stir welding (FSW) is a novel welding technique that produces a solid-state weld by generating frictional heat and plastic deformation at the weld spot with a revolving, non-consumable welding tool. Despite processing a wide range of industrial materials, FSW has concentrated on welding aluminum and its alloys because of its high strength-to-weight ratio and uses in the shipbuilding, aerospace, and other fabrication industries. Important FSW process factors that determine the mechanical qualities of the weldment are the tool tilt angle, tool traverse feed, tool pin profile, tool rotational speed (TRS), tool traverse speed (TTS), tool pin profile (TPP), and shoulder plunge depth. Variations in the required process parameters cause defects, which lower the weld quality of FSWed aluminum alloys (AA). Therefore, keeping an eye on and managing the FSW process is crucial to preserving the caliber of the weld joints. The current study aims to investigate the changes in the mechanical characteristics and microstructure of the FSWed AA5052-H111 and AA6061-T6 joints. To perform the FSW experiments, we varied TRS, TTS, and TPP on plates that were 5 mm thick and had a butt joint structure. Following welding, the microstructure of the weld zones was examined to observe how the grains had changed. The joint’s tensile strength reached a maximum of 227 MPa for the square-shaped TPP, and the micro-Vickers hardness test results showed a maximum of 102 HV at the weld nugget zone (WNZ). Full article
Show Figures

Figure 1

15 pages, 270 KiB  
Article
Performance, Metabolism, and Economic Implications of Replacing Soybean Meal with Dried Distillers Grains with Solubles in Feedlot Cattle Diets
by Andrei L. R. Brunetto, Guilherme L. Deolindo, Ana Luiza de F. dos Santos, Luisa Nora, Maksuel Gatto de Vitt, Renato S. de Jesus, Bruna Klein, Luiz Eduardo Lobo e Silva, Roger Wagner, Gilberto V. Kozloski and Aleksandro S. da Silva
Fermentation 2025, 11(7), 363; https://doi.org/10.3390/fermentation11070363 - 23 Jun 2025
Viewed by 615
Abstract
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing [...] Read more.
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing traditional sources like soybean meal while maintaining productive performance and reducing costs. This study evaluated the total replacement of soybean meal with DDGS in the diet of confined Holstein cattle, focusing on weight gain, feed intake, digestibility, feed efficiency, animal health, meat quality, and economic viability. The 24 animals received diets with 80% concentrate, containing either DDGS or soybean meal, and no significant differences were observed in terms of body weight (p = 0.92), feed intake (p = 0.98), or feed efficiency (p = 0.97) between the two treatments. The average daily gain was 1.25 and 1.28 kg for cattle in the DDGS and soybean meal groups, respectively (p = 0.92). Regarding metabolic and digestive parameters, no relevant changes were found in blood levels, except for higher serum cholesterol (p = 0.03) levels in animals fed DDGS. The digestibility of neutral detergent fiber (NDF) (p = 0.03) and acid detergent fiber (ADF) (p = 0.05) was lower in the DDGS group, while the digestibility of ether extract was higher (p = 0.02). Rumen fluid analysis revealed an increase in the production of short-chain fatty acids (p = 0.01), such as acetic and butyric acids (p = 0.01), in the DDG-fed animals. In terms of meat quality, animals fed DDGS produced meat with lower levels of saturated fatty acids (SFA) (p = 0.05) and higher levels of unsaturated fatty acids (UFA) (p = 0.02), especially oleic acid (p = 0.05). This resulted in a healthier lipid profile, with a higher UFA/SFA ratio (p = 0.01). In terms of economic viability, DDGS-based diets were 10.5% cheaper, reducing the cost of production per animal by 7.67%. Profitability increased by 110% with DDGS compared to soybean meal, despite the high transportation costs. Therefore, replacing soybean meal with DDGS is an efficient and economical alternative for feeding confined cattle, maintaining zootechnical performance, increasing meat lipid content and improving fatty acid profile, and promoting higher profitability. This alternative is particularly advantageous in regions with easy access to the product. Full article
27 pages, 5226 KiB  
Article
A Novel Pulsation Reflux Classifier Used for Enhanced Preconcentration Efficiency of Antimony Oxide Ore
by Dongfang Lu, Yuxin Zhang, Zhenqiang Liu, Xiayu Zheng, Yuhua Wang and Yifei Liu
Minerals 2025, 15(6), 605; https://doi.org/10.3390/min15060605 - 4 Jun 2025
Cited by 1 | Viewed by 486
Abstract
This study developed a novel pulsation-fluidized bed system, and the device was integrated into a reflux classifier to enhance the preconcentration of antimony oxide ore. The diaphragm-based pulsation device converts a stable upward water flow into a vertically alternating pulsation flow. By precisely [...] Read more.
This study developed a novel pulsation-fluidized bed system, and the device was integrated into a reflux classifier to enhance the preconcentration of antimony oxide ore. The diaphragm-based pulsation device converts a stable upward water flow into a vertically alternating pulsation flow. By precisely controlling the pulsation parameters and optimizing operational conditions, the density-based stratification of particles can be significantly enhanced, thereby improving bed layering and effectively reducing entrainment. An antimony oxide ore from flotation tailings with an Sb grade of 0.8% was used as the feed material to evaluate the performance of the pulsation reflux classifier (PRC). Under optimized conditions, the PRC produced a concentrate with an Sb grade of 5.48% and a recovery of 81.68%, corresponding to a high separation efficiency of 70.97%. The response surface statistical model revealed that the interaction between the fluidization rate and pulsation frequency significantly enhanced the Sb grade of the concentrate, while pulsation stroke was identified as the key factor influencing separation efficiency. Furthermore, the variation in bed profile parameters with changing pulsation characteristics elucidates the interplay between particle suspension, stratification, and fluid disturbances. This study demonstrates that pulsation fluidization significantly enhances the separation performance of the reflux classifier, offering a new approach for the efficient preconcentration of complex fine-grained minerals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 705 KiB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 619
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

20 pages, 2882 KiB  
Article
Effects of Licorice Stem and Leaf Forage on Growth and Physiology of Hotan Sheep
by Peng Yin, Weiqing Kong, Linyuan Cheng, Nana Shi, Shonghan Wang, Fei Guo, Haitao Shen, Hua Yao and Hongbin Li
Animals 2025, 15(10), 1459; https://doi.org/10.3390/ani15101459 - 18 May 2025
Viewed by 503
Abstract
This study explored the impact of licorice stem and leaf forage in the diet of meat sheep on their growth performance, physiological parameters, immunity, and gut microbiota. Conducted in the Hotan region of Xinjiang, the experiment involved 40 healthy local Hotan sheep (5–6 [...] Read more.
This study explored the impact of licorice stem and leaf forage in the diet of meat sheep on their growth performance, physiological parameters, immunity, and gut microbiota. Conducted in the Hotan region of Xinjiang, the experiment involved 40 healthy local Hotan sheep (5–6 months old) that were randomly assigned to four groups, with both corn stalks and corn grain partially substituted at varying levels (30%, 40%, and 50%) by licorice stems and leaves for 80 days. Daily feed intake and refusal were recorded to assess feeding behavior and efficiency, while body weight was measured every 20 days to monitor growth performance. On day 80, blood samples were collected via venipuncture for biochemical and immune function analysis, followed by slaughter to obtain meat samples for quality assessment. Results showed that dietary licorice supplementation significantly improved growth performance. Sheep in the 40% replacement group had the highest final body weight and average daily gain (p < 0.05), indicating better feed efficiency. These findings suggest that replacing corn stalks and grain with licorice stems and leaves at a 40% ratio can significantly improve growth performance. Biochemical results showed improved protein metabolism and lipid profiles, with increased TP and ALB and decreased TC and TG levels. Immune indicators, including IgG, IgM, IgA, and IL-6, were also elevated in licorice-fed groups. In summary, licorice stems and leaves demonstrated clear nutritional and immunological benefits, especially at the 40% inclusion level. Gut microbiota analysis showed that licorice stems and leaves increased the relative abundance of Firmicutes while reducing Bacteroidota. At the genus level, UCG_005 and Bacteroides increased with higher licorice concentrations, whereas Treponema decreased. Pearson correlation analysis indicated that UCG_005 was positively correlated with TP, ALB, IgM, and IL-6 and negatively correlated with TG and TNF-α. These findings suggest that using licorice stems and leaves as a replacement for both corn stalks and corn grain modulates gut microbiota composition and is closely associated with immune and biochemical responses in sheep. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Graphical abstract

28 pages, 1980 KiB  
Article
Synergistic Bioactive Potential of Combined Fermented Kombucha and Water Kefir
by Chiara La Torre, Roberta Pino, Alessia Fazio, Pierluigi Plastina and Monica Rosa Loizzo
Beverages 2025, 11(3), 65; https://doi.org/10.3390/beverages11030065 - 6 May 2025
Viewed by 1314
Abstract
The rising interest in functional fermented beverages, such as kombucha and water kefir, has stimulated research into their health benefits. This study aimed to investigate the combined bioactive potential of kombucha and water kefir by fermenting a novel medium prepared by mixing them [...] Read more.
The rising interest in functional fermented beverages, such as kombucha and water kefir, has stimulated research into their health benefits. This study aimed to investigate the combined bioactive potential of kombucha and water kefir by fermenting a novel medium prepared by mixing them in a 1:1 v/v ratio. The fermentation process involved using both SCOBY and water kefir grains (WKGs) separately, as well as co-cultivation, to explore the bioactive properties of the three fermented beverages. Samples were analyzed at 24, 48, and 72 h for changes in pH, microorganism growth, and concentrations of flavonoids and phenolics. Antioxidant activity was assessed using DPPH, ABTS, and FRAP tests, alongside colorimetric analysis and enzyme inhibition assays against α-amylase, α-glucosidase, and lipase. The results demonstrated that longer fermentation times increased both bioactive compound content and antioxidant capacity. The highest phenolic concentration was found in the WKG-fermented mixture (47.58 ± 2.13 mg GAE/100 mL), while the highest iron-reducing capacity was observed in the product fermented with both WKGs and the co-culture of SCOBY-WKGs. Additionally, SCOBY fermentation showed significant inhibitory activity (over 70%) against digestive enzymes. These findings suggest that co-fermenting kombucha and water kefir represents a promising alternative to traditional water kefir, with improved bioactive compound profiles. Full article
Show Figures

Figure 1

20 pages, 4576 KiB  
Article
Soil Organic Carbon Sequestration and Distribution, Soil Biological Characteristics, and Winter Wheat Yields Under Different Tillage Practices in Long-Term Field Experiment
by Gabriela Mühlbachová, Helena Kusá, Pavel Růžek, Radek Vavera and Martin Káš
Agronomy 2025, 15(4), 947; https://doi.org/10.3390/agronomy15040947 - 13 Apr 2025
Cited by 1 | Viewed by 913
Abstract
The organic carbon content of soil (SOC) is considered a key factor for soil health and plays an important role in climate change. Conservation tillage systems promote carbon sequestration and reduce greenhouse gas emissions. A long-term field experiment with different soil tillage practices [...] Read more.
The organic carbon content of soil (SOC) is considered a key factor for soil health and plays an important role in climate change. Conservation tillage systems promote carbon sequestration and reduce greenhouse gas emissions. A long-term field experiment with different soil tillage practices (conventional tillage—CT; reduced tillage—RT; and no tillage—NT) has been conducted in Prague-Ruzyně (Czech Republic) since 1995. The soil’s organic carbon content, microbial biomass (Cmic), and enzymatic characteristics were evaluated in four-year crop rotation periods from 2005 to 2024. The crop rotation was as follows: winter oil seed rape, winter wheat, pea, and winter wheat. The following soil layers were studied: 0–10, 10–20, and 20–30 cm. Crop residues remained in the field and were incorporated into the soil according to the used tillage—completely under CT, partly under RT, and the remaining mulch under NT. Under RT and NT, the SOC, Cmic, and enzymatic activity were concentrated in the top soil layer and decreased in deeper layers, whereas all these characteristics were evenly distributed across the soil layers under the CT practice. The SOC content increased gradually in the whole soil profile (0–30 cm) from 51.0 t ha−1 on average in 2005–2008 to 56.0 t ha−1 in 2021–2024 under CT. An SOC increase from 57.4 to 63.1 t ha−1 under RT and from 61.1 to 65.7 t ha−1 under NT was noted in 2017–2020, after which the stagnation in SOC content was observed in the years of 2021–2024. Similarly, a lower Cmic and enzymatic activity were found in the same period. The highest C sequestration was found under NT; an increase of 571 kg C ha−1 year−1 was recorded from the establishment of the experiment in 1995 to 2024. This was followed by the RT and CT practices (462 and 221 kg C ha−1 year−1, respectively). The average winter wheat yields and nitrogen content in grain were higher under CT (8.67 t ha−1, 2.16% N) and RT (8.97 t ha−1, 2.13% N) than under NT (8.23 t ha−1, 2.03% N). The weather conditions during the year (abundance of precipitation) influenced crop yields significantly more than the tillage practices. Conservation tillage practices increase the organic carbon and microbial activity in soils, but climate change associated with higher average temperatures can affect these processes. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 31477 KiB  
Article
Impact of Saline Water Irrigation on Soil Salinity, Growth, and Productivity of Triticale in Sandy Soil
by Hassan M. Abd El Baki, Haruyuki Fujimaki, Kristina Toderich, Jean Bosco Nana and Asad S. Qureshi
Soil Syst. 2025, 9(2), 28; https://doi.org/10.3390/soilsystems9020028 - 24 Mar 2025
Cited by 1 | Viewed by 1487
Abstract
Salinity and water scarcity are among the major environmental challenges requiring the use of non-conventional water sources and the adoption of salt-tolerant crops. We assessed the impact of irrigation with different concentrations of NaCl: 50 mM and 150 mM on the growth parameters [...] Read more.
Salinity and water scarcity are among the major environmental challenges requiring the use of non-conventional water sources and the adoption of salt-tolerant crops. We assessed the impact of irrigation with different concentrations of NaCl: 50 mM and 150 mM on the growth parameters and yield of triticale, soil salinity, distribution of active root density, and concentrations of Na+ and NO3 ions at harvest compared to freshwater under zero leaching conditions. Irrigation was applied on a daily basis based on weight measurements of micro-lysimeter pots. Growth parameters, including plant height, LAI, number of leaves, number of tillers, and soil salinity, were observed across the growing season. Spatial distributions of soil salinity, normalized root length density (NRLD), concentrations of Na+ and NO3 in soil profile were measured in two dimensions. The results indicate that irrigating with 150 mM of NaCl H2O significantly affected the crop growth, causing salts, particularly Na+, to reside in the topsoil, reducing NRLD with soil depth, crop water demand, and NO3 uptake. The application of 150 mM and 50 mM of NaCl H2O reduced crop water use by 4 and 2.6 times as well as grain yield by 97% and 42%, respectively, compared to freshwater. This shows that irrigation with concentration equal to or higher than 150 mM NaCl will result in very low production. To achieve higher yield and crop water productivity, irrigation with NaCl concentration of 50 mM or less is recommended to grow triticale in marginal regions with limited freshwater resources. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
Show Figures

Figure 1

19 pages, 31528 KiB  
Article
Evidence of Holocene Sea-Level Rise from Buried Oyster Reef Terrain in a Land-Locked Insular Embayment in Greece
by Evangelia Manoutsoglou and Thomas Hasiotis
Geosciences 2025, 15(3), 105; https://doi.org/10.3390/geosciences15030105 - 16 Mar 2025
Viewed by 676
Abstract
Gera Gulf, a relatively small embayment on the island of Lesvos, serves as a representative example of a semi-enclosed, shallow marine system in Greece. Previous studies revealed that the gulf seafloor is occupied by numerous small reefs that are evenly distributed. Recently, seismic [...] Read more.
Gera Gulf, a relatively small embayment on the island of Lesvos, serves as a representative example of a semi-enclosed, shallow marine system in Greece. Previous studies revealed that the gulf seafloor is occupied by numerous small reefs that are evenly distributed. Recently, seismic surveys together with gravity coring have shown numerous relict reefs within a fine-grained matrix, hosted at different stratigraphic levels above the inferred Holocene/Pleistocene boundary and locally extending up to the present seabed. The reefs are primarily engineered by the bivalve Ostrea edulis, with additional colonization by other marine organisms such as the coral Cladocora caespitosa. Key features identified in the seismic profiles include the widespread distribution of buried reef structures, erosional surfaces and unconformities also related to a paleolake, extensive fluid concentrations, and a major fault system paralleling the northeastern coast. Seismic record analysis and sediment dating suggest that the flooding of Gera Gulf began approximately 7500 BP, with O. edulis colonizing the seabed shortly thereafter. Buried reef structures were identified within the transgressive and highstand system tracts, characterized by varying sedimentation rates. These variations reflect changing environmental conditions, probably linked to specific climatic events during the Holocene epoch, which contributed to the evolution and shaping of the oyster reef terrain. Given the limited studies on recent or buried oyster reefs in similar environments, this study provides critical insights into the Holocene evolution of oyster reef terrains and their response to climate changes. Full article
Show Figures

Figure 1

28 pages, 1022 KiB  
Article
Exploring the Influence of Toasting Levels, Grain Sizes, and Their Combination on the Volatile Profile of Tempranillo Red Wines Aged in Quercus petraea Barrels
by Mikel Landín Ross-Magahy, Leticia Martínez-Lapuente, Belén Ayestarán and Zenaida Guadalupe
Molecules 2025, 30(6), 1293; https://doi.org/10.3390/molecules30061293 - 13 Mar 2025
Cited by 1 | Viewed by 802
Abstract
The ageing of wine in oak barrels enhances its sensory properties, with the toasting level and grain size of the wood significantly influencing the volatile composition of the wine. This study evaluated the impact of three toasting levels (light toasting, medium toasting, and [...] Read more.
The ageing of wine in oak barrels enhances its sensory properties, with the toasting level and grain size of the wood significantly influencing the volatile composition of the wine. This study evaluated the impact of three toasting levels (light toasting, medium toasting, and medium long toasting) and two grain sizes (standard grain and extra fine grain) on the volatile profile of Tempranillo red wines aged in Quercus petraea barrels over 12 and 18 months. Gas chromatography–mass spectrometry was employed to quantify wine volatile compounds. The results revealed that lighter toasting combined with standard grain barrels enhanced the wine volatile concentration during shorter maturation periods, while medium long toasting with extra fine grain barrels was more effective for longer ageing periods. Toasting level was found to have a stronger influence on the wine volatile composition than grain size. These findings underscore the importance of tailoring barrel specifications to the desired maturation durations and sensory outcomes. Future studies exploring other grape varieties, wood origins, and longer ageing periods could further refine these insights and enhance winemaking practices. Full article
(This article belongs to the Special Issue Chemical Analysis for Food and Beverage Bioactive Compounds)
Show Figures

Graphical abstract

28 pages, 18392 KiB  
Article
CALIPSO Overpasses During Three Atmospheric Pollen Events Detected by Hirst-Type Volumetric Samplers in Two Urban Cities in Greece
by Archontoula Karageorgopoulou, Elina Giannakaki, Christos Stathopoulos, Thanasis Georgiou, Eleni Marinou, Vassilis Amiridis, Ioanna Pyrri, Maria-Christina Gatou, Xiaoxia Shang, Athanasios Charalampopoulos, Despoina Vokou and Athanasios Damialis
Atmosphere 2025, 16(3), 317; https://doi.org/10.3390/atmos16030317 - 10 Mar 2025
Viewed by 1603
Abstract
Vertically retrieved optical properties by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were investigated in the case of three selected events over Athens and Thessaloniki with documented high pollen concentrations. Hirst-type volumetric samplers were used to detect and characterize the pollen during [...] Read more.
Vertically retrieved optical properties by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were investigated in the case of three selected events over Athens and Thessaloniki with documented high pollen concentrations. Hirst-type volumetric samplers were used to detect and characterize the pollen during the CALIPSO overpasses. Only cases with a total pollen concentration greater than 400 grains m−3 for at least two hours per day were considered severe pollen events, while model simulations were used to exclude the presence of other depolarizing aerosol types. This study provides mean values of lidar-derived optical properties inside the detected pollen layers; i.e., optical values represent the atmosphere with the presence of pollen, in urban cities of Greece. Specifically, three observed aerosol layers, one over Athens and two over Thessaloniki with particulate color ratios of 0.652 ± 0.194, 0.638 ± 0.362, and 0.456 ± 0.284, and depolarization ratios of 8.70 ± 6.26%, 28.30 ± 14.16%, and 8.96 ± 6.87%, respectively, were misclassified by CALIPSO as marine-dusty marine, dust, and polluted dust. In cases of intense pollen presence, CALIPSO vertical profiles and aerobiological monitoring methods may be used synergistically to better characterize the atmospheric pollen layers. Full article
Show Figures

Graphical abstract

Back to TopTop